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Common Encryption Algorithms

Encryption algorithm Security depends on
RSA encryption Integer factoring problem
ElGamal encryption DHP (DLP)
Rabin encryption Square-root problem
Goldwasser-Micali encryption Quadratic residuosity problem
Blum-Goldwasser encryption Square-root problem
Chor-Rivest encryption Subset sum problem
XTR DLP
NTRU Closest vector problem in lattices
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RSA Encryption

Key generation
The recipient generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed ≡ 1 (mod φ(n)).

Public key: (n, e).
Private key: (n, d).

Encryption
Input: Plaintext m ∈ Zn and the recipient’s public key (n, e).
Output: Ciphertext c ≡ me (mod n).

Decryption
Input: Ciphertext c and the recipient’s private key (n, d).
Output: Plaintext m ≡ cd (mod n).
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RSA Encryption: Example

Let p = 257, q = 331, so that n = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 7, so that
d ≡ e−1 ≡ 60343 (mod φ(n)).

Public key: (85067, 7).
Private key: (85067, 60343).

Let m = 34152. Then
c ≡ me ≡ (34152)7 ≡ 53384 (mod n).

Recover m ≡ cd ≡ (53384)60343 ≡ 34152 (mod n).

Decryption by an exponent d ′ other than d does not give
back m. For example, take d ′ = 38367. We have
m′ ≡ cd ′ ≡ (53384)38367 ≡ 71303 (mod n).
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Why RSA Works?

Assume that m ∈ Z
∗

n. By Euler’s theorem, mφ(n) ≡ 1 (mod n).

Now, ed ≡ 1 (mod φ(n)), that is, ed = 1 + kφ(n) for some
integer k . Therefore,

cd ≡ med ≡ m1+kφ(n)≡ m×
(

mφ(n)
)k

≡ m×1k ≡ m (mod n).

Note: The message can be recovered uniquely even when
m /∈ Z

∗

n.
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Security of RSA

If n can be factored, φ(n) can be computed and so d can
be determined from e by extended gcd computation. Once
d is known, any ciphertext can be decrypted.

At present, no other method is known to decrypt
RSA-encrypted messages.

RSA derives security from the intractability of the IFP.

If e, d , n are known, there exists a probabilistic
polynomial-time algorithm to factor n. So RSA key
inversion is as difficult as IFP. But RSA decryption without
the knowledge of d may be easier than factoring n.

In practice, we require the size of n to be > 1024 bits with
each of p, q having nearly half the size of n.
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How to Speed Up RSA?

Encryption: Take small encryption exponent e (like the
smallest prime not dividing φ(n)).

Decryption:

Small decryption exponents invite many attacks.

Store n, e, d , p, q, d1, d2, h, where d1 = d rem (p − 1),
d2 = d rem (q − 1) and h = q−1 (mod p).
Carry out decryption as:

m1 = cd1 (mod p).
m2 = cd2 (mod q).
t = h(m1 − m2) (mod p).
m = m2 + tq.

A speedup of about 4 is obtained.
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ElGamal Encryption

Key generation
The recipient selects a random big prime p and a primitive
root g modulo p, chooses a random d ∈ {2, 3, . . . , p − 2},
and computes y ≡ gd (mod p).

Public key: (p, g, y).
Private key: (p, g, d).

Encryption
Input: Plaintext m ∈ Zp and recipient’s public key (p, g, y).
Output: Ciphertext (s, t).

Generate a random integer d ′ ∈ {2, 3, . . . , p − 2}.
Compute s ≡ gd ′

(mod p) and t ≡ myd ′

(mod p).
Decryption
Input: Ciphertext (s, t) and recipient’s private key (p, g, d).
Output: Recovered plaintext m ≡ ts−d (mod p).
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ElGamal Encryption (contd)

Correctness: We have s ≡ gd ′

(mod p) and
t ≡ myd ′ ≡ m(gd)d ′ ≡ mgdd ′

(mod p). Therefore,
m ≡ tg−dd ′ ≡ t(gd ′

)−d ≡ ts−d (mod p).
Example of ElGamal encryption

Take p = 91573 and g = 67. The recipient chooses
d = 23632 and so y ≡ (67)23632 ≡ 87955 (mod p).
Let m = 29485 be the message to be encrypted. The
sender chooses d ′ = 1783 and computes
s ≡ gd ′ ≡ 52958 (mod p) and t ≡ myd ′ ≡ 1597 (mod p).
The recipient retrieves
m ≡ ts−d ≡ 1597 × (52958)−23632 ≡ 29485 (mod p).
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Security of ElGamal Encryption

An eavesdropper knows g, p, y , s, t , where y ≡ gd (mod p)
and s ≡ gd ′

(mod p). Determining m from (s, t) is
equivalent to computing gdd ′

(mod p), since
t ≡ mgdd ′

(mod p). (Here, m is masked by the quantity
gdd ′

(mod p).) But d , d ′ are unknown to the attacker. So
the ability to solve the DHP lets the eavesdropper break
ElGamal encryption.

