Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 4: The Intractable Mathematical Problems

The Intractable Problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
 - Factoring composite integers
 - Computing square roots modulo a composite integer
 - Computing discrete logarithms in certain groups (finite fields, elliptic hyperelliptic curves, class groups of number fields, and so on)
 - Finding shortest/closest vectors in a lattice
 - Solving the subset sum problem
 - Finding roots of non-linear multivariate polynomials
 - Solving the braid conjugacy problem

The Intractable Problems (contd)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential.
 Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.
- Certain special cases have been discovered to be cryptographically weak. For practical designs, it is essential to avoid these special cases.
- Polynomial-time quantum algorithms are known for factoring integers and computing discrete logarithms in finite fields.

Discrete Logarithms

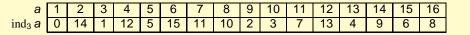
- Let 𝔽_q be a finite field, g a generator of 𝔽_q^{*}, and a ∈ 𝔽_q^{*}. There exists a unique integer x ∈ {0, 1, 2, ..., q − 1} such that a = g^x. We call x the *index* or *discrete logarithm* of a to the base g. We denote this by x = ind_q a.
- Indices follow arithmetic modulo q 1.

$$\operatorname{ind}_g(ab) \equiv \operatorname{ind}_g a + \operatorname{ind}_g b \pmod{q-1},$$

 $\operatorname{ind}_g(a^e) \equiv e \operatorname{ind}_g a \pmod{q-1}.$

 The concept of discrete logarithms can be extended to other finite groups (including the elliptic curve group).

Discrete Logarithm: Example



• $\operatorname{ind}_3 6 = 15$ and $\operatorname{ind}_3 11 = 7$. Since $6 \times 11 = 15 \pmod{17}$, we have $\operatorname{ind}_3 15 \equiv \operatorname{ind}_3 6 + \operatorname{ind}_3 11 \equiv 15 + 7 \equiv 6 \pmod{16}$.

The Most Common Intractable Problems

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of *n*. Suppose there is an algorithm *A* that computes a non-trivial factor of *n*. We can use *A* repeatedly in order to compute the complete factorization of *n*. If n = pq (with $p, q \in \mathbb{P}$), then computing *p* or *q* suffices. **Example**

Input: n = 85067. Output: $85067 = 257 \times 331$.

Discrete logarithm problem (DLP): Let g be a generator of

 \mathbb{F}_q^* . Given $a \in \mathbb{F}_q^*$, compute $\operatorname{ind}_g a$. **Example**

Input: p = 17, g = 3, a = 11.Output: $ind_g a = 7.$

The Most Common Intractable Problems (contd)

- IFP and DLP are believed to be computationally difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.
- Efficient quantum algorithms exist for solving IFP and DLP.
- IFP and DLP are believed to be computationally equivalent.

Intractable Problems: Variants

- **Diffie-Hellman problem (DHP):** Let g be a generator of \mathbb{F}_q^* . Given the elements g^x and g^y of \mathbb{F}_q^* , compute g^{xy} .
- Example
 - Input: p = 17, g = 3, $g^{x} \equiv 11 \pmod{p}$ and $g^{y} \equiv 13 \pmod{p}$.

•
$$\overline{\text{Output}}$$
: $g^{xy} \equiv 4 \pmod{p}$.

- $(x = 7, y = 4, \text{ that is, } xy \equiv 28 \equiv 12 \pmod{p-1}$, that is, $g^{xy} \equiv 3^{12} \equiv 4 \pmod{p}$.)
- DHP is another believably difficult computational problem.
- If DLP can be solved, then DHP can be solved $(g^{xy} = (g^x)^y)$.
- The converse is only believed to be true.

Intractable Problems: Variants

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let *E* be an elliptic curve defined over the finite field \mathbb{F}_q . Given points *P* and *xP* in $E(\mathbb{F}_q)$, compute *x*.
- Elliptic Curve Diffie-Hellman Problem (ECDHP) Let *E* be an elliptic curve defined over the finite field \mathbb{F}_q . Given points *xP* and *yP* in $E(\mathbb{F}_q)$, compute the point *xyP*.

Example

- Consider the curve $E: y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 .
- $E(\mathbb{F}_7)$ Is cyclic of order 6.
- P = (4, 1) is a generator of $E(\mathbb{F}_7)$.
- The index of Q = (5,0) to the base P is 3, that is, Q = 3P.
- Let $Q_1 = 3P = (5, 0)$ and $Q_2 = 4P = (6, 1)$. Then, $(3 \times 4)P = 12P = 0P = O$.

