Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 8: Quantum Computation and Cryptography

Based on the paradigm of quantum computation.

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.
- Quantum cryptanalysis: Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.
- Quantum cryptanalysis: Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.
- Quantum cryptography: A provably secure key exchange method is based upon quantum computation.

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.
- Quantum cryptanalysis: Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.
- Quantum cryptography: A provably secure key exchange method is based upon quantum computation.
- It is not known how to build a quantum computer.

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.
- Quantum cryptanalysis: Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.
- Quantum cryptography: A provably secure key exchange method is based upon quantum computation.
- It is not known how to build a quantum computer.
- Some partial implementations are known.

A Disclaimer

There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe there ever was such a time . . . On the other hand, I think I can safely say that nobody understands quantum mechanics.

— Richard Feynman (The Character of Physical Law, BBC, 1965)

 A system is specified by a finite-dimensional normalized vector of complex numbers:

 A system is specified by a finite-dimensional normalized vector of complex numbers:

$$(z_0, z_1, \dots, z_{n-1})$$
 with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

 A system is specified by a finite-dimensional normalized vector of complex numbers:

$$(z_0, z_1, \dots, z_{n-1})$$
 with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

• Choose an orthonormal basis B of \mathbb{C}^n . Denote the elements of B as $|0\rangle, |1\rangle, \ldots, |n-1\rangle$. For example,

 A system is specified by a finite-dimensional normalized vector of complex numbers:

$$(z_0, z_1, \dots, z_{n-1})$$
 with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

• Choose an orthonormal basis B of \mathbb{C}^n . Denote the elements of B as $|0\rangle, |1\rangle, \dots, |n-1\rangle$. For example,

$$|0\rangle = (1,0,0,\ldots,0),$$

 $|1\rangle = (0,1,0,\ldots,0),$
 $|2\rangle = (0,0,1,\ldots,0),$
...

$$|n-1\rangle = (0,0,0,...,1).$$

 A system is specified by a finite-dimensional normalized vector of complex numbers:

$$(z_0, z_1, \dots, z_{n-1})$$
 with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

• Choose an orthonormal basis B of \mathbb{C}^n . Denote the elements of B as $|0\rangle, |1\rangle, \dots, |n-1\rangle$. For example,

$$|0\rangle = (1,0,0,\ldots,0),$$

$$|1\rangle = (0,1,0,\ldots,0),$$

$$|2\rangle \quad = \quad (0,0,1,\dots,0),$$

$$|n-1\rangle = (0,0,0,...,1).$$

• The state of a system is $z_0|0\rangle + z_1|1\rangle + \cdots + z_{n-1}|n-1\rangle$ with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

A classical bit (cbit) can take two values: 0 and 1.

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)
 - Polarization of a photon

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)
 - Polarization of a photon
- Conceptual example:

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)
 - Polarization of a photon
- Conceptual example:
 - Schrödinger cat (|Alive) and |Dead))

- A classical bit (cbit) can take two values: 0 and 1.
- A quantum bit (qubit) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)
 - Polarization of a photon
- Conceptual example:
 - Schrödinger cat (|Alive) and |Dead))
 - The cat may be in the state $(|Alive\rangle + |Dead\rangle)/\sqrt{2}$.

• A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- AB is an mn-dimensional system with basis

$$|i\rangle_A \otimes |j\rangle_B = |i\rangle_A |j\rangle_B = |ij\rangle_{AB} = |ij\rangle.$$

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- AB is an mn-dimensional system with basis $|i\rangle_A \otimes |j\rangle_B = |i\rangle_A |j\rangle_B = |ij\rangle_{AB} = |ij\rangle$.
- State of AB: $\sum_{i,j} a_{ij} |ij\rangle$ with $\sum_{i,j} |a_{ij}|^2 = 1$.

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- *AB* is an *mn*-dimensional system with basis $|i\rangle_A \otimes |j\rangle_B = |i\rangle_A |j\rangle_B = |ij\rangle_{AB} = |ij\rangle$.
- State of AB: $\sum_{i,j} a_{ij} |ij\rangle$ with $\sum_{i,j} |a_{ij}|^2 = 1$.
- Let A_1, A_2, \ldots, A_k be systems of dimensions n_1, n_2, \ldots, n_k .

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- *AB* is an *mn*-dimensional system with basis $|i\rangle_A \otimes |j\rangle_B = |i\rangle_A |j\rangle_B = |ij\rangle_{AB} = |ij\rangle$.
- State of AB: $\sum_{i,j} a_{ij} |ij\rangle$ with $\sum_{i,j} |a_{ij}|^2 = 1$.
- Let A_1, A_2, \ldots, A_k be systems of dimensions n_1, n_2, \ldots, n_k .
- $A_1A_2...A_k$ is the $n_1n_2...n_k$ -dimensional system with basis $|j_1\rangle_1 \otimes |j_2\rangle_2 \otimes ... \otimes |j_k\rangle_k = |j_1\rangle_1|j_2\rangle_2...|j_k\rangle_k = |j_1j_2...j_k\rangle$.

