What is Quantum Cryptography

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.

Quantum cryptanalysis: Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.

Quantum cryptography: A provably secure key exchange method is based upon quantum computation.

- It is not known how to build a quantum computer.
- Some partial implementations are known.
A Disclaimer

There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe there ever was such a time . . . On the other hand, I think I can safely say that nobody understands quantum mechanics.

— Richard Feynman
(The Character of Physical Law, BBC, 1965)
Quantum-mechanical Systems

- **A system** is specified by a finite-dimensional normalized vector of complex numbers:
 \[(z_0, z_1, \ldots, z_{n-1})\] with \(z_i \in \mathbb{C}\) and \(\sum_{i=0}^{n-1} |z_i|^2 = 1\).

- Choose an orthonormal basis \(B\) of \(\mathbb{C}^n\). Denote the elements of \(B\) as \(|0\rangle, |1\rangle, \ldots, |n-1\rangle\). For example,
 \[
 |0\rangle = (1, 0, 0, \ldots, 0), \\
 |1\rangle = (0, 1, 0, \ldots, 0), \\
 |2\rangle = (0, 0, 1, \ldots, 0), \\
 \vdots \\
 |n-1\rangle = (0, 0, 0, \ldots, 1).
 \]

- The state of a system is \(z_0|0\rangle + z_1|1\rangle + \cdots + z_{n-1}|n-1\rangle\) with \(z_i \in \mathbb{C}\) and \(\sum_{i=0}^{n-1} |z_i|^2 = 1\).
A **classical bit (cbit)** can take two values: 0 and 1.

A **quantum bit (qubit)** is a normalized 2-dimensional vector of complex numbers.

The basis states are $|0\rangle$ and $|1\rangle$.

All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.

Possible realizations:
- Spin of an electron ($|\text{Up}\rangle$ and $|\text{Down}\rangle$)
- Polarization of a photon

Conceptual example:
- **Schrödinger cat** ($|\text{Alive}\rangle$ and $|\text{Dead}\rangle$)
- The cat may be in the state $(|\text{Alive}\rangle + |\text{Dead}\rangle)/\sqrt{2}$.
Composite Systems

- A is a system with basis $|0\rangle_A, |1\rangle_A, \ldots, |m-1\rangle_A$.
- B is a system with basis $|0\rangle_B, |1\rangle_B, \ldots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- AB is an mn-dimensional system with basis $|i\rangle_A \otimes |j\rangle_B = |i\rangle_A |j\rangle_B = |ij\rangle_{AB} = |ij\rangle$.
- State of AB: $\sum_{i,j} a_{ij} |ij\rangle$ with $\sum_{i,j} |a_{ij}|^2 = 1$.

Let A_1, A_2, \ldots, A_k be systems of dimensions n_1, n_2, \ldots, n_k.
- $A_1 A_2 \ldots A_k$ is the $n_1 n_2 \cdots n_k$-dimensional system with basis $|j_1\rangle_1 \otimes |j_2\rangle_2 \otimes \cdots \otimes |j_k\rangle_k = |j_1\rangle_1 |j_2\rangle_2 \cdots |j_k\rangle_k = |j_1 j_2 \cdots j_k\rangle$.
Quantum Registers

- An n-bit quantum register R has exactly n qubits.
- R is a normalized 2^n-dimensional vector.
- The basis states are
 \[|j_1\rangle \otimes |j_2\rangle \otimes \cdots \otimes |j_n\rangle = |j_1j_2\cdots j_n\rangle. \]
- The basis states may be renamed as $|0\rangle, |1\rangle, \ldots, |2^n - 1\rangle$.
- The basis states correspond to the classical values of an n-bit register.
- A general state for R is
 \[|\psi\rangle = \sum_{i=0}^{2^n-1} a_i |i\rangle \text{ with } a_i \in \mathbb{C} \text{ and } \sum_{i=0}^{2^n-1} |a_i|^2 = 1. \]
Let $R = AB$ be a 2-bit quantum register.

A general state for R is $c_0 |0\rangle + c_1 |1\rangle + c_2 |2\rangle + c_3 |3\rangle$.

This can be written in the form

$$ (a_0 |0\rangle + a_1 |1\rangle)(b_0 |0\rangle + b_1 |1\rangle) $$

$$ = a_0 b_0 |0\rangle + a_0 b_1 |1\rangle + a_1 b_0 |2\rangle + a_1 b_1 |3\rangle $$

if and only if $c_0 c_3 = c_1 c_2$.

If $c_0 c_3 \neq c_1 c_2$, then the bits A and B do not possess individual states.