Practically, we require p to be of size > 1024 bits for
achieving a good level of security.
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Probabilistic Encryption

To generate different ciphertext messages in different runs (for
the same public key and plaintext message)

Goldwasser-Micali Encryption

Quadratic residuosity problem: For a composite integer
n and for an a with

(a
n

)

= 1, determine whether a is a
quadratic residue modulo n, that is, the whether the
congruence x2 ≡ a (mod n) is solvable.

Suppose n = pq (product of two primes).
(a

n

)

= 1 implies

either
(

a
p

)

=
(

a
q

)

= 1 (a is a quadratic residue) or
(

a
p

)

=
(

a
q

)

= −1 (a is a quadratic non-residue).

We know no methods other than factoring n to solve this
problem.

Public-key Cryptography: Theory and Practice Abhijit Das



Encryption
Digital Signatures

Entity Authentication

RSA and ElGamal Encryption
Probabilistic Encryption
Diffie-Hellman Key Exchange

Goldwasser-Micali Encryption: Key Generation

Choose two large primes p and q (of bit size > 512), and
let n = pq.

Generate random integers a, b with
(

a
p

)

=
(

b
q

)

= −1.

Use CRT to generate x (mod n) with x ≡ a (mod p) and
x ≡ b (mod q).

The Public key is (n, x), and the private key is p.
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Goldwasser-Micali Encryption

Encryption

The input is the r -bit plaintext message m1m2 . . . mr .

For each i = 1, 2, . . . , r , choose ai ∈ Z
∗

n randomly and
compute ci = xmi a2

i (mod n).

The ciphertext message is the r -tuple (c1, c2, . . . , cr ) ∈ (Z∗

n)
r .

Decryption

For i = 1, 2, . . . , r , take
mi = 0 if

(

ci
p

)

= 1, or

mi = 1 if
(

ci
p

)

= −1.
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Goldwasser-Micali Encryption (contd)

Correctness
If mi = 0, then ci = a2

i (mod n) is a quadratic residue
modulo n (and so modulo p and q also).

If mi = −1, then ci = xa2
i (mod n) Is a quadratic

non-residue modulo n (or modulo p and q).

Remarks
Probabilistic encryption: The ciphertext ci depends on
the choice of ai .

Message expansion: An r -bit plaintext message
generates an rl-bit ciphertext message, where l = |n|.
Without the knowledge of p (the private key), we do not
know how to determine whether ci is a quadratic residue or
not modulo n.
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Goldwasser-Micali Encryption: Example

Key generation
Take p = 653 and q = 751, so n = pq = 490403.
Take a = 159 and b = 432, so x ≡ 313599 (mod n).
The public-key is (490403, 313599) and the private key is 653.

Encryption
Let us encrypt the 3-bit message m1m2m3 = 101.
Choose a1 = 356217 and compute c1 ≡ xa2

1 ≡ 398732 (mod n).
Choose a2 = 159819 and compute c2 ≡ a2

2 ≡ 453312 (mod n).
Choose a3 = 482474 and compute c3 ≡ xa2

3 ≡ 12380 (mod n).

Decryption
(

398732
p

)

= −1, so m1 = 1.
(

453312
p

)

= 1, so m2 = 0.
(

12380
p

)

= −1, so m3 = 1.
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Diffie-Hellman Key Exchange

Alice and Bob decide about a prime p and a primitive root
g modulo p.

Alice generates a random a ∈ {2, 3, . . . , p − 2} and sends
ga (mod p) to Bob.

Bob generates a random b ∈ {2, 3, . . . , p − 2} and sends
gb (mod p) to Alice.

Alice computes gab ≡ (gb)a (mod p).

Bob computes gab ≡ (ga)b (mod p).

The quantity gab (mod p) is the secret shared by Alice and Bob.

