Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 8: Quantum Computation and Cryptography

What is Quantum Cryptography

- Based on the paradigm of quantum computation.
- Governed by the laws of quantum mechanics.
- **Quantum cryptanalysis:** Probabilistic polynomial-time algorithms are known to solve the integer factorization and finite field discrete logarithm problems.
- **Quantum cryptography:** A provably secure key exchange method is based upon quantum computation.
- It is not known how to build a quantum computer.
- Some partial implementations are known.

A Disclaimer

There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe there ever was such a time ... On the other hand, I think I can safely say that nobody understands quantum mechanics.

— Richard Feynman

(The Character of Physical Law, BBC, 1965)

Quantum Bits and Registers Operations on a System Measurement of a System

Quantum-mechanical Systems

• A **system** is specified by a finite-dimensional normalized vector of complex numbers:

 $(z_0, z_1, ..., z_{n-1})$ with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

Choose an orthonormal basis B of Cⁿ. Denote the elements of B as |0⟩, |1⟩,..., |n − 1⟩. For example,

$$\begin{array}{rcl} |0\rangle & = & (1,0,0,\ldots,0), \\ |1\rangle & = & (0,1,0,\ldots,0), \\ |2\rangle & = & (0,0,1,\ldots,0), \end{array}$$

$$|n-1\rangle = (0,0,0,\ldots,1).$$

• The state of a system is $z_0|0\rangle + z_1|1\rangle + \cdots + z_{n-1}|n-1\rangle$ with $z_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |z_i|^2 = 1$.

. . .

Quantum Bits and Registers Operations on a System Measurement of a System

Quantum Bit (qubit)

- A classical bit (cbit) can take two values: 0 and 1.
- A **quantum bit** (**qubit**) is a normalized 2-dimensional vector of complex numbers.
- The basis states are $|0\rangle$ and $|1\rangle$.
- All the values that a qubit may have are $a|0\rangle + b|1\rangle$ with $a^2 + b^2 = 1$.
- Possible realizations:
 - Spin of an electron (|Up> and |Down>)
 - Polarization of a photon
- Conceptual example:
 - Schrödinger cat (|Alive> and |Dead>)
 - The cat may be in the state $(|Alive\rangle + |Dead\rangle)/\sqrt{2}$.

Quantum Bits and Registers Operations on a System Measurement of a System

Composite Systems

- A is a system with basis $|0\rangle_A, |1\rangle_A, \dots, |m-1\rangle_A$.
- *B* is a system with basis $|0\rangle_B, |1\rangle_B, \dots, |n-1\rangle_B$.
- AB is a system with two parts A and B.
- AB is an mn-dimensional system with basis |i⟩_A ⊗ |j⟩_B = |i⟩_A|j⟩_B = |ij⟩_{AB} = |ij⟩.
 State of AB: ∑_i i a_{ii}|ij⟩ with ∑_i |a_{ii}|² = 1.
- Let A₁, A₂,..., A_k be systems of dimensions n₁, n₂,..., n_k.
 A₁A₂...A_k is the n₁n₂...n_k-dimensional system with basis |j₁⟩₁ ⊗ |j₂⟩₂ ⊗ ··· ⊗ |j_k⟩_k = |j₁⟩₁|j₂⟩₂ ··· |j_k⟩_k = |j₁j₂...j_k⟩.

Quantum Bits and Registers Operations on a System Measurement of a System

Quantum Registers

- An *n*-bit quantum register *R* has exactly *n* qubits.
- R is a normalized 2ⁿ-dimensional vector.
- The basis states are $|j_1\rangle \otimes |j_2\rangle \otimes \cdots \otimes |j_n\rangle = |j_1\rangle |j_2\rangle \cdots |j_n\rangle = |j_1j_2 \cdots j_n\rangle.$
- The basis states may be renamed as $|0\rangle, |1\rangle, \dots, |2^n 1\rangle$.
- The basis states correspond to the classical values of an *n*-bit register.
- A general state for *R* is

$$|\psi\rangle = \sum_{i=0}^{2^n-1} a_i |i\rangle$$
 with $a_i \in \mathbb{C}$ and $\sum_{i=0}^{2^n-1} |a_i|^2 = 1$.

