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The Intractable Problems

Public-key cryptography is based on trapdoor one-way
functions . It should be easy to encrypt a message or
verify a signature, but inverting the transform (decryption or
signature generation) should be difficult, unless some
secret information (the trapdoor) is known.
Some difficult computational problems

Factoring composite integers
Computing square roots modulo a composite integer
Computing discrete logarithms in certain groups (finite
fields, elliptic hyperelliptic curves, class groups of number
fields, and so on)
Finding shortest/closest vectors in a lattice
Solving the subset sum problem
Finding roots of non-linear multivariate polynomials
Solving the braid conjugacy problem
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The Intractable Problems (contd)

Many sophisticated algorithms are proposed to break the
trapdoor functions. Most of these are fully exponential.
Subexponential algorithms are sometimes known.
For suitably chosen domain parameters, these algorithms
take infeasible time.
No non-trivial lower bounds on the complexity of these
computational problems are known. Even existence of
polynomial-time algorithms cannot be often ruled out.
Certain special cases have been discovered to be
cryptographically weak. For practical designs, it is
essential to avoid these special cases.
Polynomial-time quantum algorithms are known for
factoring integers and computing discrete logarithms in
finite fields.
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Discrete Logarithms

Let Fq be a finite field, g a generator of F
∗

q, and a ∈ F
∗

q.
There exists a unique integer x ∈ {0, 1, 2, . . . , q − 1} such
that a = gx . We call x the index or discrete logarithm of a
to the base g. We denote this by x = indg a.

Indices follow arithmetic modulo q − 1.

indg(ab) ≡ indg a + indg b (modq − 1),

indg(ae) ≡ e indg a (modq − 1).

The concept of discrete logarithms can be extended to
other finite groups (including the elliptic curve group).

Public-key Cryptography: Theory and Practice Abhijit Das



The Integer Factorization Problem
The Discrete Logarithm Problem

Solving Large Sparse Linear Systems

Discrete Logarithm: Example

Take p = 17 and g = 3.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ind3 a 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

ind3 6 = 15 and ind3 11 = 7. Since 6 × 11 = 15 (mod17),
we have ind3 15 ≡ ind3 6 + ind3 11 ≡ 15 + 7 ≡ 6 (mod16).
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The Most Common Intractable Problems

Integer factorization problem (IFP): Given n ∈ N, compute
the complete prime factorization of n. Suppose there is an
algorithm A that computes a non-trivial factor of n. We can use
A repeatedly in order to compute the complete factorization of
n. If n = pq (with p, q ∈ P), then computing p or q suffices.
Example

Input: n = 85067.
Output: 85067 = 257 × 331.

Discrete logarithm problem (DLP): Let g be a generator of
F
∗

q. Given a ∈ F
∗

q, compute indg a.
Example

Input: p = 17, g = 3, a = 11.
Output: indg a = 7.
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The Most Common Intractable Problems (contd)

IFP and DLP are believed to be computationally difficult.

The best known algorithms for IFP and DLP are
subexponential.

IFP is the inverse of the integer multiplication problem.

DLP is the inverse of the modular exponentiation problem.

Integer multiplication and modular exponentiation are easy
computational problems. They are believed to be one-way
functions.

There is, however, no proof that IFP and DLP must be
difficult.

Efficient quantum algorithms exist for solving IFP and DLP.

IFP and DLP are believed to be computationally equivalent.
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Intractable Problems: Variants

Diffie-Hellman problem (DHP): Let g be a generator of
F
∗

q. Given the elements gx and gy of F
∗

q, compute gxy .

Example
Input: p = 17, g = 3, gx ≡ 11 (modp) and gy ≡ 13 (modp).
Output: gxy ≡ 4 (modp).

(x = 7, y = 4, that is, xy ≡ 28 ≡ 12 (modp − 1), that is,
gxy ≡ 312 ≡ 4 (modp).)

DHP is another believably difficult computational problem.

