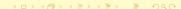
Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 4: The Intractable Mathematical Problems



 Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems

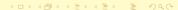
- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)
 - Finding shortest/closest vectors in a lattice

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)
 - Finding shortest/closest vectors in a lattice
 - Solving the subset sum problem



- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)
 - Finding shortest/closest vectors in a lattice
 - Solving the subset sum problem
 - Finding roots of non-linear multivariate polynomials

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)
 - Finding shortest/closest vectors in a lattice
 - Solving the subset sum problem
 - Finding roots of non-linear multivariate polynomials
 - Solving the braid conjugacy problem

 Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.
- Certain special cases have been discovered to be cryptographically weak. For practical designs, it is essential to avoid these special cases.

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.
- Certain special cases have been discovered to be cryptographically weak. For practical designs, it is essential to avoid these special cases.
- Polynomial-time quantum algorithms are known for factoring integers and computing discrete logarithms in finite fields.

• Let \mathbb{F}_q be a finite field, g a generator of \mathbb{F}_q^* , and $a \in \mathbb{F}_q^*$. There exists a unique integer $x \in \{0, 1, 2, \dots, q-1\}$ such that $a = g^x$. We call x the *index* or *discrete logarithm* of a to the base g. We denote this by $x = \operatorname{ind}_g a$.

- Let \mathbb{F}_q be a finite field, g a generator of \mathbb{F}_q^* , and $a \in \mathbb{F}_q^*$. There exists a unique integer $x \in \{0, 1, 2, \dots, q-1\}$ such that $a = g^x$. We call x the *index* or *discrete logarithm* of a to the base g. We denote this by $x = \operatorname{ind}_q a$.
- Indices follow arithmetic modulo q-1.

$$\operatorname{ind}_g(ab) \equiv \operatorname{ind}_g a + \operatorname{ind}_g b \pmod{q-1},$$

 $\operatorname{ind}_g(a^e) \equiv e \operatorname{ind}_g a \pmod{q-1}.$

- Let \mathbb{F}_q be a finite field, g a generator of \mathbb{F}_q^* , and $a \in \mathbb{F}_q^*$. There exists a unique integer $x \in \{0, 1, 2, \dots, q-1\}$ such that $a = g^x$. We call x the *index* or *discrete logarithm* of a to the base g. We denote this by $x = \operatorname{ind}_q a$.
- Indices follow arithmetic modulo q 1.

$$\operatorname{ind}_g(ab) \equiv \operatorname{ind}_g a + \operatorname{ind}_g b \pmod{q-1},$$

 $\operatorname{ind}_g(a^e) \equiv e \operatorname{ind}_g a \pmod{q-1}.$

 The concept of discrete logarithms can be extended to other finite groups (including the elliptic curve group).

Discrete Logarithm: Example

Discrete Logarithm: Example

• Take p = 17 and g = 3.

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ind ₃ a	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Discrete Logarithm: Example

• Take p = 17 and g = 3.

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ind ₃ a	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

• $ind_3 6 = 15$ and $ind_3 11 = 7$. Since $6 \times 11 = 15 \pmod{17}$, we have $ind_3 15 \equiv ind_3 6 + ind_3 11 \equiv 15 + 7 \equiv 6 \pmod{16}$.

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If n = pq (with $p, q \in \mathbb{P}$), then computing p or q suffices.

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If n = pq (with $p, q \in \mathbb{P}$), then computing p or q suffices.

Example

Input: n = 85067.

Output: $85067 = 257 \times 331$.

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If n = pq (with $p, q \in \mathbb{P}$), then computing p or q suffices.

Example

Input: n = 85067.

Output: $85067 = 257 \times 331$.

Discrete logarithm problem (DLP): Let g be a generator of \mathbb{F}_q^* . Given $a \in \mathbb{F}_q^*$, compute $\operatorname{ind}_g a$.

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If n = pq (with $p, q \in \mathbb{P}$), then computing p or q suffices.

Example

Input: n = 85067.

Output: $85067 = 257 \times 331$.

Discrete logarithm problem (DLP): Let g be a generator of \mathbb{F}_q^* . Given $a \in \mathbb{F}_q^*$, compute $\operatorname{ind}_q a$.

Example

Input: p = 17, g = 3, a = 11.

 $\overline{\text{Outp}}$ ut: ind_a a = 7.

IFP and DLP are believed to be computationally difficult.

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.

The Most Common Intractable Problems (contd)

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.
- Efficient quantum algorithms exist for solving IFP and DLP.

The Most Common Intractable Problems (contd)

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.
- Efficient quantum algorithms exist for solving IFP and DLP.
- IFP and DLP are believed to be computationally equivalent.

• **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_a^* . Given the elements g^x and g^y of \mathbb{F}_a^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.

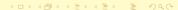
- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.
 - Output: $g^{xy} \equiv 4 \pmod{p}$.

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.
 - Output: $g^{xy} \equiv 4 \pmod{p}$.
 - $(x = 7, y = 4, \text{ that is, } xy \equiv 28 \equiv 12 \pmod{p-1}, \text{ that is, } q^{xy} \equiv 3^{12} \equiv 4 \pmod{p}.$

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.
 - Output: $g^{xy} \equiv 4 \pmod{p}$.
 - $(x = 7, y = 4, \text{ that is, } xy \equiv 28 \equiv 12 \pmod{p-1}, \text{ that is, } g^{xy} \equiv 3^{12} \equiv 4 \pmod{p}.)$
- DHP is another believably difficult computational problem.

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.
 - Output: $g^{xy} \equiv 4 \pmod{p}$.
 - $(x = 7, y = 4, \text{ that is, } xy \equiv 28 \equiv 12 \pmod{p-1}, \text{ that is, } g^{xy} \equiv 3^{12} \equiv 4 \pmod{p}.)$
- DHP is another believably difficult computational problem.
- If DLP can be solved, then DHP can be solved $(q^{xy} = (q^x)^y)$.

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^x \equiv 11 \pmod{p}$ and $g^y \equiv 13 \pmod{p}$.
 - Output: $g^{xy} \equiv 4 \pmod{p}$.
 - $(x = 7, y = 4, \text{ that is, } xy \equiv 28 \equiv 12 \pmod{p-1}, \text{ that is, } g^{xy} \equiv 3^{12} \equiv 4 \pmod{p}.)$
- DHP is another believably difficult computational problem.
- If DLP can be solved, then DHP can be solved $(q^{xy} = (q^x)^y)$.
- The converse is only believed to be true.



• Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.
- Example

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.
- Example
 - Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.
- Example
 - Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .
 - $E(\mathbb{F}_7)$ Is cyclic of order 6.

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.
- Example
 - Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .
 - $E(\mathbb{F}_7)$ Is cyclic of order 6.
 - P = (4,1) is a generator of $E(\mathbb{F}_7)$.

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.
- Example
 - Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .
 - $E(\mathbb{F}_7)$ Is cyclic of order 6.
 - P = (4,1) is a generator of $E(\mathbb{F}_7)$.
 - The index of Q = (5,0) to the base P is 3, that is, Q = 3P.

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points P and xP in $E(\mathbb{F}_q)$, compute x.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let E be an elliptic curve defined over the finite field \mathbb{F}_q . Given points xP and yP in $E(\mathbb{F}_q)$, compute the point xyP.

- Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .
- $E(\mathbb{F}_7)$ Is cyclic of order 6.
- P = (4,1) is a generator of $E(\mathbb{F}_7)$.
- The index of Q = (5,0) to the base P is 3, that is, Q = 3P.
- Let $Q_1 = 3P = (5,0)$ and $Q_2 = 4P = (6,1)$. Then, $(3 \times 4)P = 12P = 0P = \mathcal{O}$.