The Diffie-Hellman protocol works in other groups (finite
extension fields and elliptic curve groups).
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Diffie-Hellman Key Exchange: Example

Alice and Bob first take p = 91573, g = 67.

Alice generates a = 39136 and sends ga ≡ 48745 (mod p)
to Bob.

Bob generates b = 8294 and sends gb ≡ 69167 (mod p) to
Alice.

Alice computes (69167)39136 ≡ 71989 (mod p).

Bob computes (48745)8294 ≡ 71989 (mod p).

The secret shared by Alice and Bob is 71989.
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Diffie-Hellman Key Exchange: Security

An eavesdropper knows p, g, ga, gb and desires to
compute gab (mod p), that is, the eavesdropper has to
solve the DHP.

If discrete logs can be computed in Z
∗

p, then a can be
computed from ga and one subsequently obtains
gab ≡ (gb)a (mod p). So algorithms for solving the DLP
can be used to break DH key exchange.

Breaking DH key exchange may be easier than solving DLP.

At present, no method other than computing discrete logs
in Z

∗

p is known to break DH key exchange.

Practically, we require p to be of size > 1024 bits. The
security does not depend on the choice of g. However, a
and b must be sufficiently randomly chosen.
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Common Signature Algorithms

Signature algorithm Security depends on
RSA signature Integer factoring problem
ElGamal encryption DLP
Rabin signature Square-root problem
Schnorr signature DLP
Nyberg-Rueppel signature DLP
Digital signature algorithm (DSA) DLP
Elliptic curve version of DSA (ECDSA) DLP in elliptic curves
XTR signature DLP
NTRUSign Closest vector problem
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Digital Signatures: Classification

Deterministic signatures: For a given message the same
signature is generated on every occasion the signing
algorithm is executed.

Probabilistic signatures: On different runs of the signing
algorithm different signatures are generated, even if the
message remains the same.

Probabilistic signatures offer better protection against
some kinds of forgery.
Deterministic signatures are of two types:

Multiple-use signatures: Slow. Parameters are used
multiple times.
One-time signatures: Fast. Parameters are used only
once.
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RSA Signature

Key generation
The signer generates two random large primes p, q,
computes n = pq and φ(n) = (p − 1)(q − 1), finds a
random integer e with gcd(e, φ(n)) = 1, and determines an
integer d with ed ≡ 1 (mod φ(n)).

Public key: (n, e).
Private key: (n, d).

Signature generation
Input: Message m ∈ Zn and signer’s private key (n, d).
Output: Signed message (m, s) with s ≡ md (mod n).

Signature verification
Input: Signed message (m, s) and signer’s public key (n, e).
Output: “Signature verified” if se ≡ m (mod n),

“Signature not verified” if se 6≡ m (mod n).
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RSA Signature: Example

Let p = 257, q = 331, so that m = pq = 85067 and
φ(n) = (p − 1)(q − 1) = 84480. Take e = 19823, so that
d ≡ e−1 ≡ 71567 (mod φ(n)).

Public key: (85067, 19823).
Private key: (85067, 71567).

Let m = 3759 be the message to be signed. Generate
s ≡ md ≡ 13728 (mod n). The signed message is
(3759, 13728).
Verification of (m, s) = (3759, 13728) involves the
computation of se ≡ (13728)19823 ≡ 3759 (mod n). Since
this equals m, the signature is verified.
Verification of a forged signature (m, s) = (3759, 42954)
gives se ≡ (42954)19823 ≡ 22968 (mod n). Since
se 6≡ m (mod n), the forged signature is not verified.
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ElGamal Signature

Key generation
Like ElGamal encryption, one chooses p, g and computes
a key-pair (y , d) where y ≡ gd (mod p). The public key is
(p, g, y), and the private key is (p, g, d).
Signature generation
Input: Message m ∈ Zp and signer’s private key (p, g, d).
Output: Signed message (m, s, t).

Generate a random session key d ′ ∈ {2, 3, . . . , p − 2}.
Compute s ≡ gd ′

(mod p) and
t ≡ d ′−1(H(m) − dH(s)) (mod p − 1).

Signature verification
Input: Signed message (m, s, t) and signer’s public key (p, g, y).