If DLP can be solved, then DHP can be solved
(gxy = (gx )y ).

The converse is only believed to be true.
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Elliptic Curve Discrete Logarithm Problem (ECDLP)
Let E be an elliptic curve defined over the finite field Fq.
Given points P and xP in E(Fq), compute x .

Elliptic Curve Diffie-Hellman Problem (ECDHP)
Let E be an elliptic curve defined over the finite field Fq.
Given points xP and yP in E(Fq), compute the point xyP.

Example
Consider the curve E : y2 = x3 + x + 3 defined over F7.
E(F7) Is cyclic of order 6.
P = (4, 1) is a generator of E(F7).
The index of Q = (5, 0) to the base P is 3, that is, Q = 3P.
Let Q1 = 3P = (5, 0) and Q2 = 4P = (6, 1). Then,
(3 × 4)P = 12P = 0P = O.
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Intractable Problems: Variants

All finite (Abelian) groups are not cyclic.
Although all F

∗

q are cyclic, all elliptic curve groups E(Fq)
are not cyclic.

Even if G is a cyclic group, a generator of G may be
unknown.
Computing a generator of F

∗

q requires the complete
factorization of q − 1.

Generalized Discrete Logarithm Problem (GDLP)
Let G be a (multiplicative) Abelian group of size n and let g
be an element of G of order m (we have m | n). Let H be
the subgroup of G generated by g. Given a ∈ G, determine
whether a ∈ H, and if so, determine the unique integer
x ∈ {0, 1, 2, . . . , m − 1} such that a = gx .
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GDLP: Example

Example
Take p = 661 and g = 29. We have ordp(g) = 66.
We have g15 ≡ 49 (modp), that is, indg(49) = 15.
indg(94) does not exist.

If G is cyclic, then a ∈ H if and only if am = e.

Example
4966 ≡ 1 (mod661).
9466 ≡ −1 (mod661).
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Trial Division
Pollard’s Rho Method
Quadratic Sieve Method

The Integer Factorization Problem (IFP)

Let n be the integer to be factored.

Older algorithms

Trial division (efficient if all prime divisors of n are small)

Pollard’s rho method

Pollard’s p − 1 method (efficient if p − 1 has only small
prime factors for some prime divisor p of n)

Williams’ p + 1 method (efficient if p + 1 has only small
prime factors for some prime divisor p of n)

In the worst case, these algorithms take exponential (in log n)
running time.
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Modern Factoring Algorithms

Subexponential running time:
L(n, ω, c) = exp

[

(c + o(1))(ln n)ω(ln ln n)1−ω
]

ω = 0 : L(n, ω, c) is polynomial in ln n.
ω = 1 : L(n, ω, c) is exponential in ln n.
0 < ω < 1 : L(n, ω, c) is between polynomial and exponential

Algorithm Inventor(s) Running time
Continued fraction method Morrison & Brillhart (1975) L(n, 1/2, c)
(CFRAC)
Quadratic sieve method Pomerance (1984) L(n, 1/2, 1)
(QSM)
Cubic sieve method (CSM) Reyneri L(n, 1/2, 0.816)

Elliptic curve method (ECM) H. W. Lenstra (1987) L(n, 1/2, c)

Number field sieve method A. K. Lenstra, H. W. Lenstra, L(n, 1/3, 1.923)
(NFSM) Manasse & Pollard (1990)

Public-key Cryptography: Theory and Practice Abhijit Das



The Integer Factorization Problem
The Discrete Logarithm Problem

Solving Large Sparse Linear Systems

Trial Division
Pollard’s Rho Method
Quadratic Sieve Method

Trial Division

Divide n by 2, 3, 4, 5, . . . ,
⌊√

n
⌋

.
It suffices to divide only by primes in the above range.
A list of primes may be unavailable.
Checking trial divisors for primality is time-consuming.
Divide n by d > 30 if and only if
d ≡ 1, 7, 11, 13, 17, 19, 23, 29 (mod30).
Example

Take n = 1716617.
Make trial divisions by primes 6 30. Factor found: 72.
Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
Trial division by 53 yields a factor.
The remaining part 661 is a prime.
Thus, we have n = 72 × 53 × 661.

