
Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Public-key Cryptography
Theory and Practice

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Chapter 3: Algebraic and Number-theoretic
Computations

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Standard data types in programming languages cannot
handle big integers.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Standard data types in programming languages cannot
handle big integers.

Special data types (like arrays of integers) are needed.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Standard data types in programming languages cannot
handle big integers.

Special data types (like arrays of integers) are needed.

The arithmetic routines on these specific data types have
to be implemented.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Standard data types in programming languages cannot
handle big integers.

Special data types (like arrays of integers) are needed.

The arithmetic routines on these specific data types have
to be implemented.

One may use an available library (like GMP).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Integer Arithmetic

In cryptography, we deal with very large integers with full
precision.

Standard data types in programming languages cannot
handle big integers.

Special data types (like arrays of integers) are needed.

The arithmetic routines on these specific data types have
to be implemented.

One may use an available library (like GMP).

Size of an integer n is O(log |n|).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Basic Integer Operations

Let a, b be two integer operands.

High-school algorithms

Operation Running time
a + b O(max(log a, log b))
a − b O(max(log a, log b))

ab O((log a)(log b))

a2 O(log2 a)
(a quotb) and/or (a remb) O((log a)(log b))

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Basic Integer Operations

Let a, b be two integer operands.

High-school algorithms

Operation Running time
a + b O(max(log a, log b))
a − b O(max(log a, log b))

ab O((log a)(log b))

a2 O(log2 a)
(a quotb) and/or (a remb) O((log a)(log b))

Fast multiplication: Assume a, b are of the same size s.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Basic Integer Operations

Let a, b be two integer operands.

High-school algorithms

Operation Running time
a + b O(max(log a, log b))
a − b O(max(log a, log b))

ab O((log a)(log b))

a2 O(log2 a)
(a quotb) and/or (a remb) O((log a)(log b))

Fast multiplication: Assume a, b are of the same size s.

Karatsuba multiplication: O(s1.585)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Basic Integer Operations

Let a, b be two integer operands.

High-school algorithms

Operation Running time
a + b O(max(log a, log b))
a − b O(max(log a, log b))

ab O((log a)(log b))

a2 O(log2 a)
(a quotb) and/or (a remb) O((log a)(log b))

Fast multiplication: Assume a, b are of the same size s.

Karatsuba multiplication: O(s1.585)

FFT multiplication: O(s log s)
[not frequently used in cryptography]

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Write a − b = 2γc with γ > 1 and c odd.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Write a − b = 2γc with γ > 1 and c odd.

Then, gcd(a, b) = gcd(c, b).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Write a − b = 2γc with γ > 1 and c odd.

Then, gcd(a, b) = gcd(c, b).

Repeat until one operand reduces to 0.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Write a − b = 2γc with γ > 1 and c odd.

Then, gcd(a, b) = gcd(c, b).

Repeat until one operand reduces to 0.

Running time of Euclidean gcd: O(max(log a, log b)3).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Binary GCD

To compute the GCD of two positive integers a and b.

Write a = 2αa′ and b = 2βb′ with a′, b′ odd.

gcd(a, b) = 2min(α,β) gcd(a′, b′).

Assume that both a, b are odd and a > b.

gcd(a, b) = gcd(a − b, b).

Write a − b = 2γc with γ > 1 and c odd.

Then, gcd(a, b) = gcd(c, b).

Repeat until one operand reduces to 0.

Running time of Euclidean gcd: O(max(log a, log b)3).

Running time of binary gcd: O(max(log a, log b)2).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Compute the quotient qi = ri−2 quotri−1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Compute the quotient qi = ri−2 quotri−1.

Compute ri = ri−2 − qi ri−1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Compute the quotient qi = ri−2 quotri−1.

Compute ri = ri−2 − qi ri−1.

Compute ui = ui−2 − qiui−1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Compute the quotient qi = ri−2 quotri−1.

Compute ri = ri−2 − qi ri−1.

Compute ui = ui−2 − qiui−1.

Compute vi = vi−2 − qivi−1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.

Define three sequences ri , ui , vi .

Initialize:
[

r0 = a, u0 = 1, v0 = 0,
r1 = b, u1 = 0, v1 = 1.

]

Iteration: For i = 2, 3, 4, . . ., do the following:

Compute the quotient qi = ri−2 quotri−1.

Compute ri = ri−2 − qi ri−1.

Compute ui = ui−2 − qiui−1.

Compute vi = vi−2 − qivi−1.

Break if ri = 0.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

gcd(a, b) = rj−1 = uj−1a + vj−1b.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

gcd(a, b) = rj−1 = uj−1a + vj−1b.

One needs to remember the r , u, v values only from the
two previous iterations.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

gcd(a, b) = rj−1 = uj−1a + vj−1b.

One needs to remember the r , u, v values only from the
two previous iterations.