Set a1 ≡ gH(m) (mod p) and a2 ≡ yH(s)st (mod p).
Output “signature verified” if and only if a1 = a2.
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ElGamal Signature (contd)

Correctness: H(m) ≡ dH(s) + td ′ (mod p − 1). So
a1 ≡ gH(m) ≡ (gd )H(s)(gd ′

)t ≡ yH(s)st ≡ a2 (mod p).
Example:

Take p = 104729 and g = 89. The signer chooses the
private exponent d = 72135 and so
y ≡ gd ≡ 98771 (mod p).
Let m = 23456 be the message to be signed. The signer
chooses the session exponent d ′ = 3951 and computes
s ≡ gd ′ ≡ 14413 (mod p) and t ≡ d ′−1(m − ds) ≡
(3951)−1(23456 − 72135 × 14413) ≡ 17515 (mod p − 1).
Verification involves computation of
a1 ≡ gm ≡ 29201 (mod p) and
a2 ≡ ysst ≡ (98771)14413 × (14413)17515 ≡ 29201 (mod p).
Since a1 = a2, the signature is verified.

Public-key Cryptography: Theory and Practice Abhijit Das



Encryption
Digital Signatures

Entity Authentication

RSA and ElGamal Signatures
DSA and ECDSA
Blind and Undeniable Signatures

ElGamal Signature (contd)

Forging: A forger chooses d ′ = 3951 and computes
s ≡ gd ′ ≡ 14413 (mod p). But computation of t involves d
which is unknown to the forger. So the forger randomly
selects t = 81529. Verification of this forged signature
gives a1 ≡ gm ≡ 29201 (mod p) as above. But
a2 ≡ ysst ≡ (98771)14413 × (14413)81529 ≡ 85885 (mod p),
that is, a1 6= a2 and the forged signature is not verified.
Security:

Computation of s can be done by anybody. However,
computation of t involves the signer’s private exponent d . If
the forger can solve the DLP modulo p, then d can be
computed from the public-key y , and the correct signature
can be generated.
The prime p should be large (of bit-size > 1024) in order to
preclude this attack.

Public-key Cryptography: Theory and Practice Abhijit Das



Encryption
Digital Signatures

Entity Authentication

RSA and ElGamal Signatures
DSA and ECDSA
Blind and Undeniable Signatures

Digital Signature Algorithm (DSA)

Accepted by the US Government as a standard.

Parameter generation

Generate a prime p of bit length 512 + 64λ for 0 6 λ 6 8.

p − 1 must have a prime divisor r of bit length 160.

A specific algorithm is recommended for computing p and r .

Compute an element g ∈ F
∗

p with multiplicative order r .

Make p, r , g public.

Key generation

Generate a random d ∈ {2, 3, . . . , r − 1} (private key).

Compute y ≡ gd (mod p) (public key).
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DSA (contd)

Signature generation
To sign a message M, proceed as follows:
Generate random session key d ′ ∈ {2, 3, . . . , r − 1}.

Compute s =
(

gd ′

(mod p)
)

(mod r) and

t = d ′−1(H(M) + ds) (mod r).
Output the signed message (M, s, t).

Signature verification
To verify a signature (M, s, t) using the signer’s public key y :
If s or t is not in {0, 1, . . . , r − 1}, return “not verified”.
Compute w ≡ t−1 (mod r), w1 ≡ H(M)w (mod r), and
w2 ≡ sw (mod r).
Compute s̃ = (gw1yw2 (mod p)) (mod r).
Signature is verified if and only if s̃ = s.
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DSA (contd)

Correctness

w ≡ t−1 ≡ d ′(H(M) + ds)−1 (mod r).

gw1yw2 ≡ gw1+dw2 ≡ g(H(M)+ds)w ≡ gd ′

(mod p).

Consequently, s̃ ≡ s (mod r).

Remarks

Although the modulus p may be as long as 1024 bits, the
signature size (s, t) is only 320 bits.

The security of DSA depends on the difficulty of solving the
DLP in F

∗

p.
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DSA: Example

Parameters:
p = 21101, r = 211, and g ≡ 12345(p−1)/r ≡ 17808 (mod p).

Key pair:
d = 79 [private key] and y ≡ gd ≡ 2377 (mod p) [public key].

Signature generation:

To sign M = 8642.

Choose d ′ = 167.

Compute s =
(

gd ′

(mod p)
)

(mod r) = 13687 rem r = 183.

Compute t ≡ d ′−1(M + ds) ≡ 132 (mod r).