Trial division is efficient if n has only small prime factors
(except possibly one).
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Pollard’s Rho Method

Let p 6
√

n be an unknown prime divisor of n.
Let f : Zn → Zn be a pseudorandom function.

Choose a random x0 ∈ Zn.

Generate a sequence x0, x1, x2, . . . as xi = f (xi−1).

Let yi ≡ xi (modp).

The sequence y0, y1, y2, . . . plays from behind the curtain.

The sequence y0, y1, y2, . . . must be (eventually) periodic.

Suppose yi ≡ yj (modp) for i < j .

If xi 6≡ xj (modn), then gcd(xi − xj , n) is a non-trivial factor
of n.

By the Birthday Paradox , the expected running time of
Pollard’s rho method is O (̃ 4

√
n).
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Pollard’s Rho Method: Example

Let n = 83947.
Take f (x) = x2 − 1 (modn).

Start with x0 = 123.
The first 20 terms in the x sequence are:
123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
40797, 61986, 10005, 35200.
The corresponding terms in the y sequence are:
123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73,
121, 35, 81, 83, 30, 10, 99, 21.
The periodic part in the y sequence is
10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30.
The x sequence does not show the same periodicity.
gcd(61986 − 48778, n) = 127.
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Fermat’s Factoring Method

Examples

Take n = 899.
n = 900 − 1 = 302 − 12 = (30 − 1) × (30 + 1) = 29 × 31.

Take n = 833.
3×833 = 2500−1 = 502−12 = (50−1)×(50+1) = 49×51.
gcd(50 − 1, 833) = 49 is a non-trivial factor of 833.

Objective

To find integers x , y ∈ Zn such that x2 ≡ y2 (modn). Unless
x ≡ ±y (modn), gcd(x − y , n) is a non-trivial divisor of n.

If n is composite (but not a prime power), then for a randomly
chosen pair (x , y) with x2 ≡ y2 (modn), the probability that
x 6≡ ±y (modn) is at least 1/2.
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The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
H =

⌈√
n

⌉

and J = H2 − n.

(H + c)2 ≡ J + 2Hc + c2 (modn) for small integers c.
Call T (c) = J + 2Hc + c2.

Suppose T (c) factors over small primes p1, p2, . . . , pt :

(H + c)2 ≡ pα1
1 pα2

2 · · · pαt
t (modn).

This is called a relation .

The left side is already a square.
The right side is also a square if each αi is even.
But this is very rare.
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QSM (contd)

Collect many relations:

Relation 1: (H + c1)
2 = pα11

1 pα12
2 · · · pα1t

t
Relation 2: (H + c2)

2 = pα21
1 pα22

2 · · · pα2t
t

· · ·
Relation r : (H + cr )

2 = pαr1
1 pαr2

2 · · · pαrt
t















(modn).

Let β1, β2, . . . , βr ∈ {0, 1}.

[

(H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr

]2
≡ pγ1

1 pγ2
2 · · · pγt

t (modn).

The left side is already a square.
Tune β1, β2, . . . , βr to make each γi even.
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QSM (contd)

α11β1 + α21β2 + · · · + αr1βr = γ1,

α12β1 + α22β2 + · · · + αr2βr = γ2,

· · ·
α1tβ1 + α2tβ2 + · · · + αrtβr = γt .

Linear system with t equations and r variables β1, β2, . . . , βr :










α11 α21 · · · αr1

α12 α22 · · · αr2
...

... · · · ...
α1t α2t · · · αrt





















β1

β2
...
βt











≡











0
0
...
0











(mod2).
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QSM (contd)

For r > t , there are non-zero solutions for β1, β2, . . . , βr . Take

x ≡ (H + c1)
β1(H + c2)

β2 · · · (H + cr )
βr (modn),

y ≡ pγ1/2
1 pγ2/2

2 · · · pγt/2
t (modn).