Quantum Registers

Quantum Registers

An n-bit quantum register R has exactly n qubits.

- An n-bit quantum register R has exactly n qubits.
- R is a normalized 2ⁿ-dimensional vector.

- An *n*-bit quantum register *R* has exactly *n* qubits.
- R is a normalized 2ⁿ-dimensional vector.
- The basis states are

$$|j_1\rangle\otimes|j_2\rangle\otimes\cdots\otimes|j_n\rangle=|j_1\rangle|j_2\rangle\cdots|j_n\rangle=|j_1j_2\ldots j_n\rangle.$$

- An n-bit quantum register R has exactly n qubits.
- R is a normalized 2ⁿ-dimensional vector.
- The basis states are

$$|j_1\rangle\otimes|j_2\rangle\otimes\cdots\otimes|j_n\rangle=|j_1\rangle|j_2\rangle\cdots|j_n\rangle=|j_1j_2\ldots j_n\rangle.$$

• The basis states may be renamed as $|0\rangle, |1\rangle, \dots, |2^n - 1\rangle$.

- An n-bit quantum register R has exactly n qubits.
- R is a normalized 2ⁿ-dimensional vector.
- The basis states are

$$|j_1\rangle\otimes|j_2\rangle\otimes\cdots\otimes|j_n\rangle=|j_1\rangle|j_2\rangle\cdots|j_n\rangle=|j_1j_2\ldots j_n\rangle.$$

- The basis states may be renamed as $|0\rangle, |1\rangle, \dots, |2^n 1\rangle$.
- The basis states correspond to the classical values of an n-bit register.

- An n-bit quantum register R has exactly n qubits.
- R is a normalized 2ⁿ-dimensional vector.
- The basis states are

$$|j_1\rangle\otimes|j_2\rangle\otimes\cdots\otimes|j_n\rangle=|j_1\rangle|j_2\rangle\cdots|j_n\rangle=|j_1j_2\ldots j_n\rangle.$$

- The basis states may be renamed as $|0\rangle, |1\rangle, \dots, |2^n 1\rangle$.
- The basis states correspond to the classical values of an n-bit register.
- A general state for R is

$$|\psi\rangle=\sum_{i=0}^{2^n-1}a_i|i\rangle$$
 with $a_i\in\mathbb{C}$ and $\sum_{i=0}^{2^n-1}|a_i|^2=1$.

Quantum Bits and Registers Operations on a System Measurement of a System

Entanglement

• Let R = AB be a 2-bit quantum register.

- Let R = AB be a 2-bit quantum register.
- A general state for *R* is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.

- Let R = AB be a 2-bit quantum register.
- A general state for *R* is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.
- This can be written in the form

$$(a_0|0\rangle + a_1|1\rangle)(b_0|0\rangle + b_1|1\rangle)$$

= $a_0b_0|0\rangle + a_0b_1|1\rangle + a_1b_0|2\rangle + a_1b_1|3\rangle$

if and only if $c_0c_3 = c_1c_2$.

- Let R = AB be a 2-bit quantum register.
- A general state for *R* is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.
- This can be written in the form

$$\begin{aligned} & (a_0|0\rangle + a_1|1\rangle)(b_0|0\rangle + b_1|1\rangle) \\ = & a_0b_0|0\rangle + a_0b_1|1\rangle + a_1b_0|2\rangle + a_1b_1|3\rangle \end{aligned}$$

if and only if $c_0c_3 = c_1c_2$.

• If $c_0c_3 \neq c_1c_2$, then the bits A and B do not possess individual states.

- Let R = AB be a 2-bit quantum register.
- A general state for R is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.
- This can be written in the form

$$\begin{array}{ll} & (a_0|0\rangle + a_1|1\rangle)(b_0|0\rangle + b_1|1\rangle) \\ = & a_0b_0|0\rangle + a_0b_1|1\rangle + a_1b_0|2\rangle + a_1b_1|3\rangle \end{array}$$

if and only if $c_0c_3 = c_1c_2$.

- If $c_0c_3 \neq c_1c_2$, then the bits A and B do not possess individual states.
- An n-bit quantum register is called entangled if no set of fewer than its n qubits possesses an individual state.

- Let R = AB be a 2-bit quantum register.
- A general state for *R* is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.
- This can be written in the form

$$\begin{aligned} & (a_0|0\rangle + a_1|1\rangle)(b_0|0\rangle + b_1|1\rangle) \\ &= & a_0b_0|0\rangle + a_0b_1|1\rangle + a_1b_0|2\rangle + a_1b_1|3\rangle \end{aligned}$$

if and only if $c_0c_3 = c_1c_2$.

- If $c_0c_3 \neq c_1c_2$, then the bits A and B do not possess individual states.
- An n-bit quantum register is called entangled if no set of fewer than its n qubits possesses an individual state.
- Entanglement with surroundings poses the biggest challenge for realizing quantum computers.