The signature is the pair (183, 132).
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DSA: Example (contd)

Signature verification:
To verify (8642, 183, 132).
Compute w ≡ t−1 ≡ 8 (mod r).
Compute w1 ≡ Mw ≡ 8642 × 8 ≡ 139 (mod r).
Compute w2 ≡ sw ≡ 183 × 8 ≡ 198 (mod r).
gw1 yw2 ≡ 17808139 × 2377198 ≡ 13687 (mod p).
s̃ = 13687 rem r = 183 = s, so signature is verified.

Verification of faulty signature:
To verify (8642, 138, 123).
Compute w ≡ t−1 ≡ 199 (mod r).
Compute w1 ≡ Mw ≡ 8642 × 199 ≡ 108 (mod r).
Compute w2 ≡ sw ≡ 138 × 199 ≡ 32 (mod r).
gw1 yw2 ≡ 17808108 × 237732 ≡ 3838 (mod p).
s̃ = 3838 rem r = 40 6= s, so signature is not verified.
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Elliptic Curve Digital Signature Algorithm (ECDSA)

Parameter generation

Input: A finite field Fq with q = p ∈ P or q = 2m.
1 Choose a, b ∈ Fq randomly.

2 Let E :

{

y2 = x3 + ax + b if q = p,

y2 + xy = x3 + ax2 + b if q = 2m.

3 Compute the size n of E(Fq).
4 If n has no prime divisor r > max(2160, 4

√
q), go to Step 1.

5 If n | (qk − 1) for k ∈ {1, 2, . . . , 20} (MOV attack), go to Step 1.
6 If n = q (anomalous attack), go to Step 1.
7 Choose P′ ∈ E(Fq) randomly.
8 Compute P = (n/r)P′.
9 If P = O, go to Step 7.

10 Return E , n, r , P.
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ECDSA (contd)

ECDSA keys:
Choose d ∈ {2, 3, . . . , r − 1} randomly [private key].
Compute Y = dP ∈ E(Fq) [public key].

Signature generation: (To sign message M)
Choose session key d ′ ∈ {2, 3, . . . , r − 1}.
Compute (h, k) = d ′P ∈ E(Fq).
Take s = h (mod r) and t = d ′−1(H(M) + ds) (mod r).
Output the signed message (M, s, t).

Signature verification: (To verify signed message (M, s, t))
If s or t is not in {1, 2, . . . , r − 1}, return “not verified”.
Compute w ≡ t−1 (mod r), w1 ≡ H(M)w (mod r) and w2 ≡ sw (mod r).
Compute the point Q = w1P + w2Y ∈ E(Fq).
If Q = O, return “not verified”.
Let Q = (h̃, k̃). Compute s̃ = h̃ (mod r).
Signature is verified if and only if s̃ = s.
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Blind Signatures

A signer Bob signs a message m without knowing m.
Blind signatures insure anonymity during electronic payment.

Chaum’s blind RSA signature

Input: A message M generated by Alice.
Output: Bob’s blind RSA signature on M.
Steps:

Alice gets Bob’s public-key (n, e).

Alice computes m = H(M) ∈ Zn.

Alice sends to Bob the masked message
m′ ≡ ρem (mod n) for a random ρ.

Bob sends the signature σ = m′d (mod n) back to Alice.

Alice computes Bob’s signature s ≡ ρ−1σ (mod n) on M.
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Correctness of Chaum’s Blind RSA Signature

Assume that ρ ∈ Z
∗

n.

Since ed ≡ 1 (mod φ(n)), we have
σ ≡ m′d ≡ (ρem)d ≡ ρed md ≡ ρmd (mod n).

Therefore, s ≡ ρ−1σ ≡ md ≡ H(M)d (mod n).
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Undeniable Signatures

Active participation of the signer is necessary during
verification.

A signer is not allowed to deny a legitimate signature made
by him.

An undeniable signature comes with a denial or disavowal
protocol that generates one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not

participating in the protocol properly.

Examples
Chaum-van Antwerpen undeniable signature scheme
RSA-based undeniable signature scheme
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Entity Authentication

Weak Authentication: Passwords
Set-up phase

Alice supplies a secret password P to Bob.

Bob transforms (typically encrypts) P to generate Q = f (P).

Bob stores Q for future use.

Authentication phase

Alice supplies her password P ′ to Bob.

Bob computes Q′ = f (P ′).

Bob compares Q′ with the stored value Q.

Q′ = Q if and only if P ′ = P.

If Q′ = Q, Bob accepts Alice’s identity.
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Passwords (contd)

It should be difficult to invert the initial transform Q = f (P).