If x 6≡ ±y (modn), then gcd(x − y , n) is a non-trivial factor of n.

Let p = pi be a small prime.

p | T (c) implies (H + c)2 ≡ n (modp).

If n is not a quadratic residue modulo p, then p6 |T (c) for any c.

Consider only the small primes p modulo which n is a quadratic
residue.
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Example of QSM: Parameters

n = 7116491.

H =
⌈√

n
⌉

= 2668.

Take all primes < 100 modulo which n is a square:

B = {2, 5, 7, 17, 29, 31, 41, 59, 61, 67, 71, 79, 97}.

t = 13.

Take r = 13. (In practice, one takes r ≈ 2t .)
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Example of QSM: Relations

Relation 1: (H + 3)2 ≡ 2 × 53 × 71
Relation 2: (H + 8)2 ≡ 5 × 7 × 31 × 41
Relation 3: (H + 49)2 ≡ 2 × 412 × 79
Relation 4: (H + 64)2 ≡ 7 × 292 × 59
Relation 5: (H + 81)2 ≡ 2 × 5 × 72 × 29 × 31
Relation 6: (H + 109)2 ≡ 2 × 7 × 17 × 41 × 61
Relation 7: (H + 128)2 ≡ 53 × 71 × 79
Relation 8: (H + 145)2 ≡ 2 × 712 × 79
Relation 9: (H + 182)2 ≡ 172 × 592

Relation 10: (H + 228)2 ≡ 52 × 72 × 17 × 61
Relation 11: (H + 267)2 ≡ 2 × 72 × 17 × 29 × 31
Relation 12: (H + 382)2 ≡ 7 × 59 × 67 × 79
Relation 13: (H + 411)2 ≡ 2 × 54 × 31 × 61























































































(modn).
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Example of QSM: Linear System













































1 0 1 0 1 1 0 1 0 0 1 0 1
3 1 0 0 1 0 3 0 0 2 0 0 4
0 1 0 1 2 1 0 0 0 2 2 1 0
0 0 0 0 0 1 0 0 2 1 1 0 0
0 0 0 2 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 1
0 1 2 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 2 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

























































































β1

β2

β3

β4

β5

β6

β7

β8

β9

β10

β11

β12

β13













































≡













































0
0
0
0
0
0
0
0
0
0
0
0
0













































(mod2).
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Example of QSM: Solution of Relations

(β1, β2, β3, . . . , β13) x y gcd(x − y , n)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1 1 7116491
(1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 1755331 560322 1847
(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) 526430 459938 1847
(1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0) 7045367 7045367 7116491
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 2850 1003 1847
(1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) 6916668 6916668 7116491
(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) 5862390 5862390 7116491
(1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0) 3674839 6944029 1847
(0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1) 1079130 3965027 3853
(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1) 5466596 1649895 1
(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1) 5395334 1721157 1
(1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1) 6429806 3725000 3853
(0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1) 1196388 5920103 1
(1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1) 1799801 3818773 3853
(0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1) 5081340 4129649 3853
(1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1) 7099266 17225 1
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Sieving

To identify which values of T (c) = J + 2Hc + c2 are
smooth with respect to the factor base B.
Trial division is too expensive.
Sieving replaces trial division by single-precision
subtractions.
Use an array A indexed by c in the range −M 6 c 6 M.
Initialize: Ac = log |T (c)|.
Let q ∈ B, and h a small positive integer.
Solve T (c) ≡ 0 (modqh).
For each solution χ, subtract log q from Ac for all
c ≡ χ (modqh).
T (c) is B-smooth if and only if the remaining Ac ≈ 0.
Each smooth T (c) is factored by trial division.
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The Baby-Step-Giant-Step (BSGS) Method
Index Calculus Method for Prime Fields
Index Calculus Method for Fields of Characteristic 2

The Discrete Logarithm Problem

To compute the discrete logarithm of a in F
∗

q to the primitive
base g.