All finite (Abelian) groups are not cyclic.

- All finite (Abelian) groups are not cyclic.
- Although all \mathbb{F}_q^* are cyclic, all elliptic curve groups $E(\mathbb{F}_q)$ are not cyclic.

- All finite (Abelian) groups are not cyclic.
- Although all \mathbb{F}_q^* are cyclic, all elliptic curve groups $E(\mathbb{F}_q)$ are not cyclic.
- Even if G is a cyclic group, a generator of G may be unknown.

- All finite (Abelian) groups are not cyclic.
- Although all \mathbb{F}_q^* are cyclic, all elliptic curve groups $E(\mathbb{F}_q)$ are not cyclic.
- Even if G is a cyclic group, a generator of G may be unknown.
- Computing a generator of \mathbb{F}_q^* requires the complete factorization of q-1.

- All finite (Abelian) groups are not cyclic.
- Although all \mathbb{F}_q^* are cyclic, all elliptic curve groups $E(\mathbb{F}_q)$ are not cyclic.
- Even if G is a cyclic group, a generator of G may be unknown.
- Computing a generator of \mathbb{F}_q^* requires the complete factorization of q-1.
- Generalized Discrete Logarithm Problem (GDLP) Let G be a (multiplicative) Abelian group of size n and let g be an element of G of order m (we have $m \mid n$). Let H be the subgroup of G generated by g. Given $a \in G$, determine whether $a \in H$, and if so, determine the unique integer $x \in \{0, 1, 2, \ldots, m-1\}$ such that $a = g^x$.

Example

• Take p = 661 and g = 29. We have $ord_p(g) = 66$.

- Take p = 661 and g = 29. We have $ord_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $ind_g(49) = 15$.

- Take p = 661 and g = 29. We have $ord_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $ind_g(49) = 15$.
- ind_g(94) does not exist.

- Take p = 661 and g = 29. We have $\text{ord}_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $\text{ind}_g(49) = 15$.
- $\operatorname{ind}_q(94)$ does not exist.
- If G is cyclic, then $a \in H$ if and only if $a^m = e$.

- Take p = 661 and g = 29. We have $ord_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $ind_g(49) = 15$.
- ind_q(94) does not exist.
- If G is cyclic, then $a \in H$ if and only if $a^m = e$.
- Example

Example

- Take p = 661 and g = 29. We have $ord_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $\text{ind}_g(49) = 15$.
- $\operatorname{ind}_q(94)$ does not exist.
- If G is cyclic, then $a \in H$ if and only if $a^m = e$.

Example

• $49^{66} \equiv 1 \pmod{661}$.

Example

- Take p = 661 and g = 29. We have $\text{ord}_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $ind_g(49) = 15$.
- ind_g(94) does not exist.
- If G is cyclic, then $a \in H$ if and only if $a^m = e$.

- $49^{66} \equiv 1 \pmod{661}$.
- \bullet 94⁶⁶ \equiv -1 (mod 661).

The Integer Factorization Problem (IFP)

The Integer Factorization Problem (IFP)

Let *n* be the integer to be factored.

The Integer Factorization Problem (IFP)

Let *n* be the integer to be factored.

Older algorithms

- Trial division (efficient if all prime divisors of n are small)
- Pollard's rho method
- Pollard's p-1 method (efficient if p-1 has only small prime factors for some prime divisor p of n)
- Williams' p + 1 method (efficient if p + 1 has only small prime factors for some prime divisor p of n)

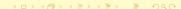
The Integer Factorization Problem (IFP)

Let *n* be the integer to be factored.

Older algorithms

- Trial division (efficient if all prime divisors of n are small)
- Pollard's rho method
- Pollard's p-1 method (efficient if p-1 has only small prime factors for some prime divisor p of n)
- Williams' p + 1 method (efficient if p + 1 has only small prime factors for some prime divisor p of n)

In the worst case, these algorithms take exponential (in log *n*) running time.



Subexponential running time:

$$L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$$

Subexponential running time:

$$L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$$

$$\omega = 0$$
 : $L(n, \omega, c)$ is polynomial in $\ln n$.

Subexponential running time:

$$L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$$

 $\omega = 0$: $L(n, \omega, c)$ is polynomial in ln n.

 $\omega = 1$: $L(n, \omega, c)$ is exponential in $\ln n$.

Subexponential running time:

$$L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$$

 $\omega = 0$: $L(n, \omega, c)$ is polynomial in $\ln n$.

 $\omega = 1$: $L(n, \omega, c)$ is exponential in $\ln n$.

 $0 < \omega < 1$: $L(n, \omega, c)$ is between polynomial and exponential

Subexponential running time:

$$L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$$

 $\omega = 0$: $L(n, \omega, c)$ is polynomial in $\ln n$.

 $\omega = 1$: $L(n, \omega, c)$ is exponential in $\ln n$.

 $0 < \omega < 1$: $L(n, \omega, c)$ is between polynomial and exponential

Algorithm	Inventor(s)	Running time
Continued fraction method (CFRAC)	Morrison & Brillhart (1975)	L(n,1/2,c)
Quadratic sieve method (QSM)	Pomerance (1984)	L(n,1/2,1)
Cubic sieve method (CSM)	Reyneri	L(n, 1/2, 0.816)
Elliptic curve method (ECM)	H. W. Lenstra (1987)	L(n, 1/2, c)
Number field sieve method (NFSM)	A. K. Lenstra, H. W. Lenstra, Manasse & Pollard (1990)	<i>L</i> (<i>n</i> , 1/3, 1.923)

• Divide *n* by 2, 3, 4, 5, ..., $\lfloor \sqrt{n} \rfloor$.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide n by d ≥ 30 if and only if d ≡ 1,7,11,13,17,19,23,29 (mod 30).
- Example
 - Take n = 1716617.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².

- Divide *n* by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
 - Trial division by 53 yields a factor.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
 - Trial division by 53 yields a factor.
 - The remaining part 661 is a prime.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
 - Trial division by 53 yields a factor.
 - The remaining part 661 is a prime.
 - Thus, we have $n = 7^2 \times 53 \times 661$.

- Divide n by $2, 3, 4, 5, \ldots, \lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes ≤ 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
 - Trial division by 53 yields a factor.
 - The remaining part 661 is a prime.
 - Thus, we have $n = 7^2 \times 53 \times 661$.
- Trial division is efficient if n has only small prime factors (except possibly one).

Let $p \leqslant \sqrt{n}$ be an unknown prime divisor of n. Let $f : \mathbb{Z}_n \to \mathbb{Z}_n$ be a pseudorandom function.

• Choose a random $x_0 \in \mathbb{Z}_n$.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence $x_0, x_1, x_2, ...$ as $x_i = f(x_{i-1})$.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence $x_0, x_1, x_2, ...$ as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence x_0, x_1, x_2, \ldots as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence y_0, y_1, y_2, \dots plays from behind the curtain.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence x_0, x_1, x_2, \ldots as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence y_0, y_1, y_2, \dots plays from behind the curtain.
- The sequence y₀, y₁, y₂,... must be (eventually) periodic.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence x_0, x_1, x_2, \ldots as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence y_0, y_1, y_2, \dots plays from behind the curtain.
- The sequence y₀, y₁, y₂,... must be (eventually) periodic.
- Suppose $y_i \equiv y_j \pmod{p}$ for i < j.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence x_0, x_1, x_2, \ldots as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence y_0, y_1, y_2, \dots plays from behind the curtain.
- The sequence y₀, y₁, y₂,... must be (eventually) periodic.
- Suppose $y_i \equiv y_j \pmod{p}$ for i < j.
- If $x_i \not\equiv x_j \pmod{n}$, then $\gcd(x_i x_j, n)$ is a non-trivial factor of n.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence x_0, x_1, x_2, \ldots as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence y_0, y_1, y_2, \dots plays from behind the curtain.
- The sequence y_0, y_1, y_2, \dots must be (eventually) periodic.
- Suppose $y_i \equiv y_j \pmod{p}$ for i < j.
- If $x_i \not\equiv x_j \pmod{n}$, then $\gcd(x_i x_j, n)$ is a non-trivial factor of n.
- By the **Birthday Paradox**, the expected running time of Pollard's rho method is $O^{\sim}(\sqrt[4]{n})$.