Laws of Quantum Mechanics Quantum Cryptography Quantum Cryptanalysis Measurement of a System

Entanglement

- Let R = AB be a 2-bit quantum register.
- A general state for *R* is $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$.
- This can be written in the form

$$(a_0|0
angle+a_1|1
angle)(b_0|0
angle+b_1|1
angle)$$

$$= a_0b_0|0
angle+a_0b_1|1
angle+a_1b_0|2
angle+a_1b_1|3
angle$$

if and only if $c_0c_3 = c_1c_2$.

- If c₀c₃ ≠ c₁c₂, then the bits A and B do not possess individual states.
- An *n*-bit quantum register is called **entangled** if no set of fewer than its *n* qubits possesses an individual state.
- Entanglement with surroundings poses the biggest challenge for realizing quantum computers.

Quantum Bits and Registers Operations on a System Measurement of a System

Evolution of a System

- The conjugate transpose of a square matrix U = (u_{ij}) with complex entries is denoted by U[†] = (u_{ij}).
- *U* is called **unitary** if $UU^{\dagger} = U^{\dagger}U = I$.
- Every unitary matrix *U* is invertible with $U^{-1} = U^{\dagger}$.
- Any operation on a quantum-mechanical system is unitary.
- In particular, all operations on a quantum-mechanical system are invertible.
- No-cloning theorem: It is impossible to copy the contents of a quantum register to another. (The transformation |ψ⟩|φ⟩ → |ψ⟩|ψ⟩ is not invertible.)

Quantum Bits and Registers Operations on a System Measurement of a System

Examples of Unitary Operators on a Qubit

Operator	Transformation	Matrix
Identity	0 angle = 0 angle, 1 angle = 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Exchange	0 angle = 1 angle, 1 angle = 0 angle	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Z	Z 0 angle= 0 angle, Z 1 angle=- 1 angle	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Hadamard	$H 0 angle=rac{1}{\sqrt{2}}(0 angle+ 1 angle)$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
	$ H 1 angle=rac{1}{\sqrt{2}}(0 angle- 1 angle)$	
\sqrt{X}	$\sqrt{X} 0 angle=rac{1}{1+i}(0 angle+i 1 angle)$	$\frac{1}{1+i}\begin{pmatrix}1&i\\i&1\end{pmatrix}$
	$\sqrt{X} 1 angle = rac{1}{1+i}(i 0 angle + 1 angle)$	· · /

Quantum Bits and Registers Operations on a System Measurement of a System

Examples of Unitary Operators (contd)

Let $|\psi\rangle = a|0\rangle + b|1\rangle$ be a state of a qubit.

H

$$\begin{split} H|\psi\rangle &= H(a|0\rangle + b|1\rangle) \\ &= aH|0\rangle + bH|1\rangle \\ &= a\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right] + b\left[\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right] \\ &= \left(\frac{a+b}{\sqrt{2}}\right)|0\rangle + \left(\frac{a-b}{\sqrt{2}}\right)|1\rangle \\ &= (a \ b)\frac{1}{\sqrt{2}}\begin{pmatrix}1 \ 1 \ -1\end{pmatrix}\begin{pmatrix}|0\rangle\\|1\rangle\end{pmatrix} \end{split}$$

Laws of Quantum Mechanics Quantum Cryptography Quantum Cryptanalysis Measurement of a System

Measurement

The Born Rule

- Let A be a system with basis $|0\rangle, |1\rangle, \ldots, |m-1\rangle$.
- Let $\psi = \sum_{i=0}^{m-1} a_i |i\rangle$ be a state of *A*.
- We measure A at this state.
- The output we get is one of the classical states $|0\rangle, |1\rangle, \dots, |m-1\rangle$.
- The probability of observing $|i\rangle$ is a_i^2 .
- If the outcome is *i*, the system collapses to the state $|i\rangle$.
- Measurement is, therefore, non-invertible.
- Measurement is often used to initialize a system.
- So sad! You cannot see Schrödinger's cat in the state $\frac{1}{\sqrt{2}}$ (|Alive> + |Dead>).