Older algorithms

Brute-force search

Shanks’ Baby-step-giant-step method

Pollard’s rho method

Pollard’s lambda method

Pohlig-Hellman method (Efficient if p − 1 has only small
prime divisors)

Worst-case complexity: Exponential in log q
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Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:
L(q, ω, c) = exp

[

(c + o(1))(ln q)ω(ln ln q)1−ω
]

.

Algorithm Inventor(s) Running time
Basic ICM Western & Miller (1968) L(q,1/2, c)

Linear sieve method (LSM) Coppersmith, Odlyzko
Residue list sieve method & Schroeppel (1986) L(q, 1/2, 1)
Gaussian integer method
Cubic sieve method (CSM) Reyneri L(q, 1/2, 0.816)

Number field sieve method Gordon (1993) L(q, 1/3, 1.923)
(NFSM) [for Fp only]
Coppersmith’s method Coppersmith L(q, 1/3, 1.526)
[for F2n only]
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The Baby-Step-Giant-Step Method

Let G be a cyclic multiplicative group of size n.
Let g be a generator of G.
We plan to compute inda(g) for some a ∈ G.

Let m =
⌈√

n
⌉

.

Baby steps: For i ∈ {0, 1, 2, . . . , m − 1}, compute g i , and
store (i , g i) sorted with respect to the second element.

Giant steps: For j = 0, 1, 2, . . . , m − 1, compute ag−jm,
and try to locate ag−jm in the table of baby steps.

If a search is successful, we have ag−jm = g i for some i , j ,
that is, a = g jm+i , that is, indg(a) = jm + i .
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The BSGS Method: Example

Take G = F
∗

43 with size n = 42, m =
⌈√

42
⌉

= 7, and g = 19.

Table of Baby Steps

i 0 6 2 1 3 5 4
g i 1 11 17 19 22 30 31

Giant Steps: Take a = 3.
j = 0: ag−0m ≡ 3 (mod43) is not in the table.

j = 1: ag−m ≡ 21 (mod43) is not in the table.

j = 2: ag−2m ≡ 18 (mod43) is not in the table.

j = 3: ag−3m ≡ 40 (mod43) is not in the table.

j = 4: ag−4m ≡ 22 ≡ g3 (mod43), so indg(a) = 4 × 7 + 3 = 31.
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The Basic ICM for Prime Fields: Precomputation

Goal: To compute indg(a) in F
∗

p to a primitive root g modulo p.

Factor base: First t primes B = {p1, p2, . . . , pt}

To compute di = indg pi for i = 1, 2, . . . , t

For random j ∈ {1, 2, . . . , p − 2}, try to factor g j (modp) over B.

Relation: g j ≡ pα1
1 pα2

2 · · · pαt
t (modp)

Linear equation in t variables d1, d2, . . . , dt :

j ≡ α1d1 + α2d2 + · · · + αtdt (modp − 1)
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The Basic ICM: Precomputation (contd)

Generate r > t relations for different values of j :

Relation 1: j1 ≡ α11d1 + α12d2 + · · · + α1tdt

Relation 2: j2 ≡ α21d1 + α22d2 + · · · + α2tdt

· · ·
Relation r : jr ≡ αr1d1 + αr2d2 + · · · + αrtdt















(modp−1).

Solve the system modulo p − 1 to determine d1, d2, . . . , dt .
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The Basic ICM: Second stage

Choose random j ∈ {1, 2, . . . , p − 2}.
Try to factor ag j (modp) over B.

A successful factorization gives:

ag j ≡ pβ1
1 pβ2

2 · · · pβt
t (modp).

Take discrete log:

indg a ≡ −j + β1d1 + β2d2 + · · · + βtdt (modp − 1).