• The conjugate transpose of a square matrix $U = (u_{ij})$ with complex entries is denoted by $U^{\dagger} = (\overline{u_{ii}})$.

- The conjugate transpose of a square matrix $U=(u_{ij})$ with complex entries is denoted by $U^{\dagger}=(\overline{u_{ii}})$.
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.

- The conjugate transpose of a square matrix $U = (u_{ij})$ with complex entries is denoted by $U^{\dagger} = (\overline{u_{ij}})$.
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.
- Every unitary matrix U is invertible with $U^{-1} = U^{\dagger}$.

- The conjugate transpose of a square matrix $U=(u_{ij})$ with complex entries is denoted by $U^{\dagger}=(\overline{u_{ii}})$.
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.
- Every unitary matrix U is invertible with $U^{-1} = U^{\dagger}$.
- Any operation on a quantum-mechanical system is unitary.

- The conjugate transpose of a square matrix $U = (u_{ij})$ with complex entries is denoted by $U^{\dagger} = (\overline{u_{ii}})$.
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.
- Every unitary matrix U is invertible with $U^{-1} = U^{\dagger}$.
- Any operation on a quantum-mechanical system is unitary.
- In particular, all operations on a quantum-mechanical system are invertible.

- The conjugate transpose of a square matrix $U = (u_{ij})$ with complex entries is denoted by $U^{\dagger} = (\overline{u_{ii}})$.
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.
- Every unitary matrix U is invertible with $U^{-1} = U^{\dagger}$.
- Any operation on a quantum-mechanical system is unitary.
- In particular, all operations on a quantum-mechanical system are invertible.
- **No-cloning theorem:** It is impossible to copy the contents of a quantum register to another. (The transformation $|\psi\rangle|\varphi\rangle\mapsto|\psi\rangle|\psi\rangle$ is not invertible.)

Operator Transformation Matrix

Operator	Transformation	Matrix
Identity	$I 0\rangle = 0\rangle, I 1\rangle = 1\rangle$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Operator	Transformation	Matrix
Identity	$I 0\rangle= 0\rangle,I 1\rangle= 1\rangle$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Exchange	$I 0\rangle = 1\rangle, I 1\rangle = 0\rangle$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Operator	Transformation	Matrix
Identity	$I 0\rangle = 0\rangle, I 1\rangle = 1\rangle$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Exchange	$I 0\rangle = 1\rangle, I 1\rangle = 0\rangle$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	Z 0 angle = 0 angle, Z 1 angle = - 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Operator	Transformation	Matrix
Identity	I 0 angle = 0 angle, I 1 angle = 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Exchange	$I 0\rangle= 1\rangle,I 1\rangle= 0\rangle$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	Z 0 angle = 0 angle, Z 1 angle = - 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Hadamard	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$	$\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$
	$H 1 angle=rac{1}{\sqrt{2}}(0 angle- 1 angle)$	` /

Operator	Transformation	Matrix
Identity	$I 0\rangle = 0\rangle, I 1\rangle = 1\rangle$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Exchange	$I 0\rangle = 1\rangle, I 1\rangle = 0\rangle$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	Z 0 angle = 0 angle, Z 1 angle = - 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Hadamard	$H 0 angle=rac{1}{\sqrt{2}}(0 angle+ 1 angle)$	$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
	$H 1 angle=rac{1}{\sqrt{2}}(0 angle- 1 angle)$. ,
\sqrt{X}	$\sqrt{X} 0\rangle = \frac{1}{1+i}(0\rangle + i 1\rangle)$	$\frac{1}{1+i}\begin{pmatrix}1&i\\i&1\end{pmatrix}$
	$\sqrt{X} 1\rangle = \frac{1}{1+i}(i 0\rangle + 1\rangle)$	` /

Examples of Unitary Operators (contd)

Examples of Unitary Operators (contd)

Let $|\psi\rangle=a|0\rangle+b|1\rangle$ be a state of a qubit.

Examples of Unitary Operators (contd)

Let $|\psi\rangle=a|0\rangle+b|1\rangle$ be a state of a qubit.

$$H|\psi\rangle = H(a|0\rangle + b|1\rangle)$$

$$= aH|0\rangle + bH|1\rangle$$

$$= a\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right] + b\left[\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right]$$

$$= \left(\frac{a+b}{\sqrt{2}}\right)|0\rangle + \left(\frac{a-b}{\sqrt{2}}\right)|1\rangle$$

$$= (a b)\frac{1}{\sqrt{2}}\begin{pmatrix}1 & 1\\1 & -1\end{pmatrix}\begin{pmatrix}|0\rangle\\|1\rangle\end{pmatrix}$$

Quantum Bits and Registers Operations on a System Measurement of a System

Measurement

The Born Rule

• Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .
- If the outcome is i, the system collapses to the state $|i\rangle$.

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .
- If the outcome is i, the system collapses to the state $|i\rangle$.
- Measurement is, therefore, non-invertible.