Let
$$n = 83947$$
.
Take $f(x) = x^2 - 1 \pmod{n}$.

Let
$$n = 83947$$
.
Take $f(x) = x^2 - 1 \pmod{n}$.
• Start with $x_0 = 123$.

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.
- The corresponding terms in the *y* sequence are: 123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30, 10, 99, 21.

Pollard's Rho Method: Example

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.
- The corresponding terms in the *y* sequence are: 123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30, 10, 99, 21.
- The periodic part in the y sequence is
 10.99.21.59.51.60.43.70.73.121.35.81.83.30.

Pollard's Rho Method: Example

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.
- The corresponding terms in the *y* sequence are: 123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30, 10, 99, 21.
- The periodic part in the y sequence is
 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30.
- The x sequence does not show the same periodicity.

Pollard's Rho Method: Example

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.
- The corresponding terms in the *y* sequence are: 123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30, 10, 99, 21.
- The periodic part in the *y* sequence is 10,99,21,59,51,60,43,70,73,121,35,81,83,30.
- The x sequence does not show the same periodicity.
- $\gcd(61986 48778, n) = 127.$

Examples

Examples

● Take *n* = 899.

$$n = 900 - 1 = 30^2 - 1^2 = (30 - 1) \times (30 + 1) = 29 \times 31.$$

Examples

- Take n = 899. $n = 900 - 1 = 30^2 - 1^2 = (30 - 1) \times (30 + 1) = 29 \times 31$.
- Take n = 833. $3 \times 833 = 2500 - 1 = 50^2 - 1^2 = (50 - 1) \times (50 + 1) = 49 \times 51$. gcd(50 - 1, 833) = 49 is a non-trivial factor of 833.

Examples

- Take n = 899. $n = 900 - 1 = 30^2 - 1^2 = (30 - 1) \times (30 + 1) = 29 \times 31$.
- Take n = 833. $3 \times 833 = 2500 - 1 = 50^2 - 1^2 = (50 - 1) \times (50 + 1) = 49 \times 51$. gcd(50 - 1, 833) = 49 is a non-trivial factor of 833.

Objective

To find integers $x, y \in \mathbb{Z}_n$ such that $x^2 \equiv y^2 \pmod{n}$. Unless $x \equiv \pm y \pmod{n}$, $\gcd(x - y, n)$ is a non-trivial divisor of n.

Examples

- Take n = 899. $n = 900 - 1 = 30^2 - 1^2 = (30 - 1) \times (30 + 1) = 29 \times 31$.
- Take n = 833. $3 \times 833 = 2500 - 1 = 50^2 - 1^2 = (50 - 1) \times (50 + 1) = 49 \times 51$. gcd(50 - 1, 833) = 49 is a non-trivial factor of 833.

Objective

To find integers $x, y \in \mathbb{Z}_n$ such that $x^2 \equiv y^2 \pmod{n}$. Unless $x \equiv \pm y \pmod{n}$, $\gcd(x - y, n)$ is a non-trivial divisor of n.

If n is composite (but not a prime power), then for a randomly chosen pair (x, y) with $x^2 \equiv y^2 \pmod{n}$, the probability that $x \not\equiv \pm y \pmod{n}$ is at least 1/2.

Let *n* be an odd integer with no small prime factors.

$$H = \lceil \sqrt{n} \rceil$$
 and $J = H^2 - n$.

Let *n* be an odd integer with no small prime factors.

$$H = \lceil \sqrt{n} \rceil$$
 and $J = H^2 - n$.

$$(H+c)^2 \equiv J + 2Hc + c^2 \pmod{n}$$
 for small integers c.

Call
$$T(c) = J + 2Hc + c^2$$
.

Let *n* be an odd integer with no small prime factors.

$$H = \lceil \sqrt{n} \rceil$$
 and $J = H^2 - n$.

$$(H+c)^2 \equiv J + 2Hc + c^2 \pmod{n}$$
 for small integers c.
Call $T(c) = J + 2Hc + c^2$.

Suppose T(c) factors over small primes p_1, p_2, \dots, p_t :

$$(H+c)^2 \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{n}.$$

This is called a **relation**.

Let *n* be an odd integer with no small prime factors.

$$H = \lceil \sqrt{n} \rceil$$
 and $J = H^2 - n$.

$$(H+c)^2 \equiv J + 2Hc + c^2 \pmod{n}$$
 for small integers c.

Call
$$T(c) = J + 2Hc + c^2$$
.

Suppose T(c) factors over small primes p_1, p_2, \dots, p_t :

$$(H+c)^2 \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{n}.$$

This is called a **relation**.

The left side is already a square.

The right side is also a square if each α_i is even.

But this is very rare.

Collect many relations:

$$\begin{array}{lll} \text{Relation 1:} & (H+c_1)^2 & = & p_1^{\alpha_{11}} p_2^{\alpha_{12}} \cdots p_t^{\alpha_{1t}} \\ \text{Relation 2:} & (H+c_2)^2 & = & p_1^{\alpha_{21}} p_2^{\alpha_{22}} \cdots p_t^{\alpha_{2t}} \\ & \cdots & \\ \text{Relation } r \text{:} & (H+c_r)^2 & = & p_1^{\alpha_{r1}} p_2^{\alpha_{r2}} \cdots p_t^{\alpha_{rt}} \end{array} \right\} \pmod{n}.$$

Collect many relations:

$$\begin{array}{lll} \text{Relation 1:} & (H+c_1)^2 & = & p_1^{\alpha_{11}} p_2^{\alpha_{12}} \cdots p_t^{\alpha_{1t}} \\ \text{Relation 2:} & (H+c_2)^2 & = & p_1^{\alpha_{21}} p_2^{\alpha_{22}} \cdots p_t^{\alpha_{2t}} \\ & \cdots & & \\ \text{Relation } r \text{:} & (H+c_r)^2 & = & p_1^{\alpha_{r1}} p_2^{\alpha_{r2}} \cdots p_t^{\alpha_{rt}} \\ \end{array} \right\} \pmod{n}.$$

Let
$$\beta_1, \beta_2, \dots, \beta_r \in \{0, 1\}.$$

$$\left[(H+c_1)^{\beta_1}(H+c_2)^{\beta_2}\cdots(H+c_r)^{\beta_r}\right]^2\equiv p_1^{\gamma_1}p_2^{\gamma_2}\cdots p_t^{\gamma_t}\ (\mathrm{mod}\ n).$$

Collect many relations:

$$\begin{array}{lll} \text{Relation 1:} & (H+c_1)^2 & = & p_1^{\alpha_{11}} p_2^{\alpha_{12}} \cdots p_t^{\alpha_{1t}} \\ \text{Relation 2:} & (H+c_2)^2 & = & p_1^{\alpha_{21}} p_2^{\alpha_{22}} \cdots p_t^{\alpha_{2t}} \\ & \cdots & & \\ \text{Relation } r \text{:} & (H+c_r)^2 & = & p_1^{\alpha_{r1}} p_2^{\alpha_{r2}} \cdots p_t^{\alpha_{rt}} \end{array} \right\} \pmod{n}.$$

Let
$$\beta_1, \beta_2, \dots, \beta_r \in \{0, 1\}.$$

$$\left[(H+c_1)^{\beta_1}(H+c_2)^{\beta_2}\cdots(H+c_r)^{\beta_r}\right]^2\equiv p_1^{\gamma_1}p_2^{\gamma_2}\cdots p_t^{\gamma_t}\ (\mathrm{mod}\ n).$$

The left side is already a square.