Intractable Problems: Variants

- All finite (Abelian) groups are not cyclic.
- Although all F^{*}_q are cyclic, all elliptic curve groups E(F_q) are not cyclic.
- Even if *G* is a cyclic group, a generator of *G* may be unknown.
- Computing a generator of 𝔽^{*}_q requires the complete factorization of *q* − 1.
- Generalized Discrete Logarithm Problem (GDLP) Let *G* be a (multiplicative) Abelian group of size *n* and let *g* be an element of *G* of order *m* (we have m | n). Let *H* be the subgroup of *G* generated by *g*. Given $a \in G$, determine whether $a \in H$, and if so, determine the unique integer $x \in \{0, 1, 2, ..., m - 1\}$ such that $a = g^x$.

GDLP: Example

Example

- Take p = 661 and g = 29. We have $\operatorname{ord}_p(g) = 66$.
- We have $g^{15} \equiv 49 \pmod{p}$, that is, $ind_g(49) = 15$.
- ind_g(94) does not exist.
- If G is cyclic, then $a \in H$ if and only if $a^m = e$.

Example

- $49^{66} \equiv 1 \pmod{661}$.
- $94^{66} \equiv -1 \pmod{661}$.

rial Division Pollard's Rho Method Quadratic Sieve Method

The Integer Factorization Problem (IFP)

Let *n* be the integer to be factored.

Older algorithms

- Trial division (efficient if all prime divisors of *n* are small)
- Pollard's rho method
- Pollard's p 1 method (efficient if p 1 has only small prime factors for some prime divisor p of n)
- Williams' p + 1 method (efficient if p + 1 has only small prime factors for some prime divisor p of n)

In the worst case, these algorithms take exponential (in log *n*) running time.

Frial Division Pollard's Rho Method Quadratic Sieve Method

Modern Factoring Algorithms

Subexponential running time:

 $L(n,\omega,c) = \exp\left[(c + o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$

- $\omega = 0$: $L(n, \omega, c)$ is polynomial in ln *n*.
- $\omega = 1$: $L(n, \omega, c)$ is exponential in ln *n*.

 $0 < \omega < 1$: $L(n, \omega, c)$ is between polynomial and exponential

Algorithm	Inventor(s)	Running time
Continued fraction method (CFRAC)	Morrison & Brillhart (1975)	L(n, 1/2, c)
Quadratic sieve method (QSM)	Pomerance (1984)	<i>L</i> (<i>n</i> , 1/2, 1)
Cubic sieve method (CSM)	Reyneri	<i>L</i> (<i>n</i> , 1/2, 0.816)
Elliptic curve method (ECM)	H. W. Lenstra (1987)	L(n, 1/2, c)
Number field sieve method (NFSM)	A. K. Lenstra, H. W. Lenstra, Manasse & Pollard (1990)	<i>L</i> (<i>n</i> , 1/3, 1.923)

Trial Division Pollard's Rho Method Quadratic Sieve Method

Trial Division

- Divide *n* by 2, 3, 4, 5, ..., $\lfloor \sqrt{n} \rfloor$.
- It suffices to divide only by primes in the above range.
- A list of primes may be unavailable.
- Checking trial divisors for primality is time-consuming.
- Divide *n* by $d \ge 30$ if and only if
 - $d \equiv 1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$.
- Example
 - Take n = 1716617.
 - Make trial divisions by primes \leq 30. Factor found: 7².
 - Make trial divisions by 31, 37, 41, 43, 47, 49. No factor found.
 - Trial division by 53 yields a factor.
 - The remaining part 661 is a prime.
 - Thus, we have $n = 7^2 \times 53 \times 661$.
- Trial division is efficient if n has only small prime factors (except possibly one).

Trial Division Pollard's Rho Method Quadratic Sieve Method

Pollard's Rho Method

Let $p \leq \sqrt{n}$ be an unknown prime divisor of *n*. Let $f : \mathbb{Z}_n \to \mathbb{Z}_n$ be a pseudorandom function.

- Choose a random $x_0 \in \mathbb{Z}_n$.
- Generate a sequence $x_0, x_1, x_2, ...$ as $x_i = f(x_{i-1})$.
- Let $y_i \equiv x_i \pmod{p}$.
- The sequence $y_0, y_1, y_2, ...$ plays from behind the curtain.
- The sequence $y_0, y_1, y_2, ...$ must be (eventually) periodic.
- Suppose $y_i \equiv y_j \pmod{p}$ for i < j.
- If $x_i \neq x_j \pmod{n}$, then $gcd(x_i x_j, n)$ is a non-trivial factor of *n*.
- By the Birthday Paradox, the expected running time of Pollard's rho method is O[~](⁴√n).