One can compute only the r and u sequences in the loop.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

gcd(a, b) = rj−1 = uj−1a + vj−1b.

One needs to remember the r , u, v values only from the
two previous iterations.

One can compute only the r and u sequences in the loop.

One gets vj−1 = (rj−1 − uj−1a)/b.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (contd.)

We maintain the invariance uia + vib = ri for all i .

Suppose the loop terminates for i = j (that is, rj = 0).

gcd(a, b) = rj−1 = uj−1a + vj−1b.

One needs to remember the r , u, v values only from the
two previous iterations.

One can compute only the r and u sequences in the loop.

One gets vj−1 = (rj−1 − uj−1a)/b.

The binary gcd algorithm can be similarly modified so as to
compute the u and v sequences maintaining the invariant
uia + vib = ri for all i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21
2 3 15 1 −3 15

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21
2 3 15 1 −3 15
3 1 6 −1 4 6

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21
2 3 15 1 −3 15
3 1 6 −1 4 6
4 2 3 3 −11 3

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21
2 3 15 1 −3 15
3 1 6 −1 4 6
4 2 3 3 −11 3
5 2 0 −7 26 0

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Extended Euclidean GCD (Example)

To compute gcd(78, 21) = 78u + 21v .

i qi ri ui vi uia + vib
0 − 78 1 0 78
1 − 21 0 1 21
2 3 15 1 −3 15
3 1 6 −1 4 6
4 2 3 3 −11 3
5 2 0 −7 26 0

Thus, gcd(78, 21) = 3 = 3 × 78 + (−11) × 21.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Integer Arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Integer Arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Integer Arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Integer Arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Multiplication: ab (modn) = (ab) remn.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Integer Arithmetic

Let n ∈ N. Define Zn = {0, 1, 2, . . . , n − 1}.

Addition: a + b (modn) =

{

a + b if a + b < n

a + b − n if a + b > n

Subtraction: a − b (modn) =

{

a − b if a > b

a − b + n if a < b

Multiplication: ab (modn) = (ab) remn.

Inverse: a ∈ Z
∗

n is invertible if and only if gcd(a, n) = 1.
But then 1 = ua + vn for some integers u, v .
Take a−1 ≡ u (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b ≡ 344 − 257 ≡ 87 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b ≡ 344 − 257 ≡ 87 (modn).

Subtraction: a − b = −90 < 0, so
a − b ≡ −90 + 257 ≡ 167 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b ≡ 344 − 257 ≡ 87 (modn).

Subtraction: a − b = −90 < 0, so
a − b ≡ −90 + 257 ≡ 167 (modn).

Multiplication:
ab ≡ (127 × 217) rem257 ≡ 27559 rem257 ≡ 60 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b ≡ 344 − 257 ≡ 87 (modn).

Subtraction: a − b = −90 < 0, so
a − b ≡ −90 + 257 ≡ 167 (modn).

Multiplication:
ab ≡ (127 × 217) rem257 ≡ 27559 rem257 ≡ 60 (modn).

Inverse: gcd(b, n) = 1 = (−45)b + 38n, so
b−1 ≡ −45 + 257 ≡ 212 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Example of Modular Arithmetic

Take n = 257, a = 127, b = 217.

Addition: a + b = 344 > 257, so
a + b ≡ 344 − 257 ≡ 87 (modn).

Subtraction: a − b = −90 < 0, so
a − b ≡ −90 + 257 ≡ 167 (modn).

Multiplication:
ab ≡ (127 × 217) rem257 ≡ 27559 rem257 ≡ 60 (modn).

Inverse: gcd(b, n) = 1 = (−45)b + 38n, so
b−1 ≡ −45 + 257 ≡ 212 (modn).

Division:
a/b ≡ ab−1 ≡ (127 × 212) rem257 ≡ 196 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

a3 ≡ a2 × a ≡ 195 × 127 ≡ 93 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

a3 ≡ a2 × a ≡ 195 × 127 ≡ 93 (modn),

a4 ≡ a3 × a ≡ 93 × 127 ≡ 246 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

a3 ≡ a2 × a ≡ 195 × 127 ≡ 93 (modn),

a4 ≡ a3 × a ≡ 93 × 127 ≡ 246 (modn),

· · ·

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

a3 ≡ a2 × a ≡ 195 × 127 ≡ 93 (modn),

a4 ≡ a3 × a ≡ 93 × 127 ≡ 246 (modn),

· · ·
a216 ≡ a215 × a ≡ 131 × 127 ≡ 189 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Modular Exponentiation: Slow Algorithm

Let n ∈ N, a ∈ Zn and e ∈ N0. To compute ae (modn).

Compute a, a2, a3, . . . , ae successively by multiplying with a
modulo n.

