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What is Quantum Cryptography

Based on the paradigm of quantum computation.

Governed by the laws of quantum mechanics.

Quantum cryptanalysis: Probabilistic polynomial-time
algorithms are known to solve the integer factorization and
finite field discrete logarithm problems.

Quantum cryptography: A provably secure key exchange
method is based upon quantum computation.

It is not known how to build a quantum computer.

Some partial implementations are known.
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A Disclaimer

There was a time when the newspapers said that only twelve
men understood the theory of relativity. I do not believe there

ever was such a time . . . On the other hand, I think I can safely
say that nobody understands quantum mechanics.

— Richard Feynman
(The Character of Physical Law, BBC, 1965)
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Quantum-mechanical Systems

A system is specified by a finite-dimensional normalized
vector of complex numbers:

(z0, z1, . . . , zn−1) with zi ∈ C and
∑n−1

i=0 |zi |2 = 1.
Choose an orthonormal basis B of Cn. Denote the
elements of B as |0〉, |1〉, . . . , |n − 1〉. For example,

|0〉 = (1,0,0, . . . ,0),

|1〉 = (0,1,0, . . . ,0),

|2〉 = (0,0,1, . . . ,0),

· · ·
|n − 1〉 = (0,0,0, . . . ,1).

The state of a system is z0|0〉 + z1|1〉 + · · · + zn−1|n − 1〉
with zi ∈ C and

∑n−1
i=0 |zi |2 = 1.
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Quantum Bit (qubit)

A classical bit (cbit ) can take two values: 0 and 1.

A quantum bit (qubit ) is a normalized 2-dimensional
vector of complex numbers.

The basis states are |0〉 and |1〉.
All the values that a qubit may have are

a|0〉 + b|1〉 with a2 + b2 = 1.
Possible realizations:

Spin of an electron (|Up〉 and |Down〉)
Polarization of a photon

Conceptual example:
Schr ödinger cat (|Alive〉 and |Dead〉)
The cat may be in the state (|Alive〉 + |Dead〉)/

√
2.
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Composite Systems

A is a system with basis |0〉A, |1〉A, . . . , |m − 1〉A.

B is a system with basis |0〉B , |1〉B , . . . , |n − 1〉B .

AB is a system with two parts A and B.

AB is an mn-dimensional system with basis
|i〉A ⊗ |j〉B = |i〉A|j〉B = |ij〉AB = |ij〉.

State of AB:
∑

i , j aij |ij〉 with
∑

i , j |aij |2 = 1.

Let A1,A2, . . . ,Ak be systems of dimensions n1,n2, . . . ,nk .

A1A2 . . .Ak is the n1n2 · · · nk -dimensional system with basis
|j1〉1 ⊗ |j2〉2 ⊗ · · · ⊗ |jk 〉k = |j1〉1|j2〉2 · · · |jk 〉k = |j1j2 . . . jk 〉.
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Quantum Registers

An n-bit quantum register R has exactly n qubits.

R is a normalized 2n-dimensional vector.

The basis states are
|j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉 = |j1〉|j2〉 · · · |jn〉 = |j1j2 . . . jn〉.

The basis states may be renamed as |0〉, |1〉, . . . , |2n − 1〉.
The basis states correspond to the classical values of an
n-bit register.

A general state for R is
|ψ〉 =

∑2n−1
i=0 ai |i〉 with ai ∈ C and

∑2n−1
i=0 | ai | 2 = 1 .
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Entanglement

Let R = AB be a 2-bit quantum register.
A general state for R is c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉.
This can be written in the form

(a0|0〉 + a1|1〉)(b0|0〉 + b1|1〉)
= a0b0|0〉 + a0b1|1〉 + a1b0|2〉 + a1b1|3〉

if and only if c0c3 = c1c2.
If c0c3 6= c1c2, then the bits A and B do not possess
individual states.
An n-bit quantum register is called entangled if no set of
fewer than its n qubits possesses an individual state.
Entanglement with surroundings poses the biggest
challenge for realizing quantum computers.
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Evolution of a System

The conjugate transpose of a square matrix U = (uij) with
complex entries is denoted by U† = (uji).