Trial Division Pollard's Rho Method Quadratic Sieve Method

Pollard's Rho Method: Example

Let n = 83947. Take $f(x) = x^2 - 1 \pmod{n}$.

- Start with $x_0 = 123$.
- The first 20 terms in the x sequence are:
 123, 15128, 16861, 48778, 67409, 6117, 61273, 18847,
 29651, 4869, 34106, 49603, 54985, 82966, 38943, 54693,
 40797, 61986, 10005, 35200.
- The corresponding terms in the *y* sequence are: 123, 15, 97, 10, 99, 21, 59, 51, 60, 43, 70, 73, 121, 35, 81, 83, 30, 10, 99, 21.
- The periodic part in the y sequence is 10,99,21,59,51,60,43,70,73,121,35,81,83,30.
- The x sequence does not show the same periodicity.
- gcd(61986 48778, *n*) = 127.

Trial Division Pollard's Rho Method Quadratic Sieve Method

Fermat's Factoring Method

Examples

• Take *n* = 899.

 $n = 900 - 1 = 30^2 - 1^2 = (30 - 1) \times (30 + 1) = 29 \times 31.$

• Take
$$n = 833$$
.
 $3 \times 833 = 2500 - 1 = 50^2 - 1^2 = (50 - 1) \times (50 + 1) = 49 \times 51$.
 $gcd(50 - 1, 833) = 49$ is a non-trivial factor of 833.

Objective

To find integers $x, y \in \mathbb{Z}_n$ such that $x^2 \equiv y^2 \pmod{n}$. Unless $x \equiv \pm y \pmod{n}$, gcd(x - y, n) is a non-trivial divisor of n.

If *n* is composite (but not a prime power), then for a randomly chosen pair (x, y) with $x^2 \equiv y^2 \pmod{n}$, the probability that $x \not\equiv \pm y \pmod{n}$ is at least 1/2.

Trial Division Pollard's Rho Method Quadratic Sieve Method

The Quadratic Sieve Method (QSM)

Let *n* be an odd integer with no small prime factors. $H = \lfloor \sqrt{n} \rfloor$ and $J = H^2 - n$.

 $(H+c)^2 \equiv J + 2Hc + c^2 \pmod{n}$ for small integers *c*. Call $T(c) = J + 2Hc + c^2$.

Suppose T(c) factors over small primes p_1, p_2, \ldots, p_t :

$$(H+c)^2 \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{n}.$$

This is called a **relation**.

The left side is already a square. The right side is also a square if each α_i is even. But this is very rare.

Trial Division Pollard's Rho Method Quadratic Sieve Method

Collect many relations:

QSM (contd)

$$\begin{array}{rcl} \text{Relation 1:} & (H+c_1)^2 &=& p_1^{\alpha_{11}} p_2^{\alpha_{12}} \cdots p_t^{\alpha_{1t}} \\ \text{Relation 2:} & (H+c_2)^2 &=& p_1^{\alpha_{21}} p_2^{\alpha_{22}} \cdots p_t^{\alpha_{2t}} \\ & \ddots & \\ \text{Relation r:} & (H+c_r)^2 &=& p_1^{\alpha_{r1}} p_2^{\alpha_{r2}} \cdots p_t^{\alpha_{rt}} \end{array} \right\} \pmod{n}.$$

Let $\beta_1, \beta_2, ..., \beta_r \in \{0, 1\}.$

$$\left[(H+c_1)^{\beta_1}(H+c_2)^{\beta_2}\cdots(H+c_r)^{\beta_r}\right]^2\equiv p_1^{\gamma_1}p_2^{\gamma_2}\cdots p_t^{\gamma_t} \pmod{n}.$$

The left side is already a square. Tune $\beta_1, \beta_2, \ldots, \beta_r$ to make each γ_i even.