Tune $\beta_1, \beta_2, \dots, \beta_r$ to make each γ_i even.

$$\alpha_{11}\beta_{1} + \alpha_{21}\beta_{2} + \dots + \alpha_{r1}\beta_{r} = \gamma_{1},$$

$$\alpha_{12}\beta_{1} + \alpha_{22}\beta_{2} + \dots + \alpha_{r2}\beta_{r} = \gamma_{2},$$

$$\dots$$

$$\alpha_{1t}\beta_{1} + \alpha_{2t}\beta_{2} + \dots + \alpha_{rt}\beta_{r} = \gamma_{t}.$$

$$\alpha_{11}\beta_{1} + \alpha_{21}\beta_{2} + \dots + \alpha_{r1}\beta_{r} = \gamma_{1},$$

$$\alpha_{12}\beta_{1} + \alpha_{22}\beta_{2} + \dots + \alpha_{r2}\beta_{r} = \gamma_{2},$$

$$\dots$$

$$\alpha_{1t}\beta_{1} + \alpha_{2t}\beta_{2} + \dots + \alpha_{rt}\beta_{r} = \gamma_{t}.$$

Linear system with t equations and r variables $\beta_1, \beta_2, \ldots, \beta_r$:

$$\begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{r1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{r2} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{1t} & \alpha_{2t} & \cdots & \alpha_{rt} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_t \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \pmod{2}.$$

For $r \ge t$, there are non-zero solutions for $\beta_1, \beta_2, \dots, \beta_r$. Take

$$x \equiv (H + c_1)^{\beta_1} (H + c_2)^{\beta_2} \cdots (H + c_r)^{\beta_r} \pmod{n},$$

$$y \equiv p_1^{\gamma_1/2} p_2^{\gamma_2/2} \cdots p_t^{\gamma_t/2} \pmod{n}.$$

If $x \not\equiv \pm y \pmod{n}$, then $\gcd(x - y, n)$ is a non-trivial factor of n.

For $r \ge t$, there are non-zero solutions for $\beta_1, \beta_2, \dots, \beta_r$. Take

$$x \equiv (H + c_1)^{\beta_1} (H + c_2)^{\beta_2} \cdots (H + c_r)^{\beta_r} \pmod{n},$$

$$y \equiv \rho_1^{\gamma_1/2} \rho_2^{\gamma_2/2} \cdots \rho_t^{\gamma_t/2} \pmod{n}.$$

If $x \not\equiv \pm y \pmod{n}$, then $\gcd(x - y, n)$ is a non-trivial factor of n.

Let $p = p_i$ be a small prime.

$$p \mid T(c)$$
 implies $(H + c)^2 \equiv n \pmod{p}$.

If *n* is not a quadratic residue modulo p, then $p \nmid T(c)$ for any c.

Consider only the small primes p modulo which n is a quadratic residue.

Example of QSM: Parameters

$$n = 7116491$$
.

$$H = \lceil \sqrt{n} \rceil = 2668.$$

Take all primes < 100 modulo which n is a square:

$$B = \{2, 5, 7, 17, 29, 31, 41, 59, 61, 67, 71, 79, 97\}.$$

$$t = 13$$
.

Take r = 13. (In practice, one takes $r \approx 2t$.)

Example of QSM: Relations

```
(H+3)^2 \equiv 2 \times 5^3 \times 71
 Relation 1:
                    (H+8)^2 \equiv 5 \times 7 \times 31 \times 41
 Relation 2:
 Relation 3: (H + 49)^2 \equiv 2 \times 41^2 \times 79
 Relation 4: (H + 64)^2 \equiv 7 \times 29^2 \times 59
                 (H+81)^2 \equiv 2\times5\times7^2\times29\times31
 Relation 5:
                  (H+109)^2
                                   \equiv 2 \times 7 \times 17 \times 41 \times 61
 Relation 6:
                                   \equiv 5<sup>3</sup> × 71 × 79
                 (H+128)^2
 Relation 7:
                                                                           \pmod{n}.
                                   \equiv 2 \times 71^2 \times 79
 Relation 8:
                  (H+145)^2
                                   \equiv 17^2 \times 59^2
                  (H+182)^2
 Relation 9:
                                   \equiv 5<sup>2</sup> × 7<sup>2</sup> × 17 × 61
Relation 10: (H + 228)^2
                                   \equiv 2 \times 7^2 \times 17 \times 29 \times 31
Relation 11:
                 (H + 267)^2
Relation 12: (H + 382)^2 \equiv 7 \times 59 \times 67 \times 79
Relation 13: (H + 411)^2
                                   \equiv 2 \times 5^4 \times 31 \times 61
```

Example of QSM: Linear System

(mod 2).

Example of QSM: Solution of Relations

$(\beta_1,\beta_2,\beta_3,\ldots,\beta_{13})$	Χ	У	gcd(x-y,n)
(0,0,0,0,0,0,0,0,0,0,0,0,0,0)	1	1	7116491
(1,0,1,0,0,0,1,0,0,0,0,0,0)	1755331	560322	1847
(0,0,1,0,0,0,0,1,0,0,0,0,0)	526430	459938	1847
(1,0,0,0,0,0,1,1,0,0,0,0,0)	7045367	7045367	7116491
(0,0,0,0,0,0,0,0,1,0,0,0,0)	2850	1003	1847
(1,0,1,0,0,0,1,0,1,0,0,0,0)	6916668	6916668	7116491
(0,0,1,0,0,0,0,1,1,0,0,0,0)	5862390	5862390	7116491
(1,0,0,0,0,0,1,1,1,0,0,0,0)	3674839	6944029	1847
(0,1,0,0,1,1,0,0,0,0,1,0,1)	1079130	3965027	3853
(1,1,1,0,1,1,1,0,0,0,1,0,1)	5466596	1649895	1
(0,1,1,0,1,1,0,1,0,0,1,0,1)	5395334	1721157	1
(1,1,0,0,1,1,1,1,0,0,1,0,1)	6429806	3725000	3853
(0,1,0,0,1,1,0,0,1,0,1,0,1)	1196388	5920103	1
(1,1,1,0,1,1,1,0,1,0,1,0,1)	1799801	3818773	3853
(0,1,1,0,1,1,0,1,1,0,1,0,1)	5081340	4129649	3853
(1,1,0,0,1,1,1,1,1,0,1,0,1)	7099266	17225	1

• To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and h a small positive integer.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and h a small positive integer.
- Solve $T(c) \equiv 0 \pmod{q^h}$.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and h a small positive integer.
- Solve $T(c) \equiv 0 \pmod{q^h}$.
- For each solution χ, subtract log q from A_c for all c ≡ χ (mod q^h).

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and h a small positive integer.
- Solve $T(c) \equiv 0 \pmod{q^h}$.
- For each solution χ , subtract $\log q$ from \mathcal{A}_c for all $c \equiv \chi \pmod{q^h}$.
- T(c) is B-smooth if and only if the remaining $A_c \approx 0$.