U is called unitary if UU† = U†U = I.

Every unitary matrix U is invertible with U−1 = U†.

Any operation on a quantum-mechanical system is unitary.

In particular, all operations on a quantum-mechanical
system are invertible.

No-cloning theorem: It is impossible to copy the contents
of a quantum register to another.
(The transformation |ψ〉|ϕ〉 7→ |ψ〉|ψ〉 is not invertible.)
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Examples of Unitary Operators on a Qubit

Operator Transformation Matrix

Identity I|0〉 = |0〉, I|1〉 = |1〉
(

1 0
0 1

)

Exchange I|0〉 = |1〉, I|1〉 = |0〉
(

0 1
1 0

)

Z Z |0〉 = |0〉,Z |1〉 = −|1〉
(

1 0
0 −1

)

Hadamard H|0〉 = 1√
2
(|0〉 + |1〉) 1√

2

(

1 1
1 −1

)

H|1〉 = 1√
2
(|0〉 − |1〉)

√
X

√
X |0〉 = 1

1+ i (|0〉 + i|1〉) 1
1+ i

(

1 i
i 1

)

√
X |1〉 = 1

1+ i (i|0〉 + |1〉)
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Examples of Unitary Operators (contd)

Let |ψ〉 = a|0〉 + b|1〉 be a state of a qubit.

H|ψ〉 = H(a|0〉 + b|1〉)
= aH|0〉+ bH|1〉

= a
[

1√
2

(|0〉 + |1〉)
]

+ b
[

1√
2
(|0〉 − |1〉)

]

=

(

a + b√
2

)

|0〉 +

(

a − b√
2

)

|1〉

=
(

a b
) 1√

2

(

1 1
1 −1

)(

|0〉
|1〉

)
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Measurement

The Born Rule

Let A be a system with basis |0〉, |1〉, . . . , |m − 1〉.
Let ψ =

∑m−1
i=0 ai |i〉 be a state of A.

We measure A at this state.

The output we get is one of the classical states
|0〉, |1〉, . . . , |m − 1〉.
The probability of observing |i〉 is a2

i .

If the outcome is i , the system collapses to the state |i〉.
Measurement is, therefore, non-invertible.

Measurement is often used to initialize a system.

So sad! You cannot see Schrödinger’s cat in the state
1√
2

(|Alive〉 + |Dead〉).
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Measurement (contd)

The Generalized Born Rule
Let R be an (m + n)-bit quantum register in the state

|ψ〉m+n =
∑

i ,j

ai ,j |i , j〉m+n with
∑

i ,j | ai ,j | 2 = 1.

We measure the left m bits of R.
The outcome is an integer i ∈ {0,1,2, . . . ,2m − 1} with

probability pi =
2n−1
∑

j=0

|ai ,j |2.

R collapses to the state |i〉
( 1√

pi

∑

j

ai ,j |j〉n

)

.

If we now measure the right n bits, we get an integer
j ∈ {0,1,2, . . . ,2n − 1} with probability |ai ,j |2/pi .
Probability of measuring |i〉m|j〉n is pi | ai ,j | 2/pi = | ai ,j | 2.

Public-key Cryptography: Theory and Practice Abhijit Das



Laws of Quantum Mechanics
Quantum Cryptography
Quantum Cryptanalysis

Quantum Bits and Registers
Operations on a System
Measurement of a System

A Computational Framework

The input is an m-bit value x .

We want to compute an n-bit value f (x).

Even if m = n, the function f need not be invertible.

Use an (m + n)-bit quantum register R.

Initialize R to |x〉m|0〉n.

Apply the transformation Uf |x〉m|y〉n = |x〉m|f (x) ⊕ y〉n on R.