Trial Division Pollard's Rho Method Quadratic Sieve Method

QSM (contd)

$$\alpha_{11}\beta_1 + \alpha_{21}\beta_2 + \dots + \alpha_{r1}\beta_r = \gamma_1,$$

$$\alpha_{12}\beta_1 + \alpha_{22}\beta_2 + \dots + \alpha_{r2}\beta_r = \gamma_2,$$

$$\dots$$

$$\alpha_{1t}\beta_1 + \alpha_{2t}\beta_2 + \dots + \alpha_{rt}\beta_r = \gamma_t.$$

Linear system with *t* equations and *r* variables $\beta_1, \beta_2, \ldots, \beta_r$:

$$\begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{r1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{r2} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{1t} & \alpha_{2t} & \cdots & \alpha_{rt} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_t \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \pmod{2}.$$

Trial Division Pollard's Rho Method Quadratic Sieve Method

For $r \ge t$, there are non-zero solutions for $\beta_1, \beta_2, \ldots, \beta_r$. Take

$$\begin{array}{lll} x &\equiv & (H+c_1)^{\beta_1}(H+c_2)^{\beta_2}\cdots(H+c_r)^{\beta_r} \ (\mathrm{mod} \ n), \\ y &\equiv & p_1^{\gamma_1/2}p_2^{\gamma_2/2}\cdots p_t^{\gamma_t/2} \ (\mathrm{mod} \ n). \end{array}$$

If $x \not\equiv \pm y \pmod{n}$, then gcd(x - y, n) is a non-trivial factor of *n*.

Let $p = p_i$ be a small prime.

QSM (contd)

 $p \mid T(c) \text{ implies } (H+c)^2 \equiv n \pmod{p}.$

If *n* is not a quadratic residue modulo *p*, then p/T(c) for any *c*.

Consider only the small primes p modulo which n is a quadratic residue.

Trial Division Pollard's Rho Method Quadratic Sieve Method

Example of QSM: Parameters

n = 7116491.

 $H = \left\lceil \sqrt{n} \right\rceil = 2668.$

Take all primes < 100 modulo which *n* is a square:

 $B = \{2, 5, 7, 17, 29, 31, 41, 59, 61, 67, 71, 79, 97\}.$

t = 13.

Take r = 13. (In practice, one takes $r \approx 2t$.)

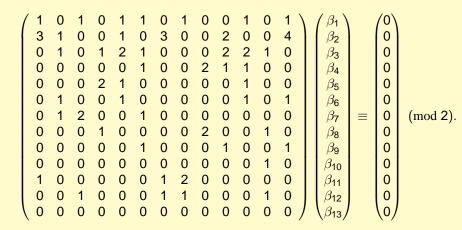
Trial Division Pollard's Rho Method Quadratic Sieve Method

Example of QSM: Relations

Relation 1:	$(H + 3)^2$	≡	$2 \times 5^3 \times 71$	
Relation 2:	$(H + 8)^2$	\equiv	$5\times7\times31\times41$	
Relation 3:	$(H + 49)^2$	\equiv	$2 imes 41^2 imes 79$	
Relation 4:	$(H + 64)^2$	≡	$7 imes29^2 imes59$	
Relation 5:	$(H + 81)^2$	\equiv	$2\times5\times7^2\times29\times31$	
Relation 6:	$(H + 109)^2$	≡	$2\times7\times17\times41\times61$	
Relation 7:	$(H + 128)^2$	≡	$5^3 imes 71 imes 79$	(mod n $).$
Relation 8:	$(H + 145)^2$	\equiv	$2 imes 71^2 imes 79$	
Relation 9:	$(H + 182)^2$	≡	$17^2 imes 59^2$	
Relation 10:	$(H + 228)^2$	≡	$5^2 imes 7^2 imes 17 imes 61$	
Relation 11:	$(H + 267)^2$	\equiv	$2\times7^2\times17\times29\times31$	
Relation 12:	$(H + 382)^2$	≡	$7\times59\times67\times79$	
Relation 13:	$(H + 411)^2$	≡	$2 \times 5^4 \times 31 \times 61$	

Trial Division Pollard's Rho Method Quadratic Sieve Method

Example of QSM: Linear System



Trial Division Pollard's Rho Method Quadratic Sieve Method

Example of QSM: Solution of Relations

$(eta_1,eta_2,eta_3,\dots,eta_{13})$	X	У	gcd(x - y, n)
(0,0,0,0,0,0,0,0,0,0,0,0,0,0)	1	1	7116491
(1,0,1,0,0,0,1,0,0,0,0,0,0)	1755331	560322	1847
(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)	526430	459938	1847
(1,0,0,0,0,0,1,1,0,0,0,0,0)	7045367	7045367	7116491
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)	2850	1003	1847
(1,0,1,0,0,0,1,0,1,0,0,0,0)	6916668	6916668	7116491
(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)	5862390	5862390	7116491
(1,0,0,0,0,0,1,1,1,0,0,0,0)	3674839	6944029	1847
(0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1)	1079130	3965027	3853
(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1)	5466596	1649895	1
(0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1)	5395334	1721157	1
(1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1)	6429806	3725000	3853
(0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1)	1196388	5920103	1
(1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1)	1799801	3818773	3853
(0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1)	5081340	4129649	3853
(1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1)	7099266	17225	1