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base B.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leqslant c \leqslant M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and h a small positive integer.
- Solve $T(c) \equiv 0 \pmod{q^h}$.
- For each solution χ , subtract $\log q$ from \mathcal{A}_c for all $c \equiv \chi \pmod{q^h}$.
- T(c) is *B*-smooth if and only if the remaining $A_c \approx 0$.
- Each smooth T(c) is factored by trial division.

The Baby-Step-Giant-Step (BSGS) Method ndex Calculus Method for Prime Fields ndex Calculus Method for Fields of Characteristic 2

The Discrete Logarithm Problem

The Discrete Logarithm Problem

To compute the discrete logarithm of a in \mathbb{F}_q^* to the primitive base g.

The Discrete Logarithm Problem

To compute the discrete logarithm of a in \mathbb{F}_q^* to the primitive base g.

Older algorithms

- Brute-force search
- Shanks' Baby-step-giant-step method
- Pollard's rho method
- Pollard's lambda method
- Pohlig-Hellman method (Efficient if p 1 has only small prime divisors)

The Discrete Logarithm Problem

To compute the discrete logarithm of a in \mathbb{F}_q^* to the primitive base g.

Older algorithms

- Brute-force search
- Shanks' Baby-step-giant-step method
- Pollard's rho method
- Pollard's lambda method
- Pohlig-Hellman method (Efficient if p 1 has only small prime divisors)

Worst-case complexity: Exponential in log q

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

Modern algorithms

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic

Modern algorithms

Based on the index calculus method (ICM)

Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:

$$L(q, \omega, c) = \exp\left[(c + o(1))(\ln q)^{\omega}(\ln \ln q)^{1-\omega}\right].$$

Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:

$$L(q, \omega, c) = \exp\left[(c + o(1))(\ln q)^{\omega}(\ln \ln q)^{1-\omega}\right].$$

Algorithm	Inventor(s)	Running time
Basic ICM	Western & Miller (1968)	L(q, 1/2, c)
Linear sieve method (LSM)	Coppersmith, Odlyzko	
Residue list sieve method	& Schroeppel (1986)	L(q, 1/2, 1)
Gaussian integer method		
Cubic sieve method (CSM)	Reyneri	L(q, 1/2, 0.816)
Number field sieve method	Gordon (1993)	L(q, 1/3, 1.923)
(NFSM) [for $\mathbb{F}_{ ho}$ only]		
Coppersmith's method	Coppersmith	L(q, 1/3, 1.526)
[for \mathbb{F}_{2^n} only]		

Let G be a cyclic multiplicative group of size n.

Let g be a generator of G.

Let *G* be a cyclic multiplicative group of size *n*.

Let g be a generator of G.

• Let
$$m = \lceil \sqrt{n} \rceil$$
.

Let *G* be a cyclic multiplicative group of size *n*.

Let g be a generator of G.

- Let $m = \lceil \sqrt{n} \rceil$.
- **Baby steps:** For $i \in \{0, 1, 2, ..., m-1\}$, compute g^i , and store (i, g^i) sorted with respect to the second element.

Let *G* be a cyclic multiplicative group of size *n*.

Let g be a generator of G.

We plan to compute $ind_a(g)$ for some $a \in G$.

- Let $m = \lceil \sqrt{n} \rceil$.
- **Baby steps:** For $i \in \{0, 1, 2, ..., m-1\}$, compute g^i , and store (i, g^i) sorted with respect to the second element.
- **Giant steps:** For j = 0, 1, 2, ..., m 1, compute ag^{-jm} , and try to locate ag^{-jm} in the table of baby steps.

Let *G* be a cyclic multiplicative group of size *n*.

Let g be a generator of G.

- Let $m = \lceil \sqrt{n} \rceil$.
- **Baby steps:** For $i \in \{0, 1, 2, ..., m-1\}$, compute g^i , and store (i, g^i) sorted with respect to the second element.
- **Giant steps:** For j = 0, 1, 2, ..., m 1, compute ag^{-jm} , and try to locate ag^{-jm} in the table of baby steps.
- If a search is successful, we have $ag^{-jm} = g^i$ for some i, j, that is, $a = g^{jm+i}$, that is, $\operatorname{ind}_g(a) = jm + i$.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

Giant Steps: Take a = 3.

• j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

- j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.
- j = 1: $ag^{-m} \equiv 21 \pmod{43}$ is not in the table.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

- j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.
- j = 1: $ag^{-m} \equiv 21 \pmod{43}$ is not in the table.
- j = 2: $ag^{-2m} \equiv 18 \pmod{43}$ is not in the table.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

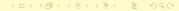
Table of Baby Steps

- j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.
- j = 1: $ag^{-m} \equiv 21 \pmod{43}$ is not in the table.
- j = 2: $ag^{-2m} \equiv 18 \pmod{43}$ is not in the table.
- j = 3: $ag^{-3m} \equiv 40 \pmod{43}$ is not in the table.

Take
$$G = \mathbb{F}_{43}^*$$
 with size $n = 42$, $m = \left\lceil \sqrt{42} \right\rceil = 7$, and $g = 19$.

Table of Baby Steps

- j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.
- j = 1: $ag^{-m} \equiv 21 \pmod{43}$ is not in the table.
- j = 2: $ag^{-2m} \equiv 18 \pmod{43}$ is not in the table.
- j = 3: $ag^{-3m} \equiv 40 \pmod{43}$ is not in the table.
- j = 4: $ag^{-4m} \equiv 22 \equiv g^3 \pmod{43}$, so $\operatorname{ind}_g(a) = 4 \times 7 + 3 = 31$.



Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First *t* primes $B = \{p_1, p_2, \dots, p_t\}$

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First t primes $B = \{p_1, p_2, \dots, p_t\}$

To compute $d_i = \operatorname{ind}_g p_i$ for $i = 1, 2, \dots, t$

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First *t* primes $B = \{p_1, p_2, \dots, p_t\}$

To compute $d_i = \operatorname{ind}_g p_i$ for $i = 1, 2, \dots, t$

For random $j \in \{1, 2, \dots, p-2\}$, try to factor $g^j \pmod{p}$ over B.

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First *t* primes $B = \{p_1, p_2, \dots, p_t\}$

To compute $d_i = \operatorname{ind}_g p_i$ for $i = 1, 2, \dots, t$

For random $j \in \{1, 2, \dots, p-2\}$, try to factor $g^j \pmod{p}$ over B.

Relation: $g^j \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{p}$

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First *t* primes $B = \{p_1, p_2, \dots, p_t\}$

To compute $d_i = \operatorname{ind}_g p_i$ for $i = 1, 2, \dots, t$

For random $j \in \{1, 2, \dots, p-2\}$, try to factor $g^j \pmod{p}$ over B.

Relation: $g^j \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{p}$

Linear equation in t variables d_1, d_2, \ldots, d_t :

$$j \equiv \alpha_1 d_1 + \alpha_2 d_2 + \cdots + \alpha_t d_t \pmod{p-1}$$

The Basic ICM: Precomputation (contd)

Generate $r \ge t$ relations for different values of j:

Relation 1:
$$j_1 \equiv \alpha_{11}d_1 + \alpha_{12}d_2 + \cdots + \alpha_{1t}d_t$$

Relation 2: $j_2 \equiv \alpha_{21}d_1 + \alpha_{22}d_2 + \cdots + \alpha_{2t}d_t$
 \cdots
Relation r : $j_r \equiv \alpha_{r1}d_1 + \alpha_{r2}d_2 + \cdots + \alpha_{rt}d_t$ (mod $p-1$).