An n-bit quantum register is called **entangled** if no set of fewer than its n qubits possesses an individual state.

Entanglement with surroundings poses the biggest challenge for realizing quantum computers.
The conjugate transpose of a square matrix $U = (u_{ij})$ with complex entries is denoted by $U^\dagger = (\overline{u_{ji}})$.

U is called **unitary** if $UU^\dagger = U^\dagger U = I$.

Every unitary matrix U is invertible with $U^{-1} = U^\dagger$.

Any operation on a quantum-mechanical system is unitary.

In particular, all operations on a quantum-mechanical system are invertible.

No-cloning theorem: It is impossible to copy the contents of a quantum register to another.

(The transformation $|\psi\rangle|\varphi\rangle \mapsto |\psi\rangle|\psi\rangle$ is not invertible.)
Examples of Unitary Operators on a Qubit

<table>
<thead>
<tr>
<th>Operator</th>
<th>Transformation</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>$I</td>
<td>0\rangle =</td>
</tr>
<tr>
<td>Exchange</td>
<td>$I</td>
<td>0\rangle =</td>
</tr>
<tr>
<td>Z</td>
<td>$Z</td>
<td>0\rangle =</td>
</tr>
<tr>
<td>Hadamard</td>
<td>$H</td>
<td>0\rangle = \frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td></td>
<td>$H</td>
<td>1\rangle = \frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td>\sqrt{X}</td>
<td>$\sqrt{X}</td>
<td>0\rangle = \frac{1}{1+i}(</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{X}</td>
<td>1\rangle = \frac{1}{1+i}(i</td>
</tr>
</tbody>
</table>
Let $|\psi\rangle = a|0\rangle + b|1\rangle$ be a state of a qubit.

\[
H|\psi\rangle = H(a|0\rangle + b|1\rangle) \\
= aH|0\rangle + bH|1\rangle \\
= a \left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \right] + b \left[\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \right] \\
= \left(\frac{a + b}{\sqrt{2}} \right)|0\rangle + \left(\frac{a - b}{\sqrt{2}} \right)|1\rangle \\
= \begin{pmatrix} a & b \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix}
\]
Measurement

The Born Rule

- Let A be a system with basis $|0\rangle$, $|1\rangle$, \ldots, $|m - 1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i|i\rangle$ be a state of A.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle$, $|1\rangle$, \ldots, $|m - 1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2.
- If the outcome is i, the system collapses to the state $|i\rangle$.
- Measurement is, therefore, non-invertible.
- Measurement is often used to initialize a system.

- So sad! You cannot see Schrödinger’s cat in the state $\frac{1}{\sqrt{2}} \left(|\text{Alive}\rangle + |\text{Dead}\rangle\right)$.
The Generalized Born Rule

- Let R be an $(m + n)$-bit quantum register in the state
 \[|\psi\rangle_{m+n} = \sum_{i,j} a_{i,j} |i, j\rangle_{m+n} \text{ with } \sum_{i,j} |a_{i,j}|^2 = 1. \]

- We measure the left m bits of R.
- The outcome is an integer $i \in \{0, 1, 2, \ldots, 2^m - 1\}$ with probability
 \[p_i = \sum_{j=0}^{2^n-1} |a_{i,j}|^2. \]

- R collapses to the state
 \[|i\rangle \left(\frac{1}{\sqrt{p_i}} \sum_{j} a_{i,j} |j\rangle_{n} \right). \]

- If we now measure the right n bits, we get an integer $j \in \{0, 1, 2, \ldots, 2^n - 1\}$ with probability $|a_{i,j}|^2 / p_i$.
- Probability of measuring $|i\rangle_{m} |j\rangle_{n}$ is
 \[p_i |a_{i,j}|^2 / p_i = |a_{i,j}|^2. \]
The input is an m-bit value x.

We want to compute an n-bit value $f(x)$.

Even if $m = n$, the function f need not be invertible.

Use an $(m + n)$-bit quantum register R.

Initialize R to $|x\rangle_m|0\rangle_n$.

Apply the transformation $U_f |x\rangle_m |y\rangle_n = |x\rangle_m |f(x) \oplus y\rangle_n$ on R.

For $y = 0$, the output is $|x\rangle_m |f(x)\rangle_n$.

U_f is a unitary transformation.

$U_f^{-1} = U_f$.
The Deutsch Algorithm

\(f : \{0, 1\} \rightarrow \{0, 1\} \) is a function provided as a black box. We want to check whether \(f \) is a constant function (\(f(0) = f(1) \)).

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.