Measurement

The Born Rule

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .
- If the outcome is i, the system collapses to the state $|i\rangle$.
- Measurement is, therefore, non-invertible.
- Measurement is often used to initialize a system.

Measurement

The Born Rule

- Let A be a system with basis $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .
- If the outcome is i, the system collapses to the state $|i\rangle$.
- Measurement is, therefore, non-invertible.
- Measurement is often used to initialize a system.
- So sad! You cannot see Schrödinger's cat in the state $\frac{1}{\sqrt{2}}$ ($|Alive\rangle + |Dead\rangle$).

The Generalized Born Rule

• Let R be an (m+n)-bit quantum register in the state

$$|\psi\rangle_{m+n} = \sum_{i,j} a_{i,j} |i,j\rangle_{m+n}$$
 with $\sum_{i,j} |a_{i,j}|^2 = 1$.

- Let R be an (m+n)-bit quantum register in the state $|\psi\rangle_{m+n} = \sum a_{i,j} |i,j\rangle_{m+n}$ with $\sum_{i,j} |a_{i,j}|^2 = 1$.
- We measure the left m bits of R.

- Let R be an (m+n)-bit quantum register in the state $|\psi\rangle_{m+n}=\sum_{i,j}a_{i,j}|i,j\rangle_{m+n}$ with $\sum_{i,j}|a_{i,j}|^2=1$.
- We measure the left m bits of R.
- The outcome is an integer $i \in \{0, 1, 2, \dots, 2^m 1\}$ with

probability
$$p_i = \sum_{j=0}^{2^n-1} |a_{i,j}|^2$$
.

- Let R be an (m+n)-bit quantum register in the state $|\psi\rangle_{m+n}=\sum_{i,j}a_{i,j}|i,j\rangle_{m+n}$ with $\sum_{i,j}\mid a_{i,j}\mid^2=1$.
- We measure the left m bits of R.
- The outcome is an integer $i \in \{0, 1, 2, ..., 2^m 1\}$ with probability $p_i = \sum_{i=0}^{2^n 1} |a_{i,j}|^2$.
- R collapses to the state $|i\rangle \left(\frac{1}{\sqrt{p_i}}\sum_j a_{i,j}|j\rangle_n\right)$.

- Let R be an (m+n)-bit quantum register in the state $|\psi\rangle_{m+n}=\sum_{i,j}a_{i,j}|i,j\rangle_{m+n}$ with $\sum_{i,j}\mid a_{i,j}\mid^2=1$.
- We measure the left m bits of R.
- The outcome is an integer $i \in \{0, 1, 2, ..., 2^m 1\}$ with probability $p_i = \sum_{i=0}^{2^n 1} |a_{i,j}|^2$.
- R collapses to the state $|i\rangle \left(\frac{1}{\sqrt{p_i}}\sum_j a_{i,j}|j\rangle_n\right)$.
- If we now measure the right n bits, we get an integer $j \in \{0, 1, 2, ..., 2^n 1\}$ with probability $|a_{i,j}|^2/p_i$.

- Let R be an (m+n)-bit quantum register in the state $|\psi\rangle_{m+n}=\sum_{i,j}a_{i,j}|i,j\rangle_{m+n}$ with $\sum_{i,j}\mid a_{i,j}\mid^2=1$.
- We measure the left m bits of R.
- The outcome is an integer $i \in \{0, 1, 2, ..., 2^m 1\}$ with probability $p_i = \sum_{i=0}^{2^n 1} |a_{i,j}|^2$.
- R collapses to the state $|i\rangle \left(\frac{1}{\sqrt{p_i}}\sum_j a_{i,j}|j\rangle_n\right)$.
- If we now measure the right n bits, we get an integer $j \in \{0, 1, 2, ..., 2^n 1\}$ with probability $|a_{i,j}|^2/p_i$.
- Probability of measuring $|i\rangle_m|j\rangle_n$ is $p_i \mid a_{i,j} \mid {}^2/p_i = \mid a_{i,j} \mid {}^2.$

• The input is an *m*-bit value *x*.

- The input is an *m*-bit value *x*.
- We want to compute an n-bit value f(x).

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.
- Initialize R to $|x\rangle_m|0\rangle_n$.

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.
- Initialize R to $|x\rangle_m|0\rangle_n$.
- Apply the transformation $U_f|x\rangle_m|y\rangle_n=|x\rangle_m|f(x)\oplus y\rangle_n$ on R.

- The input is an *m*-bit value *x*.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.
- Initialize R to $|x\rangle_m|0\rangle_n$.
- Apply the transformation $U_f|x\rangle_m|y\rangle_n=|x\rangle_m|f(x)\oplus y\rangle_n$ on R.
- For y = 0, the output is $|x\rangle_m |f(x)\rangle_n$.