Trial Division Pollard's Rho Method Quadratic Sieve Method

Sieving

- To identify which values of $T(c) = J + 2Hc + c^2$ are smooth with respect to the factor base *B*.
- Trial division is too expensive.
- Sieving replaces trial division by single-precision subtractions.
- Use an array A indexed by c in the range $-M \leq c \leq M$.
- Initialize: $A_c = \log |T(c)|$.
- Let $q \in B$, and *h* a small positive integer.
- Solve $T(c) \equiv 0 \pmod{q^h}$.
- For each solution χ, subtract log q from A_c for all c ≡ χ (mod q^h).
- T(c) is *B*-smooth if and only if the remaining $A_c \approx 0$.
- Each smooth T(c) is factored by trial division.

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Discrete Logarithm Problem

To compute the discrete logarithm of a in \mathbb{F}_q^* to the primitive base g.

Older algorithms

- Brute-force search
- Shanks' Baby-step-giant-step method
- Pollard's rho method
- Pollard's lambda method
- Pohlig-Hellman method (Efficient if p 1 has only small prime divisors)

Worst-case complexity: Exponential in log q

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

Modern algorithms

Based on the index calculus method (ICM)

Subexponential running time:

$$L(q,\omega,c) = \exp\left[(c+\mathrm{o}(1))(\ln q)^{\omega}(\ln \ln q)^{1-\omega}\right].$$

Algorithm	Inventor(s)	Running time
Basic ICM	Western & Miller (1968)	L(q, 1/2, c)
Linear sieve method (LSM)	Coppersmith, Odlyzko	
Residue list sieve method	& Schroeppel (1986)	<i>L</i> (<i>q</i> , 1/2, 1)
Gaussian integer method		
Cubic sieve method (CSM)	Reyneri	<i>L</i> (<i>q</i> , 1/2, 0.816)
Number field sieve method	Gordon (1993)	<i>L</i> (<i>q</i> , 1/3, 1.923)
(NFSM) [for $\mathbb{F}_{ ho}$ only]		
Coppersmith's method	Coppersmith	<i>L</i> (<i>q</i> , 1/3, 1.526)
[for \mathbb{F}_{2^n} only]		

The Baby-Step-Giant-Step Method

Let G be a cyclic multiplicative group of size n.

Let g be a generator of G.

We plan to compute $\operatorname{ind}_a(g)$ for some $a \in G$.

- Let $m = \lceil \sqrt{n} \rceil$.
- Baby steps: For i ∈ {0, 1, 2, ..., m − 1}, compute gⁱ, and store (i, gⁱ) sorted with respect to the second element.
- **Giant steps:** For j = 0, 1, 2, ..., m 1, compute ag^{-jm} , and try to locate ag^{-jm} in the table of baby steps.
- If a search is successful, we have ag^{-jm} = gⁱ for some i, j, that is, a = g^{jm+i}, that is, ind_g(a) = jm + i.

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The BSGS Method: Example

Take
$$G=\mathbb{F}_{43}^{*}$$
 with size $n=$ 42, $m=\left\lceil \sqrt{42}
ight
ceil=$ 7, and $g=$ 19.

Table of Baby Steps

i	0	6	2	1	3	5	4
g^i	1	11	17	19	22	30	31

Giant Steps: Take a = 3.

- j = 0: $ag^{-0m} \equiv 3 \pmod{43}$ is not in the table.
- j = 1: $ag^{-m} \equiv 21 \pmod{43}$ is not in the table.
- j = 2: $ag^{-2m} \equiv 18 \pmod{43}$ is not in the table.

• j = 3: $ag^{-3m} \equiv 40 \pmod{43}$ is not in the table.

• j = 4: $ag^{-4m} \equiv 22 \equiv g^3 \pmod{43}$, so $\operatorname{ind}_g(a) = 4 \times 7 + 3 = 31$.

The Basic ICM for Prime Fields: Precomputation

Goal: To compute $\operatorname{ind}_g(a)$ in \mathbb{F}_p^* to a primitive root g modulo p.