Substitute the values of d1, d2, . . . , dt to get indg a.
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The Basic ICM: Example (Precomputation)

Parameters: p = 839, g = 31, B = {2, 3, 5, 7, 11}, t = 5, r = 10.

Relations

Relation 1: g118 ≡ 23 × 52

Relation 2: g574 ≡ 27 × 5
Relation 3: g318 ≡ 22 × 33

Relation 4: g46 ≡ 27

Relation 5: g786 ≡ 22 × 33 × 7
Relation 6: g323 ≡ 2 × 3 × 11
Relation 7: g606 ≡ 34

Relation 8: g252 ≡ 23 × 32 × 7
Relation 9: g160 ≡ 3 × 52

Relation 10: g600 ≡ 2 × 33 × 5



































































(modp).
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The Basic ICM: Example (Precomputation)

































3 0 2 0 0
7 0 1 0 0
2 3 0 0 0
7 0 0 0 0
2 3 0 1 0
1 1 0 0 1
0 4 0 0 0
3 2 0 1 0
0 1 2 0 0
1 3 1 0 0













































d1

d2

d3

d4

d5













≡

































118
574
318
46

786
323
606
252
160
600

































(modp − 1).
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The Basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo
p − 1 = 838.

The solution is unique.

d1 ≡ ind31 2 = 246
d2 ≡ ind31 3 = 780
d3 ≡ ind31 5 = 528
d4 ≡ ind31 7 = 468
d5 ≡ ind31 11 = 135























(modp − 1).
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The Basic ICM: Example (Second Stage)

Take a = 561.

ag312 ≡ 600 ≡ 23 × 3 × 52 (modp), that is,

ind31 561 ≡ −312 + 3 × 246 + 780 + 2 × 528 ≡ 586 (modp − 1).

Take a = 89.

ag342 ≡ 99 ≡ 32 × 11 (modp), that is,

ind31 89 ≡ −342 + 2 × 780 + 135 ≡ 515 (modp − 1).

Take a = 625.

ag806 ≡ 70 ≡ 2 × 5 × 7 (modp), that is,

ind31 625 ≡ −806 + 246 + 528 + 468 ≡ 436 (modp − 1).
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The Basic ICM for F2n

Represent F2n = F2(α), where f (α) = 0. Let g(α) be a
generator of F

∗

2n . We plan to compute indg(α) t(α).

Factor base: B = {u(α) | deg g 6 m}.
Relation: Choose j ∈ {0, 1, 2, . . . , 2n − 2} randomly, and
try to arrive at factorizations of the form:

g(α)j =
∏

u(α)∈B

u(α)γu(α) .

Linear algebra: Solve the resulting system of
congruences modulo 2n − 1, and obtain the indices
indg(α) u(α) for all u(α) ∈ B.
Second stage: Generate a single relation of the form:

t(α)g(α)j =
∏

u(α)∈B

u(α)δu(α) .

Public-key Cryptography: Theory and Practice Abhijit Das



The Integer Factorization Problem
The Discrete Logarithm Problem

Solving Large Sparse Linear Systems

The Baby-Step-Giant-Step (BSGS) Method
Index Calculus Method for Prime Fields
Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example

Represent F128 = F2(α) with α7 + α + 1 = 0.
|F∗

128| = 127 is prime. Take g(α) = α5 + α2 + 1.
Take m = 2, that is, B = {α,α + 1, α2 + α + 1}.
Relations in the first stage

g(α)7 = α6 + α2 = α2(α + 1)4,

g(α)101 = α4 + α3 + α + 1 = (α + 1)2(α2 + α + 1),

g(α)121 = α5 + α2 = α2(α + 1)(α2 + α + 1).

Linear system of congruences




2 4 0
0 2 1
2 1 1









dα

dα+1

dα2+α+1



 ≡





7
101
121



 (mod127),

where dβ = indg(α)(β).
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The Basic ICM: Example (contd)

Indices of factor base elements
dα = 123, dα+1 = 99, and dα2+α+1 = 30.