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.
- Initialize R to $|x\rangle_m|0\rangle_n$.
- Apply the transformation $U_f|x\rangle_m|y\rangle_n=|x\rangle_m|f(x)\oplus y\rangle_n$ on R.
- For y = 0, the output is $|x\rangle_m |f(x)\rangle_n$.
- U_f is a unitary transformation.

- The input is an m-bit value x.
- We want to compute an n-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m+n)-bit quantum register R.
- Initialize R to $|x\rangle_m|0\rangle_n$.
- Apply the transformation $U_f|x\rangle_m|y\rangle_n=|x\rangle_m|f(x)\oplus y\rangle_n$ on R.
- For y = 0, the output is $|x\rangle_m |f(x)\rangle_n$.
- U_f is a unitary transformation.
- $U_f^{-1} = U_f$.

 $f: \{0,1\} \to \{0,1\}$ is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).

 $f: \{0,1\} \rightarrow \{0,1\}$ is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).

Classical computation needs two invocations of the black box.

```
f: \{0,1\} \rightarrow \{0,1\} is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).
```

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.

 $f: \{0,1\} \rightarrow \{0,1\}$ is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.
- Use a 2-bit register R (m = n = 1).

 $f: \{0,1\} \rightarrow \{0,1\}$ is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.
- Use a 2-bit register R (m = n = 1).
- Use the unitary transform $D_f|x\rangle|y\rangle = |x\rangle|f(x) \oplus y\rangle$.

 $f: \{0,1\} \rightarrow \{0,1\}$ is a function provided as a black box. We want to check whether f is a constant function (f(0) = f(1)).

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.
- Use a 2-bit register R (m = n = 1).
- Use the unitary transform $D_f|x\rangle|y\rangle=|x\rangle|f(x)\oplus y\rangle$.
- Initialize R to the state $\left(\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle\right)$ = $\frac{1}{2}\left(|0\rangle|0\rangle - |0\rangle|1\rangle - |1\rangle|0\rangle + |1\rangle|1\rangle\right)$.

Applying D_f on R changes its state to

$$\begin{cases} \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

Applying D_f on R changes its state to

$$\begin{cases} \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

 Apply the Hadamard transform on the left bit to change R to the state

$$\begin{cases} |1\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ |0\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

Applying D_f on R changes its state to

$$\begin{cases} \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

 Apply the Hadamard transform on the left bit to change R to the state

$$\begin{cases} |1\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ |0\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

Measure the left bit.

Applying D_f on R changes its state to

$$\begin{cases} \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

 Apply the Hadamard transform on the left bit to change R to the state

$$\begin{cases} |1\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ |0\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

- Measure the left bit.
- The outcome is 1 or 0 according as whether f is constant or not.

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

Alice generates a random classical bit i.

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

- Alice generates a random classical bit i.
- Alice makes a random decision x.

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

- Alice generates a random classical bit i.
- Alice makes a random decision x.
- If x = 0, Alice sends the qubit $|i\rangle$ itself to Bob.

Quantum Key Exchange

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

 Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

- Alice generates a random classical bit i.
- Alice makes a random decision x.
- If x = 0, Alice sends the qubit $|i\rangle$ itself to Bob.
- If x=1, Alice uses the Hadamard transform and sends $H|i\rangle$ $(H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ or $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle))$ to Bob.

Bob processes Alice's qubit

Let A be the qubit received by Bob from Alice.

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures B to obtain the classical bit j.

Bob processes Alice's qubit

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures B to obtain the classical bit j.

Alice and Bob exchange their guesses

Bob processes Alice's qubit

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures B to obtain the classical bit j.

Alice and Bob exchange their guesses

Bob sends y to Alice.

Bob processes Alice's qubit

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures B to obtain the classical bit j.

Alice and Bob exchange their guesses

- Bob sends y to Alice.
- Alice sends x to Bob.

Bob processes Alice's qubit

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures B to obtain the classical bit j.

Alice and Bob exchange their guesses

- Bob sends y to Alice.
- Alice sends x to Bob.
- If x = y, Alice and Bob store the common bit i = j.

• If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.
- Now, j gives no clue about i.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.
- Now, j gives no clue about i.
- Alice and Bob discard i and j.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.
- Now, j gives no clue about i.
- Alice and Bob discard i and j.
- About half of the time, Alice and Bob make the same independent guess x = y.

- If x = y = 0, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.
- Now, j gives no clue about i.
- Alice and Bob discard i and j.
- About half of the time, Alice and Bob make the same independent guess x = y.
- In about 2*n* iterations, a common *n*-bit key can be established.