- Use a 2-bit register \(R (m = n = 1) \).
- Use the unitary transform \(D_f |x\rangle|y\rangle = |x\rangle|f(x) \oplus y\rangle \).
- Initialize \(R \) to the state \(\left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) \)
 \[= \frac{1}{2} \left(|0\rangle|0\rangle - |0\rangle|1\rangle - |1\rangle|0\rangle + |1\rangle|1\rangle \right). \]
The Deutsch Algorithm (contd)

- Applying D_f on R changes its state to

$$
\begin{cases}
\frac{1}{2} (|0\rangle - |1\rangle) (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) = f(1), \\
\frac{1}{2} (|0\rangle + |1\rangle) (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) \neq f(1).
\end{cases}
$$

- Apply the Hadamard transform on the left bit to change R to the state

$$
\begin{cases}
|1\rangle \frac{1}{\sqrt{2}} (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) = f(1), \\
|0\rangle \frac{1}{\sqrt{2}} (|f(0)\rangle - |\bar{f}(0)\rangle) & \text{if } f(0) \neq f(1).
\end{cases}
$$

- Measure the left bit.
- The outcome is 1 or 0 according as whether f is constant or not.
Quantum Key Exchange

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

- Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

- Alice generates a random classical bit i.
- Alice makes a random decision x.
- If $x = 0$, Alice sends the qubit $|i\rangle$ itself to Bob.
- If $x = 1$, Alice uses the Hadamard transform and sends $H|i\rangle (H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle))$ or $H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle))$ to Bob.
The BB84 Algorithm (contd)

Bob processes Alice’s qubit

- Let A be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice’s decision x.
- If $y = 0$, Bob takes $B = A$.
- If $y = 1$, Bob applies the Hadamard transform to compute $B = HA$.
- Bob measures B to obtain the classical bit j.

Alice and Bob exchange their guesses

- Bob sends y to Alice.
- Alice sends x to Bob.
- If $x = y$, Alice and Bob store the common bit $i = j$.

Public-key Cryptography: Theory and Practice

Abhijit Das
The BB84 Algorithm: Correctness

- If $x = y = 0$, then Alice sends $A = |i\rangle$ to Bob, and Bob measures $B = A = |i\rangle$ to obtain $j = i$.
- If $x = y = 1$, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives $j = i$.
- If $x = 0$ and $y = 1$ or if $x = 1$ and $y = 0$, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability $1/2$.
- Now, j gives no clue about i.
- Alice and Bob discard i and j.

About half of the time, Alice and Bob make the same independent guess $x = y$.

In about 2^n iterations, a common n-bit key can be established.
The BB84 Algorithm: Example

<table>
<thead>
<tr>
<th>Iteration</th>
<th>i</th>
<th>x</th>
<th>A</th>
<th>y</th>
<th>B</th>
<th>j</th>
<th>Common bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>$</td>
<td>0\rangle$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
</tr>
</tbody>
</table>
The BB84 Algorithm: Passive Eavesdropping

- Carol intercepts A.
- Carol makes a guess z about x.
- If $z = 0$, Carol takes $C = A$, else Carol takes $C = HA$.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit D to Bob.
- Bob processes D as if he has received A from Alice.

Later, Alice and Bob disclose x and y.
- If $x \neq y$, the bits i, j, k are discarded.
- If $x = y$, Alice stores i, and Bob stores j.
- Carol may have caused $i \neq j$ even when $x = y$.

Public-key Cryptography: Theory and Practice

Abhijit Das
The BB84 Algorithm: Eavesdropping Example

<table>
<thead>
<tr>
<th>Iter</th>
<th>i</th>
<th>x</th>
<th>A</th>
<th>z</th>
<th>$C = H^z A$</th>
<th>k</th>
<th>D</th>
<th>y</th>
<th>$B = H^y D$</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
<td>0\rangle$</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>1</td>
<td>$</td>
<td>1\rangle$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
<td>0\rangle$</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>1</td>
<td>$</td>
<td>1\rangle$</td>
<td>1</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>0</td>
<td>$</td>
<td>1\rangle$</td>
<td>1</td>
<td>$</td>
<td>1\rangle$</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle -</td>
<td>1\rangle)$</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>0</td>
<td>$\frac{1}{\sqrt{2}}(</td>
<td>0\rangle +</td>
<td>1\rangle)$</td>
<td>1</td>
</tr>
</tbody>
</table>

i and j differ in five positions.
The BB84 Algorithm: Security

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol’s presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.

 - Alice and Bob may transmit parity check bits at regular intervals.
 - Alternatively, Alice and Bob may exchange plaintext-ciphertext pairs based on their shared keys.