Knowledge of Q, even if readable by enemies, does not
reveal P.

Drawbacks

Alice reveals P itself to Bob. Bob may misuse this
information.

P resides in unencrypted form in the memory during the
authentication phase. A third party having access to this
memory obtains Alice’s secret.
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Challenge-Response Authentication

Also known as strong authentication .

Possession of a secret by a claimant is proved to a verifier.

The secret is not revealed to the verifier.

One of the parties sends a challenge to the other.

The other responds to the challenge appropriately.

This conversation does not reveal any information about
the secret to the verifier or to an eavesdropper.
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Challenge-Response Scheme Using Encryption

The protocol
Alice wants to prove to Bob her knowledge of the private key d in
the key-pair (e, d).
Bob generates a random bit string r and computes w = H(r).
Bob reads Alice’s public key e and computes c = fe(r , e).
Bob sends the challenge (w , c) to Alice.
Alice computes r ′ = fd(c, d).
If H(r ′) 6= w , Alice quits the protocol.
Alice sends the response r ′ to Bob.
Bob accepts Alice’s identity if and only if r ′ = r .

Correctness
Bob checks whether Alice can correctly decrypt the challenge c.
Bob sends w as a witness of his knowledge of r .
Before sending the decrypted plaintext r ′, Alice confirms that
Bob actually knows the plaintext r .

Public-key Cryptography: Theory and Practice Abhijit Das



Encryption
Digital Signatures

Entity Authentication

Challenge-Response Authentication
Zero-Knowledge Protocols
Digital Certificates

Challenge-Response Scheme Using Signature

The protocol
Alice wants to prove to Bob her knowledge of the private key d in
the key-pair (e, d).

Bob sends a random string rB to Alice.

Alice generates a random string rA and signs s = fd (rA || rB, d).

Alice sends (rA, s) to Bob.

Bob generates r ′A || r ′B = fe(s, e) using Alice’s public key e.

Bob accepts Alice’s identity if and only if r ′A = rA and r ′B = rB.

Correctness
The signature s can be generated only by a party who knows d .

Use of rB prevents replay attacks by an eavesdropper.

Use of timestamps achieves the same objective. Alice signs
s = fd (tA, d) and sends (tA, s) to Bob. Bob retrieves t ′A = fe(s, e).
Bob accepts Alice if and only if tA = t ′A and tA is a valid timestamp.
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Zero-Knowledge Protocols (ZKP)

A ZKP is a strong authentication scheme with a
mathematical proof that no information is leaked to the
verifier or a listener during an authentication interaction.

Alice (the claimant) chooses a random commitment and
sends a witness of the commitment to Bob (the verifier).

Bob sends a random challenge to Alice.

Alice sends a response to the challenge, back to Bob.

If Alice knows the secret, she can succeed in the protocol.

A listener can succeed with a probability P ≪ 1.

The protocol may be repeated multiple times (t times), so
that the probability of success for an eavesdropper (P t )
can be made as small as desirable.
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Feige-Fiat-Shamir (FFS) Protocol

Selection of Alice’s secrets

The following steps are performed by Alice or a trusted
third party.

Select two large distinct primes p and q each congruent to
3 modulo 4.

Compute n = pq, and select a small integer t = O(ln ln n).

Make n and t public.

Select t random integers x1, x2, . . . , xt ∈ Z
∗

n.

Select t random bits δ1, δ2, . . . , δt ∈ {0, 1}.

Compute yi ≡ (−1)δi (x2
i )−1 (mod n) for i = 1, 2, . . . , t .

Make y1, y2, . . . , yt public. Keep x1, x2, . . . , xt secret.
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Feige-Fiat-Shamir Protocol: Authentication

Alice wants to prove to Bob her knowledge of the secrets
x1, x2, . . . , xt .

[Commitment] Alice selects random c ∈ Z
∗

n and γ ∈ {0, 1}.

[Witness] Alice sends w ≡ (−1)γc2 (mod n) to Bob.

[Challenge] Bob sends random bits ǫ1, ǫ2, . . . , ǫt to Alice.

[Response] Alice sends r ≡ c
t

∏

i=1

xǫi
i (mod n) to Bob.