Example
Eavesdropping
Practical Implementation

The BB84 Algorithm: Example

Iteration i x A y B j Common bit

Iteration			Α	У	В		Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{1}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	1	

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	1	
5	0	0	0>	0	0>	0	0

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	1/2 (1-/ ' 1-//	1	
2	0	0	0>	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	1 angle	1	1

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$rac{1}{\sqrt{2}}(\ket{0}+\ket{1}) \ rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	1 angle	1	1
7	1	1	$\frac{\sqrt{1^2}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\sqrt{2}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	1 angle	1	1
7	1	1	$\frac{\sqrt{1}}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	
8	0	0	0>	0	0>	0	0

Iteration	i	Χ	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	$ 0\rangle$	0	0
4	1	1	$\frac{\sqrt{2}}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	1 angle	1	1
7	1	1	$\frac{\sqrt{1-}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	
8	0	0	0>	0	0>	0	0
9	1	0	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	

Iteration	i	Х	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{2}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\frac{v_1^2}{\sqrt{2}}}{(0\rangle - 1\rangle)}$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	$ 1\rangle$	1	1
7	1	1	$\frac{\sqrt{1}}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	
8	0	0	0>	0	0>	0	0
9	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
10	1	0	$ 1\rangle$	0	1>	1	1

Iteration	i	Х	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$\frac{\sqrt{2}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	$ 1\rangle$	1	1
7	1	1	$\frac{\sqrt{1^2}}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	
8	0	0	0>	0	0>	0	0
9	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
10	1	0	$ 1\rangle$	0	1>	1	1
11	0	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	

Iteration	i	Х	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$rac{1}{\sqrt{2}}(\ket{0}+\ket{1}) \ rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	$ 1\rangle$	1	1
7	1	1	$\frac{\sqrt{1}^2}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	
8	0	0	0>	0	0>	0	0
9	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
10	1	0	1 angle	0	1>	1	1
11	0	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	
12	0	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	

Iteration	i	X	Α	У	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
2	0	0	0>	1	$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$ $rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	0
4	1	1	$\frac{\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)}{\frac{1}{\sqrt{2}}}$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1	
5	0	0	0>	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	1 angle	1	1
7	1	1	$\frac{\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)}{\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)}$	0	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	
8	0	0	0>	0	0>	0	0
9	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	
10	1	0	1 angle	0	1>	1	1
11	0	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	
12	0	0	$ 0\rangle$	1	$\frac{\sqrt{12}}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	
13	1	1	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	1	1>	1	1

The BB84 Algorithm: Passive Eavesdropping

The BB84 Algorithm: Passive Eavesdropping

Carol intercepts A.

- Carol intercepts A.
- Carol makes a guess z about x.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.
- Later, Alice and Bob disclose x and y.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.
- Later, Alice and Bob disclose x and y.
- If $x \neq y$, the bits i, j, k are discarded.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.
- Later, Alice and Bob disclose x and y.
- If $x \neq y$, the bits i, j, k are discarded.
- If x = y, Alice stores i, and Bob stores j.

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.
- Later, Alice and Bob disclose x and y.
- If $x \neq y$, the bits i, j, k are discarded.
- If x = y, Alice stores i, and Bob stores j.
- Carol may have caused $i \neq j$ even when x = y.

Iter i x A z $C = H^z A$ k D y $B = H^y D$ j

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	1⟩	1	$ 1\rangle$	0	1>	1

					$C = H^z A$					
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0			$ 1\rangle$					
3	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	$ 1\rangle$	1	$ 1\rangle$	0	1>	1
					$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$					0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
					$ 1\rangle$				1>	1
3	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
									$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	

	i								$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
	1		1>						1>	1
3	1	0	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
5					0⟩			1	4	1
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	$ 1\rangle$	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1

Iter	i	X	Α				D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0		0	$ 1\rangle$		$ 1\rangle$	0	1>	1
3	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
5	0	1			0>		$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	$ 1\rangle$	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1
7	1	1				0		1	• =	0

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	$ 1\rangle$	1	$ 1\rangle$	0	1>	1
3	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
5	0	1	1/2 (1 / 1 / /	1	$ 0\rangle$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
6	1	1		1	1⟩	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1
7	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
8	1	0	1>	0	1>	1	$ 1\rangle$	0	1>	1

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	$ 1\rangle$	1	$ 1\rangle$	0	1>	1
3	1	0	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
5	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0>	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
6	1	1		1	$ 1\rangle$	1	$ 1\rangle$	1	$\frac{\sqrt{1}}{\sqrt{2}}(0\rangle - 1\rangle)$	1
7	1	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
8	1	0	1>	0	1>	1	$ 1\rangle$	0	1>	1
9	1	1	$\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1

Iter	i	X	Α	Z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0⟩	0	0>	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	$ 1\rangle$	1	$ 1\rangle$	0	1>	1
3	1	0	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	0	$ 0\rangle$	0
4	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
5	0	1	$\sqrt{2}$ (1 / · 1 / /	1	$ 0\rangle$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	1>	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1
7	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
8	1	0	1>	0	1>	1	$ 1\rangle$	0	1>	1
9	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
10	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle- 1\rangle)$	1

i and j differ in five positions.

It is impossible to copy a qubit.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.
 - Alice and Bob may transmit parity check bits at regular intervals.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.
 - Alice and Bob may transmit parity check bits at regular intervals.
 - Alternatively, Alice and Bob may exchange plaintext-ciphertext pairs based on their shared keys.