Quantum Bits and Registers Operations on a System Measurement of a System

Measurement (contd)

The Generalized Born Rule

- Let *R* be an (m + n)-bit quantum register in the state $|\psi\rangle_{m+n} = \sum_{i,j} a_{i,j} |i,j\rangle_{m+n}$ with $\sum_{i,j} |a_{i,j}|^2 = 1$.
- We measure the left *m* bits of *R*.
- The outcome is an integer $i \in \{0, 1, 2, ..., 2^m 1\}$ with probability $p_i = \sum_{i=0}^{2^n 1} |a_{i,j}|^2$.
- *R* collapses to the state $|i\rangle \left(\frac{1}{\sqrt{p_i}}\sum_j a_{i,j}|j\rangle_n\right)$.
- If we now measure the right *n* bits, we get an integer $j \in \{0, 1, 2, ..., 2^n 1\}$ with probability $|a_{i,j}|^2/p_i$.
- Probability of measuring $|i\rangle_m |j\rangle_n$ is $p_i |a_{i,j}|^2/p_i = |a_{i,j}|^2$.

Quantum Bits and Registers Operations on a System Measurement of a System

A Computational Framework

- The input is an *m*-bit value *x*.
- We want to compute an *n*-bit value f(x).
- Even if m = n, the function f need not be invertible.
- Use an (m + n)-bit quantum register R.
- Initialize *R* to $|x\rangle_m |0\rangle_n$.
- Apply the transformation $U_f |x\rangle_m |y\rangle_n = |x\rangle_m |f(x) \oplus y\rangle_n$ on *R*.
- For y = 0, the output is $|x\rangle_m |f(x)\rangle_n$.
- U_f is a unitary transformation.
- $U_f^{-1} = U_f$.

Quantum Bits and Registers Operations on a System Measurement of a System

The Deutsch Algorithm

 $f : \{0,1\} \rightarrow \{0,1\}$ is a function provided as a black box. We want to check whether *f* is a constant function (f(0) = f(1)).

- Classical computation needs two invocations of the black box.
- Quantum computation can achieve the same with one invocation only.
- Use a 2-bit register R (m = n = 1).
- Use the unitary transform $D_f |x\rangle |y\rangle = |x\rangle |f(x) \oplus y\rangle$.
- Initialize *R* to the state $\left(\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle\right)$ = $\frac{1}{2}\left(|0\rangle|0\rangle - |0\rangle|1\rangle - |1\rangle|0\rangle + |1\rangle|1\rangle\right).$

Quantum Bits and Registers Operations on a System Measurement of a System

The Deutsch Algorithm (contd)

• Applying *D_f* on *R* changes its state to

$$\begin{cases} \frac{1}{2} \left(|0\rangle - |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ \frac{1}{2} \left(|0\rangle + |1\rangle \right) \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

• Apply the Hadamard transform on the left bit to change *R* to the state

$$\begin{cases} |1\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) = f(1), \\ |0\rangle \frac{1}{\sqrt{2}} \left(|f(0)\rangle - |\overline{f}(0)\rangle \right) & \text{if } f(0) \neq f(1). \end{cases}$$

- Measure the left bit.
- The outcome is 1 or 0 according as whether *f* is constant or not.

Example Eavesdropping Practical Implementation

Quantum Key Exchange

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

Alice and Bob want to agree upon a secret key over an insecure channel.

Alice sends a qubit to Bob

- Alice generates a random classical bit i.
- Alice makes a random decision *x*.
- If x = 0, Alice sends the qubit $|i\rangle$ itself to Bob.
- If x = 1, Alice uses the Hadamard transform and sends $H|i\rangle$ $(H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ or $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle))$ to Bob.

Example Eavesdropping Practical Implementation

The BB84 Algorithm (contd)

Bob processes Alice's qubit

- Let *A* be the qubit received by Bob from Alice.
- Bob makes a random guess y about Alice's decision x.
- If y = 0, Bob takes B = A.
- If y = 1, Bob applies the Hadamard transform to compute B = HA.
- Bob measures *B* to obtain the classical bit *j*.

Alice and Bob exchange their guesses

- Bob sends y to Alice.
- Alice sends x to Bob.
- If x = y, Alice and Bob store the common bit i = j.

Example Eavesdropping Practical Implementation

The BB84 Algorithm: Correctness

- If x = y = 0, then Alice sends A = |i⟩ to Bob, and Bob measures B = A = |i⟩ to obtain j = i.
- If x = y = 1, then Alice sends $A = H|i\rangle$ to Bob, and Bob computes $B = HA = H^2|i\rangle = |i\rangle$. Measurement gives j = i.
- If x = 0 and y = 1 or if x = 1 and y = 0, then $B = H|i\rangle$, so measurement reveals 0 or 1, each with probability 1/2.
- Now, j gives no clue about i.
- Alice and Bob discard *i* and *j*.
- About half of the time, Alice and Bob make the same independent guess x = y.
- In about 2n iterations, a common n-bit key can be established.