For y = 0, the output is |x〉m|f (x)〉n.

Uf is a unitary transformation.

U−1
f = Uf .
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The Deutsch Algorithm

f : {0,1} → {0,1} is a function provided as a black box.
We want to check whether f is a constant function (f (0) = f (1)).

Classical computation needs two invocations of the black box.

Quantum computation can achieve the same with one
invocation only.

Use a 2-bit register R (m = n = 1).

Use the unitary transform Df |x〉|y〉 = |x〉|f (x) ⊕ y〉.

Initialize R to the state
(

1√
2
|0〉 − 1√

2
|1〉

)(

1√
2
|0〉 − 1√

2
|1〉

)

= 1
2

(

|0〉|0〉 − |0〉|1〉 − |1〉|0〉 + |1〉|1〉
)

.
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The Deutsch Algorithm (contd)

Applying Df on R changes its state to
{

1
2 (|0〉 − |1〉)

(

|f (0)〉 − |̄f (0)〉
)

if f (0) = f (1),
1
2 (|0〉 + |1〉)

(

|f (0)〉 − |̄f (0)〉
)

if f (0) 6= f (1).

Apply the Hadamard transform on the left bit to change R
to the state

{

|1〉 1√
2

(

|f (0)〉 − |̄f (0)〉
)

if f (0) = f (1),

|0〉 1√
2

(

|f (0)〉 − |̄f (0)〉
)

if f (0) 6= f (1).

Measure the left bit.

The outcome is 1 or 0 according as whether f is constant
or not.
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Quantum Key Exchange

The BB84 Protocol (Charles H. Bennett and Gilles Brassard, 1984)

Alice and Bob want to agree upon a secret key over an
insecure channel.

Alice sends a qubit to Bob

Alice generates a random classical bit i .

Alice makes a random decision x .

If x = 0, Alice sends the qubit |i〉 itself to Bob.

If x = 1, Alice uses the Hadamard transform and sends
H|i〉 (H|0〉 = 1√

2
(|0〉 + |1〉) or H|1〉 = 1√

2
(|0〉 − |1〉)) to Bob.
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The BB84 Algorithm (contd)

Bob processes Alice’s qubit

Let A be the qubit received by Bob from Alice.

Bob makes a random guess y about Alice’s decision x .

If y = 0, Bob takes B = A.

If y = 1, Bob applies the Hadamard transform to compute
B = HA.

Bob measures B to obtain the classical bit j .

Alice and Bob exchange their guesses

Bob sends y to Alice.

Alice sends x to Bob.

If x = y , Alice and Bob store the common bit i = j .
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The BB84 Algorithm: Correctness

If x = y = 0, then Alice sends A = |i〉 to Bob, and Bob
measures B = A = |i〉 to obtain j = i .

If x = y = 1, then Alice sends A = H|i〉 to Bob, and Bob
computes B = HA = H2|i〉 = |i〉. Measurement gives j = i .

If x = 0 and y = 1 or if x = 1 and y = 0, then B = H|i〉, so
measurement reveals 0 or 1, each with probability 1/2.

Now, j gives no clue about i .

Alice and Bob discard i and j .

About half of the time, Alice and Bob make the same
independent guess x = y .

In about 2n iterations, a common n-bit key can be established.
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The BB84 Algorithm: Example