The Basic ICM: Precomputation (contd)

Generate $r \ge t$ relations for different values of j:

Relation 1:
$$j_1 \equiv \alpha_{11}d_1 + \alpha_{12}d_2 + \cdots + \alpha_{1t}d_t$$

Relation 2: $j_2 \equiv \alpha_{21}d_1 + \alpha_{22}d_2 + \cdots + \alpha_{2t}d_t$
 \cdots
Relation r : $j_r \equiv \alpha_{r1}d_1 + \alpha_{r2}d_2 + \cdots + \alpha_{rt}d_t$ (mod $p-1$).

Solve the system modulo p-1 to determine d_1, d_2, \ldots, d_t .

Choose random $j \in \{1, 2, ..., p-2\}$. Try to factor $ag^j \pmod{p}$ over B.

Choose random $j \in \{1, 2, ..., p-2\}$. Try to factor $ag^j \pmod{p}$ over B.

A successful factorization gives:

$$ag^j \equiv p_1^{\beta_1}p_2^{\beta_2}\cdots p_t^{\beta_t} \pmod{p}.$$

Choose random $j \in \{1, 2, ..., p-2\}$. Try to factor $ag^j \pmod{p}$ over B.

A successful factorization gives:

$$ag^j \equiv p_1^{\beta_1}p_2^{\beta_2}\cdots p_t^{\beta_t} \pmod{p}.$$

Take discrete log:

$$\operatorname{ind}_{q} a \equiv -j + \beta_{1} d_{1} + \beta_{2} d_{2} + \cdots + \beta_{t} d_{t} \pmod{p-1}$$
.

Choose random $j \in \{1, 2, ..., p-2\}$. Try to factor $ag^j \pmod{p}$ over B.

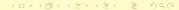
A successful factorization gives:

$$ag^j \equiv p_1^{\beta_1}p_2^{\beta_2}\cdots p_t^{\beta_t} \pmod{p}.$$

Take discrete log:

$$\operatorname{ind}_{g} a \equiv -j + \beta_{1} d_{1} + \beta_{2} d_{2} + \cdots + \beta_{t} d_{t} \pmod{p-1}.$$

Substitute the values of d_1, d_2, \dots, d_t to get $ind_g a$.



The Basic ICM: Example (Precomputation)

Parameters: p = 839, g = 31, $B = \{2, 3, 5, 7, 11\}$, t = 5, r = 10.

The Basic ICM: Example (Precomputation)

Parameters: p = 839, g = 31, $B = \{2, 3, 5, 7, 11\}$, t = 5, r = 10.

Relations

```
g^{118} \equiv 2^3 \times 5^2
Relation 1:
                   q^{574} \equiv 2^7 \times 5
Relation 2:
                   q^{318} \equiv 2^2 \times 3^3
Relation 3:
                   g^{46} \equiv 2^7
Relation 4:
                   q^{786} \equiv 2^2 \times 3^3 \times 7
Relation 5:
                                                        \pmod{p}.
                   q^{323} \equiv 2 \times 3 \times 11
Relation 6:
                   q^{606} \equiv 3^4
Relation 7:
                   q^{252} \equiv 2^3 \times 3^2 \times 7
Relation 8:
                   q^{160} \equiv 3 \times 5^2
Relation 9:
                    q^{600} \equiv 2 \times 3^3 \times 5
Relation 10:
```

The Basic ICM: Example (Precomputation)

$$\begin{pmatrix} 3 & 0 & 2 & 0 & 0 \\ 7 & 0 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 \\ 2 & 3 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 4 & 0 & 0 & 0 \\ 3 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 1 & 3 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{pmatrix} \equiv \begin{pmatrix} 118 \\ 574 \\ 318 \\ 46 \\ 786 \\ 323 \\ 606 \\ 252 \\ 160 \\ 600 \end{pmatrix} \pmod{p-1}.$$

The Basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo p-1=838.

The Basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo p-1=838.

The solution is unique.

The Basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo p-1=838.

The solution is unique.

$$\begin{array}{llll} d_1 & \equiv & \operatorname{ind}_{31} \, 2 & = & 246 \\ d_2 & \equiv & \operatorname{ind}_{31} \, 3 & = & 780 \\ d_3 & \equiv & \operatorname{ind}_{31} \, 5 & = & 528 \\ d_4 & \equiv & \operatorname{ind}_{31} \, 7 & = & 468 \\ d_5 & \equiv & \operatorname{ind}_{31} \, 11 & = & 135 \end{array} \right\} \pmod{p-1}.$$

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (Second Stage)

The Basic ICM: Example (Second Stage)

Take a = 561.

$$ag^{312} \equiv 600 \equiv 2^3 \times 3 \times 5^2 \pmod{p}$$
, that is, ind₃₁ 561 $\equiv -312 + 3 \times 246 + 780 + 2 \times 528 \equiv 586 \pmod{p-1}$.

The Basic ICM: Example (Second Stage)

Take a = 561.

$$ag^{312} \equiv 600 \equiv 2^3 \times 3 \times 5^2 \pmod{p}$$
, that is, ind₃₁ 561 $\equiv -312 + 3 \times 246 + 780 + 2 \times 528 \equiv 586 \pmod{p-1}$.

Take a = 89.

$$ag^{342} \equiv 99 \equiv 3^2 \times 11 \pmod{p}$$
, that is, $ind_{31} 89 \equiv -342 + 2 \times 780 + 135 \equiv 515 \pmod{p-1}$.

The Basic ICM: Example (Second Stage)

Take a = 561.

$$ag^{312} \equiv 600 \equiv 2^3 \times 3 \times 5^2 \pmod{p}$$
, that is, $ind_{31} 561 \equiv -312 + 3 \times 246 + 780 + 2 \times 528 \equiv 586 \pmod{p-1}$.

Take a = 89.

$$ag^{342} \equiv 99 \equiv 3^2 \times 11 \pmod{p}$$
, that is, $ind_{31} 89 \equiv -342 + 2 \times 780 + 135 \equiv 515 \pmod{p-1}$.

Take a = 625.

$$ag^{806} \equiv 70 \equiv 2 \times 5 \times 7 \pmod{p}$$
, that is, ind₃₁ 625 $\equiv -806 + 246 + 528 + 468 \equiv 436 \pmod{p-1}$.

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

• Factor base: $B = \{u(\alpha) \mid \deg g \leqslant m\}$.

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

- Factor base: $B = \{u(\alpha) \mid \deg g \leqslant m\}$.
- **Relation:** Choose $j \in \{0, 1, 2, ..., 2^n 2\}$ randomly, and try to arrive at factorizations of the form:

$$g(\alpha)^j = \prod_{u(\alpha) \in B} u(\alpha)^{\gamma_{u(\alpha)}}.$$

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

- Factor base: $B = \{u(\alpha) \mid \deg g \leqslant m\}$.
- **Relation:** Choose $j \in \{0, 1, 2, ..., 2^n 2\}$ randomly, and try to arrive at factorizations of the form:

$$g(\alpha)^{j} = \prod_{u(\alpha) \in B} u(\alpha)^{\gamma_{u(\alpha)}}.$$

• **Linear algebra:** Solve the resulting system of congruences modulo $2^n - 1$, and obtain the indices $\operatorname{ind}_{q(\alpha)} u(\alpha)$ for all $u(\alpha) \in B$.

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

- Factor base: $B = \{u(\alpha) \mid \deg g \leqslant m\}$.
- **Relation:** Choose $j \in \{0, 1, 2, ..., 2^n 2\}$ randomly, and try to arrive at factorizations of the form:

$$g(\alpha)^j = \prod_{u(\alpha) \in B} u(\alpha)^{\gamma_{u(\alpha)}}.$$

- **Linear algebra:** Solve the resulting system of congruences modulo $2^n 1$, and obtain the indices $\operatorname{ind}_{a(\alpha)} u(\alpha)$ for all $u(\alpha) \in B$.
- Second stage: Generate a single relation of the form:

$$t(\alpha)g(\alpha)^{j}=\prod_{u(\alpha)\in B}u(\alpha)^{\delta_{u(\alpha)}}.$$

• Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.

- Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.
- $|\mathbb{F}_{128}^*| = 127$ is prime. Take $g(\alpha) = \alpha^5 + \alpha^2 + 1$.

- Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.
- $|\mathbb{F}_{128}^*| = 127$ is prime. Take $g(\alpha) = \alpha^5 + \alpha^2 + 1$.
- Take m = 2, that is, $B = \{\alpha, \alpha + 1, \alpha^2 + \alpha + 1\}$.

- Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.
- $|\mathbb{F}_{128}^*| = 127$ is prime. Take $g(\alpha) = \alpha^5 + \alpha^2 + 1$.
- Take m = 2, that is, $B = \{\alpha, \alpha + 1, \alpha^2 + \alpha + 1\}$.
- Relations in the first stage

$$g(\alpha)^{7} = \alpha^{6} + \alpha^{2} = \alpha^{2}(\alpha + 1)^{4},$$

$$g(\alpha)^{101} = \alpha^{4} + \alpha^{3} + \alpha + 1 = (\alpha + 1)^{2}(\alpha^{2} + \alpha + 1),$$

$$g(\alpha)^{121} = \alpha^{5} + \alpha^{2} = \alpha^{2}(\alpha + 1)(\alpha^{2} + \alpha + 1).$$

- Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.
- $|\mathbb{F}_{128}^*| = 127$ is prime. Take $g(\alpha) = \alpha^5 + \alpha^2 + 1$.
- Take m = 2, that is, $B = \{\alpha, \alpha + 1, \alpha^2 + \alpha + 1\}$.
- Relations in the first stage

$$g(\alpha)^{7} = \alpha^{6} + \alpha^{2} = \alpha^{2}(\alpha + 1)^{4},$$

$$g(\alpha)^{101} = \alpha^{4} + \alpha^{3} + \alpha + 1 = (\alpha + 1)^{2}(\alpha^{2} + \alpha + 1),$$

$$g(\alpha)^{121} = \alpha^{5} + \alpha^{2} = \alpha^{2}(\alpha + 1)(\alpha^{2} + \alpha + 1).$$

Linear system of congruences

$$\begin{pmatrix} 2 & 4 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} d_{\alpha} \\ d_{\alpha+1} \\ d_{\alpha^2+\alpha+1} \end{pmatrix} \equiv \begin{pmatrix} 7 \\ 101 \\ 121 \end{pmatrix} \pmod{127},$$

where
$$d_{\beta} = \operatorname{ind}_{q(\alpha)}(\beta)$$
.

Indices of factor base elements

$$d_{\alpha} = 123, d_{\alpha+1} = 99, \text{ and } d_{\alpha^2+\alpha+1} = 30.$$

Indices of factor base elements

$$d_{\alpha} =$$
 123, $d_{\alpha+1} =$ 99, and $d_{\alpha^2+\alpha+1} =$ 30.

Second stage

Indices of factor base elements

$$d_{\alpha} = 123$$
, $d_{\alpha+1} = 99$, and $d_{\alpha^2+\alpha+1} = 30$.

Second stage

•
$$t(\alpha) = \alpha^3 + 1$$
.
• $t(\alpha)g(\alpha)^{57} = \alpha^5 + \alpha^3 = \alpha^3(\alpha + 1)^2$.
• $ind_{g(\alpha)} t(\alpha) \equiv -57 + 3d_{\alpha} + 2d_{\alpha+1} \equiv 2 \pmod{127}$.

Indices of factor base elements

$$d_{\alpha} = 123$$
, $d_{\alpha+1} = 99$, and $d_{\alpha^2+\alpha+1} = 30$.

- Second stage
 - $t(\alpha) = \alpha^3 + 1$. • $t(\alpha)g(\alpha)^{57} = \alpha^5 + \alpha^3 = \alpha^3(\alpha + 1)^2$. • $ind_{g(\alpha)} t(\alpha) \equiv -57 + 3d_{\alpha} + 2d_{\alpha+1} \equiv 2 \pmod{127}$.
 - $t(\alpha) = \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1$. • $t(\alpha)g(\alpha)^{73} = \alpha^5 + \alpha^4\alpha^2 + \alpha = \alpha(\alpha + 1)^2(\alpha^2 + \alpha + 1)$. • $ind_{g(\alpha)}t(\alpha) \equiv -73 + d_{\alpha} + 2d_{\alpha+1} + d_{\alpha^2+\alpha+1} \equiv 24 \pmod{127}$.

Indices of factor base elements

$$d_{\alpha} = 123, d_{\alpha+1} = 99, \text{ and } d_{\alpha^2+\alpha+1} = 30.$$

Second stage

- $t(\alpha) = \alpha^3 + 1$. • $t(\alpha)g(\alpha)^{57} = \alpha^5 + \alpha^3 = \alpha^3(\alpha + 1)^2$. • $ind_{g(\alpha)} t(\alpha) \equiv -57 + 3d_{\alpha} + 2d_{\alpha+1} \equiv 2 \pmod{127}$.
- $t(\alpha) = \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1$. • $t(\alpha)g(\alpha)^{73} = \alpha^5 + \alpha^4\alpha^2 + \alpha = \alpha(\alpha + 1)^2(\alpha^2 + \alpha + 1)$. • $ind_{g(\alpha)} t(\alpha) \equiv -73 + d_{\alpha} + 2d_{\alpha+1} + d_{\alpha^2+\alpha+1} \equiv 24 \pmod{127}$.
- $t(\alpha) = \alpha^5 + 1$. $t(\alpha)g(\alpha)^{18} = \alpha^5 + \alpha^3 + \alpha = \alpha(\alpha^2 + \alpha + 1)^2$. $ind_{g(\alpha)} t(\alpha) \equiv -18 + d_{\alpha} + 2d_{\alpha^2 + \alpha + 1} \equiv 38 \pmod{127}$.

 For a general curve, only the exponential square-root methods apply.

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.
- The subexponential MOV attack applies to supersingular curves.

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.
- The subexponential MOV attack applies to supersingular curves.
- The linear-time anomalous attack (also called the SmartASS attack) applies to anomalous curves.

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.
- The subexponential MOV attack applies to supersingular curves.
- The linear-time anomalous attack (also called the SmartASS attack) applies to anomalous curves.
- Supersingular and anomalous curves are not used in cryptography.

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.
- The subexponential MOV attack applies to supersingular curves.
- The linear-time anomalous attack (also called the SmartASS attack) applies to anomalous curves.
- Supersingular and anomalous curves are not used in cryptography.
- The Xedni calculus method applies to general curves, but is found to be impractical.

• To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .
- If M is composite with known factorization, we solve the system modulo prime power divisors of M.

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .
- If M is composite with known factorization, we solve the system modulo prime power divisors of M.
- If M is composite with unknown factorization, we pretend M as prime. If inversion modulo M fails, we discover non-trivial factors of M, and solve the system modulo each factor thus discovered.

Solving Large Sparse Linear Systems

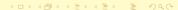
- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .
- If M is composite with known factorization, we solve the system modulo prime power divisors of M.
- If M is composite with unknown factorization, we pretend M as prime. If inversion modulo M fails, we discover non-trivial factors of M, and solve the system modulo each factor thus discovered.
- We have $m = \Theta(n)$.