Factor base: First *t* primes $B = \{p_1, p_2, \dots, p_t\}$

To compute $d_i = \operatorname{ind}_g p_i$ for $i = 1, 2, \ldots, t$

For random $j \in \{1, 2, \dots, p-2\}$, try to factor $g^j \pmod{p}$ over *B*.

Relation: $g^j \equiv p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} \pmod{p}$

Linear equation in *t* variables d_1, d_2, \ldots, d_t :

$$j \equiv \alpha_1 d_1 + \alpha_2 d_2 + \dots + \alpha_t d_t \pmod{p-1}$$

The Basic ICM: Precomputation (contd)

Generate $r \ge t$ relations for different values of *j*:

$$\begin{array}{rcl} \text{Relation 1:} & j_1 &\equiv & \alpha_{11}d_1 + \alpha_{12}d_2 + \dots + \alpha_{1t}d_t \\ \text{Relation 2:} & j_2 &\equiv & \alpha_{21}d_1 + \alpha_{22}d_2 + \dots + \alpha_{2t}d_t \\ & \dots \\ \text{Relation } r: & j_r &\equiv & \alpha_{r1}d_1 + \alpha_{r2}d_2 + \dots + \alpha_{rt}d_t \end{array} \right\} \pmod{p-1}.$$

Solve the system modulo p - 1 to determine d_1, d_2, \ldots, d_t .

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Second stage

Choose random $j \in \{1, 2, ..., p-2\}$. Try to factor $ag^j \pmod{p}$ over *B*.

A successful factorization gives:

$$ag^{j} \equiv p_{1}^{\beta_{1}}p_{2}^{\beta_{2}}\cdots p_{t}^{\beta_{t}} \pmod{p}.$$

Take discrete log:

$$\operatorname{ind}_{g} a \equiv -j + \beta_{1} d_{1} + \beta_{2} d_{2} + \cdots + \beta_{t} d_{t} \pmod{p-1}.$$

Substitute the values of d_1, d_2, \ldots, d_t to get $ind_g a$.

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (Precomputation)

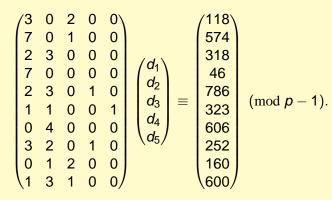
Parameters: p = 839, g = 31, $B = \{2, 3, 5, 7, 11\}$, t = 5, r = 10.

Relations

Relation 1:	g^{118}	\equiv	$2^3 \times 5^2$	
Relation 2:	g^{574}	\equiv	$2^7 imes 5$	
Relation 3:	g^{318}	\equiv	$2^2 imes 3^3$	
Relation 4:	g^{46}	\equiv	2 ⁷	
Relation 5:	g^{786}	\equiv	$2^2\times 3^3\times 7$	(mod n)
Relation 6:	g^{323}	\equiv	$2\times 3\times 11$	$(\mod p).$
Relation 7:	g^{606}	\equiv	3 ⁴	
Relation 8:	g^{252}	\equiv	$2^3\times 3^2\times 7$	
Relation 9:	g^{160}	\equiv	$3 imes 5^2$	
Relation 10:	g^{600}	\equiv	$2 \times 3^3 \times 5$	

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (Precomputation)



The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo p - 1 = 838.

The solution is unique.

$$\begin{array}{rcl} d_1 &\equiv & \operatorname{ind}_{31} 2 &= & 246 \\ d_2 &\equiv & \operatorname{ind}_{31} 3 &= & 780 \\ d_3 &\equiv & \operatorname{ind}_{31} 5 &= & 528 \\ d_4 &\equiv & \operatorname{ind}_{31} 7 &= & 468 \\ d_5 &\equiv & \operatorname{ind}_{31} 11 &= & 135 \end{array} \right\} \pmod{p-1}.$$

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (Second Stage)

Take a = 561.

 $ag^{312} \equiv 600 \equiv 2^3 \times 3 \times 5^2 \pmod{p}$, that is, ind₃₁ 561 $\equiv -312 + 3 \times 246 + 780 + 2 \times 528 \equiv 586 \pmod{p-1}$.

Take *a* = 89.

 $ag^{342} \equiv 99 \equiv 3^2 \times 11 \pmod{p}$, that is, ind₃₁ 89 $\equiv -342 + 2 \times 780 + 135 \equiv 515 \pmod{p-1}$.

Take *a* = 625.

 $ag^{806} \equiv 70 \equiv 2 \times 5 \times 7 \pmod{p}$, that is, ind₃₁ 625 $\equiv -806 + 246 + 528 + 468 \equiv 436 \pmod{p-1}$.