Iteration i x A y B j Common bit
1 0 1 1

√

2
(|0〉 + |1〉) 0 1

√

2
(|0〉 + |1〉) 1

2 0 0 |0〉 1 1
√

2
(|0〉 + |1〉) 1

3 0 1 1
√

2
(|0〉 + |1〉) 1 |0〉 0 0

4 1 1 1
√

2
(|0〉 − |1〉) 0 1

√

2
(|0〉 − |1〉) 1

5 0 0 |0〉 0 |0〉 0 0
6 1 1 1

√

2
(|0〉 − |1〉) 1 |1〉 1 1

7 1 1 1
√

2
(|0〉 − |1〉) 0 1

√

2
(|0〉 − |1〉) 0

8 0 0 |0〉 0 |0〉 0 0
9 1 0 |1〉 1 1

√

2
(|0〉 − |1〉) 1

10 1 0 |1〉 0 |1〉 1 1
11 0 0 |0〉 1 1

√

2
(|0〉 + |1〉) 0

12 0 0 |0〉 1 1
√

2
(|0〉 + |1〉) 0

13 1 1 1
√

2
(|0〉 − |1〉) 1 |1〉 1 1
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The BB84 Algorithm: Passive Eavesdropping

Carol intercepts A.

Carol makes a guess z about x .

If z = 0, Carol takes C = A, else Carol takes C = HA.

Carol measures C to get the classical bit k .

Carol sends the measured qubit D to Bob.

Bob processes D as if he has received A from Alice.

Later, Alice and Bob disclose x and y .

If x 6= y , the bits i , j , k are discarded.

If x = y , Alice stores i , and Bob stores j .

Carol may have caused i 6= j even when x = y .
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The BB84 Algorithm: Eavesdropping Example

Iter i x A z C = HzA k D y B = Hy D j
1 0 1 1√

2
(|0〉 + |1〉) 1 |0〉 0 |0〉 1 1√

2
(|0〉 + |1〉) 0

2 1 0 |1〉 0 |1〉 1 |1〉 0 |1〉 1

3 1 0 |1〉 1 1√
2
(|0〉 − |1〉) 0 |0〉 0 |0〉 0

4 0 1 1√
2
(|0〉 + |1〉) 0 1√

2
(|0〉 + |1〉) 0 |0〉 1 1√

2
(|0〉 + |1〉) 1

5 0 1 1√
2
(|0〉 + |1〉) 1 |0〉 0 |0〉 1 1√

2
(|0〉 + |1〉) 1

6 1 1 1√
2
(|0〉 − |1〉) 1 |1〉 1 |1〉 1 1√

2
(|0〉 − |1〉) 1

7 1 1 1√
2
(|0〉 − |1〉) 0 1√

2
(|0〉 − |1〉) 0 |0〉 1 1√

2
(|0〉 + |1〉) 0

8 1 0 |1〉 0 |1〉 1 |1〉 0 |1〉 1
9 1 1 1√

2
(|0〉 − |1〉) 0 1√

2
(|0〉 − |1〉) 0 |0〉 1 1√

2
(|0〉 + |1〉) 1

10 0 1 1√
2
(|0〉 + |1〉) 0 1√

2
(|0〉 + |1〉) 1 |1〉 1 1√

2
(|0〉 − |1〉) 1

i and j differ in five positions.
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The BB84 Algorithm: Security

It is impossible to copy a qubit.

It is impossible to restore a qubit to a pre-measurement state.

The more Carol eavesdrops, the more she forces i 6= j .

Carol’s presence can be detected by Alice and Bob.
There is no need to reveal the shared secret.

Alice and Bob may transmit parity check bits at regular
intervals.

Alternatively, Alice and Bob may exchange
plaintext-ciphertext pairs based on their shared keys.

If eavesdropping is detected, the key exchange session is
discarded.
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The BB84 Algorithm: Practical Implementation

Polarization of photons can be used.

Polarization angle Qubit value
00 |0〉

450 1√
2
(|0〉 + |1〉)

900 |1〉
1350 1√

2
(|0〉 − |1〉)

A 450 filter is used to implement the Hadamard transform H.

Bennett and Brassard did the first implementation in the
T. J. Watson Research Center.

They used a quantum channel of length 32 cm.

Current record: 148.7 km (Los Alamos/NIST).
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Shor’s Algorithm: Introduction

Let m be an odd integer that we want to factor.

Choose a ∈ Z∗
m.

Let r be the multiplicative order of a modulo m.