Example Eavesdropping Practical Implementation

The BB84 Algorithm: Example

Iteration	i	x	А	у	В	j	Common bit
1	0	1	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	0	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	1	
2	0	0	$ 0\rangle$	1	$\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	
3	0	1	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	1	0>	0	0
4	1	1	$\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	1	
5	0	0	$ 0\rangle$	0	0>	0	0
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	1 angle	1	1
7	1	1	$\frac{\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)}{\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)}$	0	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	
8	0	0	0>	0	0>	0	0
9	1	0	1 angle	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	
10	1	0	$ 1\rangle$	0	1	1	1
11	0	0	0 angle	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0	
12	0	0	0 angle	1	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	0	
13	1	1	$rac{1}{\sqrt{2}}(0 angle- 1 angle)$	1	1>	1	1

The BB84 Algorithm: Passive Eavesdropping

- Carol intercepts A.
- Carol makes a guess z about x.
- If z = 0, Carol takes C = A, else Carol takes C = HA.
- Carol measures C to get the classical bit k.
- Carol sends the measured qubit *D* to Bob.
- Bob processes *D* as if he has received *A* from Alice.
- Later, Alice and Bob disclose *x* and *y*.
- If $x \neq y$, the bits *i*, *j*, *k* are discarded.
- If x = y, Alice stores *i*, and Bob stores *j*.
- Carol may have caused $i \neq j$ even when x = y.

Example Eavesdropping Practical Implementation

The BB84 Algorithm: Eavesdropping Example

Iter	i	x	А	z	$C = H^z A$	k	D	У	$B = H^y D$	j
1	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	0 angle	0	0 angle	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	0
2	1	0	1>	0	$ 1\rangle$	1	$ 1\rangle$	0	1>	1
3	1	0	1 angle	1	$rac{1}{\sqrt{2}}(0 angle- 1 angle)$	0	0 angle	0	0 angle	0
4	0	1	$rac{1}{\sqrt{2}}(0 angle+ 1 angle)$	0	$rac{1}{\sqrt{2}}(0 angle+ 1 angle)$	0	0 angle	1	$rac{1}{\sqrt{2}}(0 angle+ 1 angle)$	1
5	0	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1	$ 0\rangle$	0	0 angle	1	$\frac{1}{\sqrt{2}}(0\rangle+ 1\rangle)$	1
6	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1	$ 1\rangle$	1	$ 1\rangle$	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	1
7	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	0 angle	1	$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$	0
8	1	0	1>	0	1>	1	$ 1\rangle$	0	1>	1
9	1	1	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	0	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$	0	$ 0\rangle$	1	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	1
10	0	1	•	0	$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$	1	1 angle	1	$rac{1}{\sqrt{2}}(0 angle- 1 angle)$	1

• *i* and *j* differ in five positions.

Example Eavesdropping Practical Implementation

The BB84 Algorithm: Security

- It is impossible to copy a qubit.
- It is impossible to restore a qubit to a pre-measurement state.
- The more Carol eavesdrops, the more she forces $i \neq j$.
- Carol's presence can be detected by Alice and Bob.
- There is no need to reveal the shared secret.
 - Alice and Bob may transmit parity check bits at regular intervals.
 - Alternatively, Alice and Bob may exchange plaintext-ciphertext pairs based on their shared keys.
- If eavesdropping is detected, the key exchange session is discarded.

Laws of Quantum Mechanics Example Quantum Cryptography Eavesdropping Quantum Cryptanalysis Practical Implementation

The BB84 Algorithm: Practical Implementation

Polarization of photons can be used.

Qubit value			
0 angle			
$\frac{1}{\sqrt{2}}(0 angle+ 1 angle)$			
1>			
$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$			

- A 45° filter is used to implement the Hadamard transform *H*.
- Bennett and Brassard did the first implementation in the T. J. Watson Research Center.
- They used a quantum channel of length 32 cm.
- Current record: 148.7 km (Los Alamos/NIST).