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.
 - Alice and Bob may transmit parity check bits at regular intervals.
 - Alternatively, Alice and Bob may exchange plaintext-ciphertext pairs based on their shared keys.
- If eavesdropping is detected, the key exchange session is discarded.

Polarization angle	Qubit value
00	0>
45 ⁰	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$
90 ⁰	1>
135 ⁰	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
	V Z

Polarization of photons can be used.

Polarization angle	Qubit value
00	0>
45 ⁰	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$
90^{0}	1>
135 ⁰	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$

• A 45⁰ filter is used to implement the Hadamard transform *H*.

Polarization angle	Qubit value
00	0>
45 ⁰	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$
90^{0}	1>
135 ⁰	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$

- A 45⁰ filter is used to implement the Hadamard transform *H*.
- Bennett and Brassard did the first implementation in the T. J. Watson Research Center.

Polarization angle	Qubit value
00	0>
45 ⁰	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$
90^{0}	1>
135 ⁰	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$

- A 45⁰ filter is used to implement the Hadamard transform *H*.
- Bennett and Brassard did the first implementation in the T. J. Watson Research Center.
- They used a quantum channel of length 32 cm.

Polarization angle	Qubit value
00	0>
45 ⁰	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$
90 ⁰	1>
135 ⁰	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$

- A 45⁰ filter is used to implement the Hadamard transform *H*.
- Bennett and Brassard did the first implementation in the T. J. Watson Research Center.
- They used a quantum channel of length 32 cm.
- Current record: 148.7 km (Los Alamos/NIST).

Let m be an odd integer that we want to factor.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let *r* be the multiplicative order of *a* modulo *m*.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let *r* be the multiplicative order of *a* modulo *m*.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
- Shor's algorithm computes r.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
- Shor's algorithm computes r.
- If r is even, $(a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
- Shor's algorithm computes r.
- If r is even, $(a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.
- With probability at least 1/2, we have $a^{r/2} + 1 \not\equiv 0 \pmod{m}$.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let *r* be the multiplicative order of *a* modulo *m*.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
- Shor's algorithm computes r.
- If r is even, $(a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.
- With probability at least 1/2, we have $a^{r/2} + 1 \not\equiv 0 \pmod{m}$.
- If so, $gcd(a^{r/2} + 1, m)$ is a non-trivial factor of m.

- Let m be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \geqslant m^2 > r^2$.
- The function $f: \mathbb{Z} \to \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
- Shor's algorithm computes r.
- If r is even, $(a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.
- With probability at least 1/2, we have $a^{r/2} + 1 \not\equiv 0 \pmod{m}$.
- If so, $gcd(a^{r/2} + 1, m)$ is a non-trivial factor of m.
- If not (or if r is odd), repeat with another a.

• Evaluate f(x) for many values of x.

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision f(x) = f(y).

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision f(x) = f(y).
- But r can be large, like $r \approx m$.

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision f(x) = f(y).
- But r can be large, like $r \approx m$.
- The classical algorithm may take exponential time (in log *m*).

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision f(x) = f(y).
- But r can be large, like $r \approx m$.
- The classical algorithm may take exponential time (in log *m*).
- Shor's algorithm computes r with high probability by making only a single evaluation of f.

Use a 2n-bit quantum register R.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

the state
$$\left(H^{(n)} \otimes I^{(n)}\right) |0\rangle_n |0\rangle_n = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |0\rangle_n$$
.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

the state
$$\left(H^{(n)}\otimes I^{(n)}\right)|0\rangle_n|0\rangle_n=\frac{1}{\sqrt{N}}\sum_{\mathbf{x}=0}^{N-1}|\mathbf{x}\rangle_n|0\rangle_n$$
.

• Apply f to change the state $|x\rangle_n|y\rangle_n$ to $|x\rangle_n|f(x) \oplus y\rangle_n$.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

the state
$$\left(H^{(n)} \otimes I^{(n)}\right) |0\rangle_n |0\rangle_n = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |0\rangle_n$$
.

• Apply f to change the state $|x\rangle_n |y\rangle_n$ to $|x\rangle_n |f(x) \oplus y\rangle_n$.

• R switches to the state $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |f(x)\rangle_n$.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

the state
$$\left(H^{(n)}\otimes I^{(n)}\right)|0\rangle_n|0\rangle_n=rac{1}{\sqrt{N}}\sum_{\mathbf{x}=0}^{N-1}|\mathbf{x}\rangle_n|0\rangle_n$$
 .

- Apply f to change the state $|x\rangle_n|y\rangle_n$ to $|x\rangle_n|f(x) \oplus y\rangle_n$.
- R switches to the state $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |f(x)\rangle_n$.
- Evaluate the right *n* bits. We get $f(x_0) \in \{0, 1, 2, ..., N-1\}$ for some $x_0 \in \{0, 1, 2, ..., r-1\}$.