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM for \mathbb{F}_{2^n}

Represent $\mathbb{F}_{2^n} = \mathbb{F}_2(\alpha)$, where $f(\alpha) = 0$. Let $g(\alpha)$ be a generator of $\mathbb{F}_{2^n}^*$. We plan to compute $\operatorname{ind}_{g(\alpha)} t(\alpha)$.

- Factor base: $B = \{u(\alpha) \mid \deg g \leq m\}.$
- Relation: Choose *j* ∈ {0, 1, 2, ..., 2ⁿ − 2} randomly, and try to arrive at factorizations of the form:

$$g(\alpha)^j = \prod_{u(\alpha)\in B} u(\alpha)^{\gamma_{u(\alpha)}}.$$

- Linear algebra: Solve the resulting system of congruences modulo 2ⁿ − 1, and obtain the indices ind_{g(α)} u(α) for all u(α) ∈ B.
- Second stage: Generate a single relation of the form:

$$t(\alpha)g(\alpha)^{j} = \prod_{u(\alpha)\in B} u(\alpha)^{\delta_{u(\alpha)}}.$$

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example

W

- Represent $\mathbb{F}_{128} = \mathbb{F}_2(\alpha)$ with $\alpha^7 + \alpha + 1 = 0$.
- $|\mathbb{F}_{128}^*| = 127$ is prime. Take $g(\alpha) = \alpha^5 + \alpha^2 + 1$.
- Take *m* = 2, that is, *B* = { $\alpha, \alpha + 1, \alpha^2 + \alpha + 1$ }.
- Relations in the first stage

$$g(\alpha)^{7} = \alpha^{6} + \alpha^{2} = \alpha^{2}(\alpha + 1)^{4},$$

$$g(\alpha)^{101} = \alpha^{4} + \alpha^{3} + \alpha + 1 = (\alpha + 1)^{2}(\alpha^{2} + \alpha + 1),$$

$$g(\alpha)^{121} = \alpha^{5} + \alpha^{2} = \alpha^{2}(\alpha + 1)(\alpha^{2} + \alpha + 1).$$

Linear system of congruences

$$\begin{pmatrix} 2 & 4 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} d_{\alpha} \\ d_{\alpha+1} \\ d_{\alpha^2+\alpha+1} \end{pmatrix} \equiv \begin{pmatrix} 7 \\ 101 \\ 121 \end{pmatrix} \pmod{127},$$

here $d_{\beta} = \operatorname{ind}_{g(\alpha)}(\beta).$

The Baby-Step-Giant-Step (BSGS) Method Index Calculus Method for Prime Fields Index Calculus Method for Fields of Characteristic 2

The Basic ICM: Example (contd)

Indices of factor base elements

$$d_{\alpha} =$$
 123, $d_{\alpha+1} =$ 99, and $d_{\alpha^2+\alpha+1} =$ 30.

Second stage

•
$$t(\alpha) = \alpha^3 + 1$$
.
 $t(\alpha)g(\alpha)^{57} = \alpha^5 + \alpha^3 = \alpha^3(\alpha + 1)^2$.
 $\operatorname{ind}_{g(\alpha)} t(\alpha) \equiv -57 + 3d_{\alpha} + 2d_{\alpha+1} \equiv 2 \pmod{127}$.

•
$$t(\alpha) = \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1.$$

 $t(\alpha)g(\alpha)^{73} = \alpha^5 + \alpha^4\alpha^2 + \alpha = \alpha(\alpha + 1)^2(\alpha^2 + \alpha + 1).$
 $\operatorname{ind}_{g(\alpha)} t(\alpha) \equiv -73 + d_{\alpha} + 2d_{\alpha+1} + d_{\alpha^2+\alpha+1} \equiv 24 \pmod{127}.$

•
$$t(\alpha) = \alpha^5 + 1$$
.
 $t(\alpha)g(\alpha)^{18} = \alpha^5 + \alpha^3 + \alpha = \alpha(\alpha^2 + \alpha + 1)^2$.
 $\operatorname{ind}_{g(\alpha)} t(\alpha) \equiv -18 + d_{\alpha} + 2d_{\alpha^2 + \alpha + 1} \equiv 38 \pmod{127}$.

The Elliptic Curve Discrete Logarithm Problem

- For a general curve, only the exponential square-root methods apply.
- Index calculus methods for elliptic curves are neither known nor likely to exist.
- The subexponential MOV attack applies to supersingular curves.
- The linear-time **anomalous attack** (also called the **SmartASS attack**) applies to anomalous curves.
- Supersingular and anomalous curves are not used in cryptography.
- The **Xedni calculus method** applies to general curves, but is found to be impractical.