Preparation Fourier Transform

Shor's Algorithm: Introduction

- Let *m* be an odd integer that we want to factor.
- Choose $a \in \mathbb{Z}_m^*$.
- Let r be the multiplicative order of a modulo m.
- Choose $n \in \mathbb{N}$ with $N = 2^n \ge m^2 > r^2$.
- The function f : Z → Z_N taking x → a^x (mod m) is periodic of least period r.
- Shor's algorithm computes r.
- If *r* is even, $(a^{r/2} 1)(a^{r/2} + 1) \equiv 0 \pmod{m}$.
- With probability at least 1/2, we have $a^{r/2} + 1 \neq 0 \pmod{m}$.
- If so, $gcd(a^{r/2} + 1, m)$ is a non-trivial factor of m.
- If not (or if *r* is odd), repeat with another *a*.

Shor's Algorithm: A Classical Approach

- Evaluate f(x) for many values of x.
- Once we find x and y with f(x) = f(y), we have $r \mid (x y)$.
- r can be determined by taking the gcd of a few such values of x - y.
- By the birthday paradox, we need $O(\sqrt{r})$ evaluations of f to obtain a collision f(x) = f(y).
- But *r* can be large, like $r \approx m$.
- The classical algorithm may take exponential time (in log m).
- Shor's algorithm computes *r* with high probability by making only a single evaluation of *f*.

Preparation Fourier Transform

Shor's Algorithm: Preparation

- Use a 2n-bit quantum register R.
- Initialize *R* to $|0\rangle_n |0\rangle_n$.
- Apply the Hadamard transform to the left *n* bits to obtain N_{n-1}

the state $\left(H^{(n)} \otimes I^{(n)}\right) |0\rangle_n |0\rangle_n = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |0\rangle_n$.

- Apply f to change the state $|x\rangle_n |y\rangle_n$ to $|x\rangle_n |f(x) \oplus y\rangle_n$.
- *R* switches to the state $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle_n |f(x)\rangle_n$.
- Evaluate the right *n* bits. We get $f(x_0) \in \{0, 1, 2, ..., N-1\}$ for some $x_0 \in \{0, 1, 2, ..., r-1\}$.
- *R* collapses to the state $\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n$, where

 $x_0 + (M-1)r < N \leqslant x_0 + Mr$ (by the generalized Born rule).

Shor's Algorithm: A Nice State, but ...

- Suppose we are allowed to make copies of this state and measure these copies.
- With high probability, we would get $x_0 + jr$ for different values of *j*.
- *r* could be computed from these $x_0 + jr$ values.
- This is impossible by the no-cloning theorem.
- If we repeat the preparation steps afresh, *R* gets the state $\frac{1}{\sqrt{M}} \sum_{i=0}^{M'-1} |x_1 + jr\rangle_n \text{ in the left } n \text{ bits.}$
- Now, measurement gives $x_1 + jr$.
- With high probability, $x_0 \neq x_1$.
- Having a collision $x_u = x_v$ is governed by the birthday paradox, and the algorithm becomes exponential again.

Preparation Fourier Transform

Shor's Algorithm: Fourier Transform, the Rescuer

- Use *n*-bit Fourier transform $F : |x\rangle_n \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2\pi i xy/N} |y\rangle_n$.
- Application of *F* on the left *n* bits of *R* available from the preparation stage gives the state

$$\begin{split} F &\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |x_0 + jr\rangle_n \\ = & \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{2\pi i (x_0 + jr)y/N} |y\rangle_n \right) \\ = & \frac{1}{\sqrt{NM}} \sum_{y=0}^{N-1} \left(e^{2\pi i x_0 y/N} \sum_{j=0}^{M-1} e^{2\pi i jry/N} \right) |y\rangle_n. \end{split}$$

Preparation Fourier Transform

Shor's Algorithm: Final Steps

- Measure the left *n* bits of *R* to get $y \in \{0, 1, 2, ..., N-1\}$ with probability $p_y := \frac{1}{NM} \left| \sum_{j=0}^{M-1} e^{2\pi i j r y/N} \right|^2$.
- *F* changed the state from a uniform superposition to a state with higher probabilities for useful values.
- A measurement y is useful if its value is within $\pm \frac{1}{2}$ of an integral multiple of N/r.
- The probability that we measure a useful *y* is at least $\frac{4}{\pi^2} = 0.40528...$
- If the measured y is useful, we run a classical algorithm (based upon continued fractions) to obtain a factor of r.