- If eavesdropping is detected, the key exchange session is discarded.
The BB84 Algorithm: Practical Implementation

- Polarization of photons can be used.

<table>
<thead>
<tr>
<th>Polarization angle</th>
<th>Qubit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>$</td>
</tr>
<tr>
<td>45°</td>
<td>$\frac{1}{\sqrt{2}}(</td>
</tr>
<tr>
<td>90°</td>
<td>$</td>
</tr>
<tr>
<td>135°</td>
<td>$\frac{1}{\sqrt{2}}(</td>
</tr>
</tbody>
</table>

- A 45° filter is used to implement the Hadamard transform H.
- Bennett and Brassard did the first implementation in the T. J. Watson Research Center.
- They used a quantum channel of length 32 cm.
- Current record: 148.7 km (Los Alamos/NIST).
Let m be an odd integer that we want to factor.
Choose $a \in \mathbb{Z}_m^*$.
Let r be the multiplicative order of a modulo m.
Choose $n \in \mathbb{N}$ with $N = 2^n \geq m^2 > r^2$.
The function $f : \mathbb{Z} \rightarrow \mathbb{Z}_N$ taking $x \mapsto a^x \pmod{m}$ is periodic of least period r.
Shor’s algorithm computes r.
If r is even, $(a^{r/2} - 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.
With probability at least $1/2$, we have $a^{r/2} + 1 \not\equiv 0 \pmod{m}$.
If so, $\gcd(a^{r/2} + 1, m)$ is a non-trivial factor of m.
If not (or if r is odd), repeat with another a.

Shor’s Algorithm: A Classical Approach

- Evaluate $f(x)$ for many values of x.
- Once we find x and y with $f(x) = f(y)$, we have $r \mid (x - y)$.
- r can be determined by taking the gcd of a few such values of $x - y$.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision $f(x) = f(y)$.
- But r can be large, like $r \approx m$.
- The classical algorithm may take exponential time (in log m).

- Shor’s algorithm computes r with high probability by making only a single evaluation of f.
Shor’s Algorithm: Preparation

- Use a $2n$-bit quantum register R.
- Initialize R to $|0\rangle_n|0\rangle_n$.
- Apply the Hadamard transform to the left n bits to obtain

 $$
 \left(H^{(n)} \otimes I^{(n)} \right) |0\rangle_n|0\rangle_n = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n|0\rangle_n.
 $$

- Apply f to change the state $|x\rangle_n|y\rangle_n$ to $|x\rangle_n|f(x) \oplus y\rangle_n$.

- R switches to the state
 $$
 \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n|f(x)\rangle_n.
 $$

- Evaluate the right n bits. We get $f(x_0) \in \{0, 1, 2, \ldots, N-1\}$ for some $x_0 \in \{0, 1, 2, \ldots, r-1\}$.

- R collapses to the state
 $$
 \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n, \text{ where } x_0 + (M-1)r < N \leq x_0 + Mr \text{ (by the generalized Born rule)}.\n $$
Shor’s Algorithm: A Nice State, but . . .

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of j.
- r could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, R gets the state
 \[
 \frac{1}{\sqrt{M}} \sum_{j=0}^{M' - 1} |x_1 + jr\rangle_n \text{ in the left } n \text{ bits.}
 \]
- Now, measurement gives $x_1 + jr$.
- With high probability, $x_0 \neq x_1$.
- Having a collision $x_u = x_v$ is governed by the birthday paradox, and the algorithm becomes exponential again.
Shor’s Algorithm: Fourier Transform, the Rescuer

- Use n-bit Fourier transform $F : |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.

- Application of F on the left n bits of R available from the preparation stage gives the state

$$F \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n$$

$$= \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{2\pi i (x_0+jr)y/N} |y\rangle_n \right)$$

$$= \frac{1}{\sqrt{NM}} \sum_{y=0}^{N-1} \left(e^{2\pi i x_0 y/N} \sum_{j=0}^{M-1} e^{2\pi i jry/N} \right) |y\rangle_n.$$
Shor’s Algorithm: Final Steps

- Measure the left n bits of R to get $y \in \{0, 1, 2, \ldots, N - 1\}$

 with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} e^{2\pi i jy/N} \right|^2$.

- F changed the state from a uniform superposition to a state with higher probabilities for useful values.

- A measurement y is useful if its value is within $\pm \frac{1}{2}$ of an integral multiple of N/r.

- The probability that we measure a useful y is at least $\frac{4}{\pi^2} = 0.40528 \ldots$.

- If the measured y is useful, we run a classical algorithm (based upon continued fractions) to obtain a factor of r.