- Use a 2n-bit quantum register R.
- Initialize R to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

the state
$$\left(H^{(n)} \otimes I^{(n)}\right) |0\rangle_n |0\rangle_n = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |0\rangle_n$$
.

- Apply f to change the state $|x\rangle_n|y\rangle_n$ to $|x\rangle_n|f(x) \oplus y\rangle_n$.
- R switches to the state $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |f(x)\rangle_n$.
- Evaluate the right *n* bits. We get $f(x_0) \in \{0, 1, 2, ..., N-1\}$ for some $x_0 \in \{0, 1, 2, ..., r-1\}$.
- R collapses to the state $\frac{1}{\sqrt{M}} \sum_{i=0}^{M-1} |x_0 + jr\rangle_n$, where

 $x_0 + (M-1)r < N \le x_0 + Mr$ (by the generalized Born rule).

 Suppose we are allowed to make copies of this state and measure these copies.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, R gets the state

$$\frac{1}{\sqrt{M}}\sum_{j=0}^{M'-1}|x_1+jr\rangle_n \text{ in the left } n \text{ bits.}$$

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, R gets the state

$$\frac{1}{\sqrt{M}} \sum_{i=0}^{M'-1} |x_1 + jr\rangle_n \text{ in the left } n \text{ bits.}$$

• Now, measurement gives $x_1 + jr$.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, R gets the state

$$\frac{1}{\sqrt{M}} \sum_{i=0}^{M'-1} |x_1 + jr\rangle_n \text{ in the left } n \text{ bits.}$$

- Now, measurement gives $x_1 + jr$.
- With high probability, $x_0 \neq x_1$.

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, R gets the state

$$\frac{1}{\sqrt{M}} \sum_{i=0}^{M'-1} |x_1 + jr\rangle_n \text{ in the left } n \text{ bits.}$$

- Now, measurement gives $x_1 + jr$.
- With high probability, $x_0 \neq x_1$.
- Having a collision $x_u = x_v$ is governed by the birthday paradox, and the algorithm becomes exponential again.

• Use *n*-bit Fourier transform $F: |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{v=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.

- Use *n*-bit Fourier transform $F: |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.
- Application of F on the left n bits of R available from the preparation stage gives the state

$$F\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}|x_0+jr\rangle_n$$

- Use *n*-bit Fourier transform $F: |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.
- Application of F on the left n bits of R available from the preparation stage gives the state

$$F \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n$$

$$= \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{2\pi i (x_0 + jr)y/N} |y\rangle_n \right)$$

- Use *n*-bit Fourier transform $F: |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.
- Application of F on the left n bits of R available from the preparation stage gives the state

$$F \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n$$

$$= \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{2\pi i (x_0 + jr)y/N} |y\rangle_n \right)$$

$$= \frac{1}{\sqrt{NM}} \sum_{y=0}^{N-1} \left(e^{2\pi i x_0 y/N} \sum_{j=0}^{M-1} e^{2\pi i jry/N} \right) |y\rangle_n.$$

• Measure the left
$$n$$
 bits of R to get $y \in \{0, 1, 2, \dots, N-1\}$ with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} \mathrm{e}^{2\pi \mathrm{i} j r y/N} \right|^2$.

• Measure the left
$$n$$
 bits of R to get $y \in \{0, 1, 2, \dots, N-1\}$ with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} \mathrm{e}^{2\pi \mathrm{i} j r y/N} \right|^2$.

 F changed the state from a uniform superposition to a state with higher probabilities for useful values.

• Measure the left
$$n$$
 bits of R to get $y \in \{0, 1, 2, \dots, N-1\}$ with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} \mathrm{e}^{2\pi \mathrm{i} j r y/N} \right|^2$.

- F changed the state from a uniform superposition to a state with higher probabilities for useful values.
- A measurement y is useful if its value is within $\pm \frac{1}{2}$ of an integral multiple of N/r.

• Measure the left
$$n$$
 bits of R to get $y \in \{0, 1, 2, \dots, N-1\}$ with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} \mathrm{e}^{2\pi \mathrm{i} j r y/N} \right|^2$.

- F changed the state from a uniform superposition to a state with higher probabilities for useful values.
- A measurement y is useful if its value is within $\pm \frac{1}{2}$ of an integral multiple of N/r.
- The probability that we measure a useful y is at least $\frac{4}{2} = 0.40528...$

• Measure the left n bits of R to get $y \in \{0, 1, 2, ..., N-1\}$

with probability
$$p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} e^{2\pi i j r y/N} \right|^2$$
.

- F changed the state from a uniform superposition to a state with higher probabilities for useful values.
- A measurement y is useful if its value is within $\pm \frac{1}{2}$ of an integral multiple of N/r.
- The probability that we measure a useful y is at least $\frac{4}{x^2} = 0.40528...$
- If the measured y is useful, we run a classical algorithm (based upon continued fractions) to obtain a factor of r.