Solving Large Sparse Linear Systems

- To solve $A\mathbf{x} \equiv \mathbf{b} \pmod{M}$, where A a **sparse** $m \times n$ matrix.
- If *M* is prime, we work in the finite field \mathbb{F}_M .
- If *M* is composite with known factorization, we solve the system modulo prime power divisors of *M*.
- If *M* is composite with unknown factorization, we pretend *M* as prime. If inversion modulo *M* fails, we discover non-trivial factors of *M*, and solve the system modulo each factor thus discovered.
- We have $m = \Theta(n)$.
- If A is dense, the system solving phase runs in $O^{\sim}(n^3)$ time.
- If A is sparse, there are $O^{\sim}(n^2)$ -time algorithms.

Structured Gaussian Elimination Lanczos Method

Structured Gaussian Elimination

- Used to reduce the size of A.
- The size reduction often becomes substantial.
- The reduced matrix becomes much denser.
- Some steps of structured Gaussian elimination:
 - Delete zero columns.
 - Delete columns with single non-zero entries and the corresponding rows.
 - Delete rows with single non-zero entries.
 - Throw excess rows with large numbers of non-zero entries.

Structured Gaussian Elimination Lanczos Method

Lanczos Method

Let *A* be a symmetric positive-definite matrix with real entries. We plan to solve $A\mathbf{x} = \mathbf{b}$.

We generate a set of pairwise orthogonal directions $\mathbf{d}_0, \mathbf{d}_1, \mathbf{d}_2, \ldots$ until we run out of new orthogonal directions.

Initialization

$$\begin{split} & \mathbf{d}_0 = \mathbf{b}, \, \mathbf{v}_1 = A \mathbf{d}_0, \, \mathbf{d}_1 = \mathbf{v}_1 - \mathbf{d}_0 (\mathbf{v}_1^t A \mathbf{d}_0) / (\mathbf{d}_0^t A \mathbf{d}_0), \\ & a_0 = (\mathbf{d}_0^t \mathbf{d}_0) / (\mathbf{d}_0^t A \mathbf{d}_0), \, \text{and} \, \mathbf{x}_0 = a_0 \mathbf{d}_0. \end{split}$$

• **Iteration:** For *i* = 1, 2, 3, . . . , repeat:

$$\begin{aligned} \mathbf{v}_{i+1} &= A\mathbf{d}_i.\\ \mathbf{d}_{i+1} &= \mathbf{v}_{i+1} - \mathbf{d}_i (\mathbf{v}_{i+1}^t A \mathbf{d}_i) / (\mathbf{d}_i^t A \mathbf{d}_i) - \mathbf{d}_{i-1} (\mathbf{v}_{i+1}^t A \mathbf{d}_{i-1}) / (\mathbf{d}_{i-1}^t A \mathbf{d}_{i-1}).\\ a_i &= (\mathbf{d}_i^t \mathbf{b}) / (\mathbf{d}_i^t A \mathbf{d}_i).\\ \mathbf{x}_i &= \mathbf{x}_{i-1} + a_i \mathbf{d}_i. \end{aligned}$$

Adaptation of the Lanczos Method

- In general, A is not a square matrix.
- Remedy
 - $(A^{t}A)\mathbf{x} = A^{t}\mathbf{b}$ is a square $(n \times n)$ system.
 - Moreover, *A*^t*A* is symmetric.
 - Instead of computing A^tA, multiply separately by A and A^t.
- Positive-definiteness makes no sense in Z_M. Problem arises when we encounter a non-zero vector d_i with d_i^tAd_i = 0. The problem is likely to occur unless M is large.

Remedy

- Work in extension fields (\mathbb{F}_{M^s} in place of \mathbb{F}_M).
- Solve D(A^tA)x = DA^tb for random non-singular diagonal matrices D.

Structured Gaussian Elimination Lanczos Method

Other Sparse System Solvers

- Conjugate gradient method: An iterative method similar to the Lanczos method.
- Wiedemann method: Computes the minimal polynomial of *A* in $\mathbb{F}_M[x]$.
- Block Lanczos method:
 - Meant for systems modulo 2.
 - Bits are packed into words.
 - Multiple direction vectors are computed per iteration.
 - The problem of self-orthogonality of non-zero vectors is less acute.
- Block Wiedemann method: The block implementation of the Wiedemann method for systems modulo 2.