[Authentication] Bob computes w ′ ≡ r2
t

∏

i=1

yǫi
i (mod n),

and accepts Alice’s identity if and only if w ′ 6= 0 and
w ′ ≡ ±w (mod n).
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Feige-Fiat-Shamir Protocol: Correctness

Since r ≡ c
t

∏

i=1

xǫi
i (mod n), we have r2 ≡ c2

t
∏

i=1

(x2
i )ǫi (mod n).

But yi ≡ (−1)δi (x2
i )−1 (mod n).

Therefore, w ′ ≡ r2
t

∏

i=1

yǫi
i ≡ c2

t
∏

i=1

(−1)ǫiδi (mod n), whereas

w ≡ (−1)γc2 (mod n).

Consequently, w ′ ≡ ±w (mod n).

The check w ′ 6= 0 eliminates the commitment c = 0 which
succeeds always irrespective of the knowledge of the
secrets xi .
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Feige-Fiat-Shamir Protocol: Security

Consider the simple case t = 1.
Alice sends c or cx1 as the response r , depending on whether
ǫ = 0 or ǫ = 1. Ability to send both is equivalent to knowing x1.
Computing c from w requires computing square roots modulo
the composite n with unknown factors.
In an attempt to impersonate Alice, an eavesdropper Carol may
choose any random c and send the witness w ≡ (−1)γc2 (mod n).
If Bob chooses ǫ = 0, Carol can send the correct response c.
But if Bob chooses ǫ = 1, Carol needs to know x1 to send the
correct response cx1.
Carol may succeed in sending the correct response c to the
challenge ǫ1 = 1 by arranging the witness improperly as
w ≡ (−1)γc2y−1

1 (mod n). But the challenge ǫ1 = 0 now requires
the knowledge of x1 to compute the correct response
cx−1

1 (mod n) corresponding to the improper witness.
In either case, the success probability is nearly 1/2.
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Guillou-Quisquater (GQ) Protocol

Alice generates an RSA-based exponent-pair (e, d) under
the modulus n.

Alice chooses a random m ∈ Z
∗

n and computes
s ≡ m−d (mod n). Alice makes m public and keeps s
secret. Alice tries to prove to Bob her knowledge of s.

The protocol

Alice selects a random c ∈ Z
∗

n. [Commitment]
Alice sends to Bob w ≡ ce (mod n). [Witness]
Bob sends to Alice a random ǫ ∈ {1, 2, . . . , e}. [Challenge]
Alice sends to Bob r ≡ csǫ (mod n). [Response]
Bob computes w ′ ≡ mǫre (mod n).
Bob accepts Alice’s identity if and only if w ′ 6= 0 and w ′ = w .
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Guillou-Quisquater Protocol (contd)

Correctness

w ′ ≡ mǫre ≡ mǫ(csǫ)e ≡ mǫ(cm−dǫ)e ≡ (m1−ed)ǫce ≡ ce ≡
w (mod n).

Security

The quantity sǫ is blinded by the random commitment c.
As a witness for c, Alice presents its encrypted version w .
Bob (or an eavesdropper) cannot decrypt w to compute c
and subsequently sǫ.
An eavesdropper’s guess about ǫ is successful with
probability 1/e.
The check w ′ 6= 0 precludes the case c = 0 which lets a
claimant succeed always.
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Digital Certificates: Introduction

Bind public-keys to entities.

Required to establish the authenticity of public keys.

Guard against malicious public keys.

Promote confidence in using others’ public keys.

Require a Certification Authority (CA) whom every entity
over a network can believe. Typically, a government
organization or a reputed company can be a CA.

In case a certificate is compromised, one requires to
revoke it.

A revoked certificate cannot be used to establish the
authenticity of a public key.
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Digital Certificates: Contents

A digital certificate contains particulars about the entity
whose public key is to be embedded in the certificate:

Name, address and other personal details of the entity.

The public key of the entity. The key pair may be generated
by either the entity or the CA. If the CA generates the key
pair, then the private key is handed over to the entity by
trusted couriers.

The certificate is digitally signed by the private key of the CA.

If signatures cannot be forged, nobody other than the CA
can generate a valid certificate for an entity.
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Digital Certificates: Revocation

A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity’s private key
Detection of malicious activities of the owner of the certificate

An invalid certificate is revoked by the CA.

Certificate Revocation List (CRL): The CA maintains a
list of revoked certificates.

If Alice wants to use Bob’s public key, she obtains the
certificate for Bob’s public key. If the CA’s signature is
verified on this certificate and if the certificate is not found
in the CRL, then Alice gains the desired confidence to use
Bob’s public key.
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