Choose n ∈ N with N = 2n > m2 > r2.

The function f : Z → ZN taking x 7→ ax (mod m) is periodic
of least period r .

Shor’s algorithm computes r .

If r is even, (ar/2 − 1)(ar/2 + 1) ≡ 0 (mod m).

With probability at least 1/2, we have ar/2 +1 6≡ 0 (mod m).

If so, gcd(ar/2 + 1,m) is a non-trivial factor of m.

If not (or if r is odd), repeat with another a.

Public-key Cryptography: Theory and Practice Abhijit Das



Laws of Quantum Mechanics
Quantum Cryptography
Quantum Cryptanalysis

Preparation
Fourier Transform

Shor’s Algorithm: A Classical Approach

Evaluate f (x) for many values of x .

Once we find x and y with f (x) = f (y), we have r | (x − y).

r can be determined by taking the gcd of a few such values
of x − y .

By the birthday paradox, we need O(
√

r ) evaluations of f to
obtain a collision f (x) = f (y).

But r can be large, like r ≈ m.

The classical algorithm may take exponential time (in log m).

Shor’s algorithm computes r with high probability by
making only a single evaluation of f .
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Shor’s Algorithm: Preparation

Use a 2n-bit quantum register R.
Initialize R to |0〉n|0〉n.
Apply the Hadamard transform to the left n bits to obtain

the state
(

H(n) ⊗ I(n)
)

|0〉n|0〉n =
1√
N

N−1
∑

x=0

|x〉n|0〉n .

Apply f to change the state |x〉n|y〉n to |x〉n|f (x) ⊕ y〉n.

R switches to the state
1√
N

N−1
∑

x=0

|x〉n|f (x)〉n .

Evaluate the right n bits. We get f (x0) ∈ {0,1,2, . . . ,N − 1}
for some x0 ∈ {0,1,2, . . . , r − 1}.

R collapses to the state
1√
M

M−1
∑

j=0

|x0 + jr〉n, where

x0 + (M − 1)r < N 6 x0 + Mr (by the generalized Born rule).
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Shor’s Algorithm: A Nice State, but . . .

Suppose we are allowed to make copies of this state and
measure these copies.
With high probability, we would get x0 + jr for different
values of j .
r could be computed from these x0 + jr values.

This is impossible by the no-cloning theorem.

If we repeat the preparation steps afresh, R gets the state

1√
M

M′−1
∑

j=0

|x1 + jr〉n in the left n bits.

Now, measurement gives x1 + jr .
With high probability, x0 6= x1.
Having a collision xu = xv is governed by the birthday
paradox, and the algorithm becomes exponential again.
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Shor’s Algorithm: Fourier Transform, the Rescuer

Use n-bit Fourier transform F : |x〉n 7→ 1√
N

N−1
∑

y=0

e2π ixy/N |y〉n .

Application of F on the left n bits of R available from the
preparation stage gives the state

F
1√
M

M−1
∑

j=0

|x0 + jr〉n

=
1√
N

N−1
∑

y=0





1√
M

M−1
∑

j=0

e2π i(x0+jr)y/N |y〉n





=
1√
NM

N−1
∑

y=0



e2π ix0y/N
M−1
∑

j=0

e2π i jry/N



 |y〉n .
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Shor’s Algorithm: Final Steps

Measure the left n bits of R to get y ∈ {0,1,2, . . . ,N − 1}

with probability py :=
1

NM

∣

∣

∣

∣

∣

∣

M−1
∑

j=0

e2π i jry/N

∣

∣

∣

∣

∣

∣

2

.

F changed the state from a uniform superposition to a
state with higher probabilities for useful values.

A measurement y is useful if its value is within ±1
2 of an

integral multiple of N/r .

The probability that we measure a useful y is at least
4
π2 = 0.40528 . . . .

If the measured y is useful, we run a classical algorithm
(based upon continued fractions) to obtain a factor of r .
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