Second stage
t(α) = α3 + 1.
t(α)g(α)57 = α5 + α3 = α3(α + 1)2.
indg(α) t(α) ≡ −57 + 3dα + 2dα+1 ≡ 2 (mod127).

t(α) = α6 + α5 + α4 + α3 + α2 + α + 1.
t(α)g(α)73 = α5 + α4α2 + α = α(α + 1)2(α2 + α + 1).
indg(α) t(α) ≡ −73 + dα + 2dα+1 + d

α
2+α+1 ≡ 24 (mod127).

t(α) = α5 + 1.
t(α)g(α)18 = α5 + α3 + α = α(α2 + α + 1)2.
indg(α) t(α) ≡ −18 + dα + 2d

α
2+α+1 ≡ 38 (mod127).
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The Elliptic Curve Discrete Logarithm Problem

For a general curve, only the exponential square-root
methods apply.

Index calculus methods for elliptic curves are neither
known nor likely to exist.

The subexponential MOV attack applies to supersingular
curves.

The linear-time anomalous attack (also called the
SmartASS attack ) applies to anomalous curves.

Supersingular and anomalous curves are not used in
cryptography.

The Xedni calculus method applies to general curves,
but is found to be impractical.
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Solving Large Sparse Linear Systems

To solve Ax ≡ b (modM), where A a sparse m × n matrix.

If M is prime, we work in the finite field FM .

If M is composite with known factorization, we solve the
system modulo prime power divisors of M.

If M is composite with unknown factorization, we pretend
M as prime. If inversion modulo M fails, we discover
non-trivial factors of M, and solve the system modulo each
factor thus discovered.

We have m = Θ(n).

If A is dense, the system solving phase runs in O (̃n3) time.

If A is sparse, there are O (̃n2)-time algorithms.
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Structured Gaussian Elimination

Used to reduce the size of A.

The size reduction often becomes substantial.

The reduced matrix becomes much denser.

Some steps of structured Gaussian elimination:
Delete zero columns.
Delete columns with single non-zero entries and the
corresponding rows.
Delete rows with single non-zero entries.
Throw excess rows with large numbers of non-zero entries.
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Lanczos Method

Let A be a symmetric positive-definite matrix with real entries.
We plan to solve Ax = b.
We generate a set of pairwise orthogonal directions
d0, d1, d2, . . . until we run out of new orthogonal directions.

Initialization

d0 = b, v1 = Ad0, d1 = v1 − d0(v t
1Ad0)/(d t

0Ad0),
a0 = (d t

0d0)/(d t
0Ad0), and x0 = a0d0.

Iteration: For i = 1, 2, 3, . . ., repeat:
v i+1 = Ad i .
d i+1 = v i+1−di(v t

i+1Ad i)/(d t
iAd i)−d i−1(v t

i+1Ad i−1)/(d t
i−1Ad i−1).

ai = (d t
i b)/(d t

iAd i).
x i = x i−1 + aid i .
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Adaptation of the Lanczos Method

In general, A is not a square matrix.
Remedy

(A t A)x = A t b is a square (n × n) system.
Moreover, A t A is symmetric.
Instead of computing A t A, multiply separately by A and A t .

Positive-definiteness makes no sense in ZM . Problem
arises when we encounter a non-zero vector d i with
d t

i Ad i = 0. The problem is likely to occur unless M is large.
Remedy

Work in extension fields (FMs in place of FM ).
Solve D(A t A)x = DA t b for random non-singular diagonal
matrices D.
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Other Sparse System Solvers

Conjugate gradient method: An iterative method similar
to the Lanczos method.

Wiedemann method: Computes the minimal polynomial
of A in FM [x ].

Block Lanczos method:
Meant for systems modulo 2.
Bits are packed into words.
Multiple direction vectors are computed per iteration.
The problem of self-orthogonality of non-zero vectors is
less acute.

Block Wiedemann method: The block implementation of
the Wiedemann method for systems modulo 2.
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