Solving Large Sparse Linear Systems

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .
- If M is composite with known factorization, we solve the system modulo prime power divisors of M.
- If M is composite with unknown factorization, we pretend M as prime. If inversion modulo M fails, we discover non-trivial factors of M, and solve the system modulo each factor thus discovered.
- We have $m = \Theta(n)$.
- If A is dense, the system solving phase runs in $O(n^3)$ time.

Solving Large Sparse Linear Systems

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a sparse $m \times n$ matrix.
- If M is prime, we work in the finite field \mathbb{F}_M .
- If M is composite with known factorization, we solve the system modulo prime power divisors of M.
- If M is composite with unknown factorization, we pretend M as prime. If inversion modulo M fails, we discover non-trivial factors of M, and solve the system modulo each factor thus discovered.
- We have $m = \Theta(n)$.
- If A is dense, the system solving phase runs in $O(n^3)$ time.
- If A is sparse, there are $O^{\sim}(n^2)$ -time algorithms.



Used to reduce the size of A.

- Used to reduce the size of A.
- The size reduction often becomes substantial.

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:
 - Delete zero columns.

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:
 - Delete zero columns.
 - Delete columns with single non-zero entries and the corresponding rows.

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:
 - Delete zero columns.
 - Delete columns with single non-zero entries and the corresponding rows.
 - Delete rows with single non-zero entries.

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:
 - Delete zero columns.
 - Delete columns with single non-zero entries and the corresponding rows.
 - Delete rows with single non-zero entries.
 - Throw excess rows with large numbers of non-zero entries.

Lanczos Method

Let A be a symmetric positive-definite matrix with real entries.

We plan to solve $A\mathbf{x} = \mathbf{b}$.

We generate a set of pairwise orthogonal directions $\mathbf{d}_0, \mathbf{d}_1, \mathbf{d}_2, \dots$ until we run out of new orthogonal directions.

Lanczos Method

Let A be a symmetric positive-definite matrix with real entries. We plan to solve $A\mathbf{x} = \mathbf{b}$.

We generate a set of pairwise orthogonal directions $\mathbf{d}_0, \mathbf{d}_1, \mathbf{d}_2, \dots$ until we run out of new orthogonal directions.

Initialization

$$\mathbf{d}_0 = \mathbf{b}, \ \mathbf{v}_1 = A\mathbf{d}_0, \ \mathbf{d}_1 = \mathbf{v}_1 - \mathbf{d}_0(\mathbf{v}_1^t A\mathbf{d}_0)/(\mathbf{d}_0^t A\mathbf{d}_0),$$
 $a_0 = (\mathbf{d}_0^t \mathbf{d}_0)/(\mathbf{d}_0^t A\mathbf{d}_0), \ \text{and} \ \mathbf{x}_0 = a_0 \mathbf{d}_0.$

Lanczos Method

Let A be a symmetric positive-definite matrix with real entries. We plan to solve $A\mathbf{x} = \mathbf{b}$.

We generate a set of pairwise orthogonal directions $\mathbf{d}_0, \mathbf{d}_1, \mathbf{d}_2, \dots$ until we run out of new orthogonal directions.

Initialization

$$\mathbf{d}_0 = \mathbf{b}, \ \mathbf{v}_1 = A\mathbf{d}_0, \ \mathbf{d}_1 = \mathbf{v}_1 - \mathbf{d}_0(\mathbf{v}_1^t A\mathbf{d}_0)/(\mathbf{d}_0^t A\mathbf{d}_0),$$
 $a_0 = (\mathbf{d}_0^t \mathbf{d}_0)/(\mathbf{d}_0^t A\mathbf{d}_0), \ \text{and} \ \mathbf{x}_0 = a_0 \mathbf{d}_0.$

• **Iteration:** For i = 1, 2, 3, ..., repeat:

$$\begin{aligned} &\mathbf{v}_{i+1} = A\mathbf{d}_i, \\ &\mathbf{d}_{i+1} = \mathbf{v}_{i+1} - \mathbf{d}_i(\mathbf{v}_{i+1}^t A\mathbf{d}_i) / (\mathbf{d}_i^t A\mathbf{d}_i) - \mathbf{d}_{i-1}(\mathbf{v}_{i+1}^t A\mathbf{d}_{i-1}) / (\mathbf{d}_{i-1}^t A\mathbf{d}_{i-1}). \\ &a_i = (\mathbf{d}_i^t \mathbf{b}) / (\mathbf{d}_i^t A\mathbf{d}_i). \\ &\mathbf{x}_i = \mathbf{x}_{i-1} + a_i \mathbf{d}_i. \end{aligned}$$

In general, A is not a square matrix.

- In general, A is not a square matrix.
- Remedy

- In general, A is not a square matrix.
- Remedy
 - $(A^t A)\mathbf{x} = A^t \mathbf{b}$ is a square $(n \times n)$ system.

- In general, A is not a square matrix.
- Remedy
 - $(A^t A)\mathbf{x} = A^t \mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.

- In general, A is not a square matrix.
- Remedy
 - $(A^{t}A)\mathbf{x} = A^{t}\mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.
 - Instead of computing $A^t A$, multiply separately by A and A^t .

- In general, A is not a square matrix.
- Remedy
 - $(A^t A)\mathbf{x} = A^t \mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.
 - Instead of computing A^tA , multiply separately by A and A^t .
- Positive-definiteness makes no sense in \mathbb{Z}_M . Problem arises when we encounter a non-zero vector \mathbf{d}_i with $\mathbf{d}_i^t A \mathbf{d}_i = 0$. The problem is likely to occur unless M is large.

- In general, A is not a square matrix.
- Remedy
 - $(A^t A)\mathbf{x} = A^t \mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.
 - Instead of computing A^tA , multiply separately by A and A^t .
- Positive-definiteness makes no sense in Z_M. Problem arises when we encounter a non-zero vector d_i with d_i^t Ad_i = 0. The problem is likely to occur unless M is large.
- Remedy

- In general, A is not a square matrix.
- Remedy
 - $(A^t A)\mathbf{x} = A^t \mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.
 - Instead of computing A^t A, multiply separately by A and A^t.
- Positive-definiteness makes no sense in \mathbb{Z}_M . Problem arises when we encounter a non-zero vector \mathbf{d}_i with $\mathbf{d}_i^t A \mathbf{d}_i = 0$. The problem is likely to occur unless M is large.
- Remedy
 - Work in extension fields (\mathbb{F}_{M^s} in place of \mathbb{F}_M).

- In general, A is not a square matrix.
- Remedy
 - $(A^{t}A)\mathbf{x} = A^{t}\mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, A^t A is symmetric.
 - Instead of computing A^t A, multiply separately by A and A^t.
- Positive-definiteness makes no sense in Z_M. Problem arises when we encounter a non-zero vector d_i with d_i^t Ad_i = 0. The problem is likely to occur unless M is large.
- Remedy
 - Work in extension fields (\mathbb{F}_{M^s} in place of \mathbb{F}_M).
 - Solve $D(A^t A)\mathbf{x} = DA^t \mathbf{b}$ for random non-singular diagonal matrices D.

 Conjugate gradient method: An iterative method similar to the Lanczos method.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.
 - Bits are packed into words.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- Wiedemann method: Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.
 - Bits are packed into words.
 - Multiple direction vectors are computed per iteration.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.
 - Bits are packed into words.
 - Multiple direction vectors are computed per iteration.
 - The problem of self-orthogonality of non-zero vectors is less acute.

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- **Wiedemann method:** Computes the minimal polynomial of A in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.
 - Bits are packed into words.
 - Multiple direction vectors are computed per iteration.
 - The problem of self-orthogonality of non-zero vectors is less acute.
- Block Wiedemann method: The block implementation of the Wiedemann method for systems modulo 2.