Example: n = 257, a = 127, e = 217.

a2 ≡ a × a ≡ 195 (modn),

a3 ≡ a2 × a ≡ 195 × 127 ≡ 93 (modn),

a4 ≡ a3 × a ≡ 93 × 127 ≡ 246 (modn),

· · ·
a216 ≡ a215 × a ≡ 131 × 127 ≡ 189 (modn),

a217 ≡ a216 × a ≡ 189 × 127 ≡ 102 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation

To compute ae (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

ae ≡
(

a2l−1
)el−1

(

a2l−2
)el−2 · · ·

(

a21
)e1

(

a20
)e0

(modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

ae ≡
(

a2l−1
)el−1

(

a2l−2
)el−2 · · ·

(

a21
)e1

(

a20
)e0

(modn).

Compute a, a2, a22
, a23

, . . . , a2l−1
and multiply those a2i

modulo n for which ei = 1. Also for i > 1, we have

a2i ≡
(

a2i−1
)2

(modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn), a24 ≡ (121)2 ≡ 249 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn), a24 ≡ (121)2 ≡ 249 (modn),
a25 ≡ (249)2 ≡ 64 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn), a24 ≡ (121)2 ≡ 249 (modn),
a25 ≡ (249)2 ≡ 64 (modn), a26 ≡ (64)2 ≡ 241 (modn) and

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn), a24 ≡ (121)2 ≡ 249 (modn),
a25 ≡ (249)2 ≡ 64 (modn), a26 ≡ (64)2 ≡ 241 (modn) and
a27 ≡ (241)2 ≡ 256 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Right-to-left Modular Exponentiation (Example)

Take n = 257, a = 127, e = 217.

e = (11011001)2 = 27 + 26 + 24 + 23 + 20. So
ae ≡ a27

a26
a24

a23
a20

(modn).

a2 ≡ 195 (modn), a22 ≡ (195)2 ≡ 246 (modn),
a23 ≡ (246)2 ≡ 121 (modn), a24 ≡ (121)2 ≡ 249 (modn),
a25 ≡ (249)2 ≡ 64 (modn), a26 ≡ (64)2 ≡ 241 (modn) and
a27 ≡ (241)2 ≡ 256 (modn).

ae ≡ 256 × 241 × 249 × 121 × 127 ≡ 102 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

aǫl ≡ 1 (modn) and aǫi ≡ (aǫi+1)2 × aei (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

aǫl ≡ 1 (modn) and aǫi ≡ (aǫi+1)2 × aei (modn).

Finally, ǫ0 = e, so output aǫ0 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

aǫl ≡ 1 (modn) and aǫi ≡ (aǫi+1)2 × aei (modn).

Finally, ǫ0 = e, so output aǫ0 (modn).

Initialize product to 1 (corresponds to i = l).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

aǫl ≡ 1 (modn) and aǫi ≡ (aǫi+1)2 × aei (modn).

Finally, ǫ0 = e, so output aǫ0 (modn).

Initialize product to 1 (corresponds to i = l).

For i = l − 1, l − 2, . . . , 1, 0, square product .
If ei = 1, then multiply product by a.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation

To compute ae (modn).

Binary representation: e = (el−1el−2 . . . e1e0)2 =
el−12l−1 + el−22l−2 + · · · + e121 + e020.

Define ǫi = (el−1el−2 . . . ei)2 for i = l , l − 1, l − 2, . . . , 0.

ǫl = 0, and ǫi = 2ǫi+1 + ei for i < l .

aǫl ≡ 1 (modn) and aǫi ≡ (aǫi+1)2 × aei (modn).

Finally, ǫ0 = e, so output aǫ0 (modn).

Initialize product to 1 (corresponds to i = l).

For i = l − 1, l − 2, . . . , 1, 0, square product .
If ei = 1, then multiply product by a.

Square-and-(conditionally)-multiply algorithm

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)
4 1 (1101)2 = 13 1682 × 127 ≡ 69 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)
4 1 (1101)2 = 13 1682 × 127 ≡ 69 (modn)

3 1 (11011)2 = 27 692 × 127 ≡ 183 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)
4 1 (1101)2 = 13 1682 × 127 ≡ 69 (modn)

3 1 (11011)2 = 27 692 × 127 ≡ 183 (modn)
2 0 (110110)2 = 54 1832 ≡ 79 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)
4 1 (1101)2 = 13 1682 × 127 ≡ 69 (modn)

3 1 (11011)2 = 27 692 × 127 ≡ 183 (modn)
2 0 (110110)2 = 54 1832 ≡ 79 (modn)

1 0 (1101100)2 = 108 792 ≡ 73 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Left-to-right Modular Exponentiation (Example)

Take n = 257, a = 127 and e = 217.
We have the binary representation: e = (11011001)2.

i ei ǫi aǫi (modn)

8 − 0 1
7 1 (1)2 = 1 12 × 127 ≡ 127 (modn)

6 1 (11)2 = 3 1272 × 127 ≡ 93 (modn)

5 0 (110)2 = 6 932 ≡ 168 (modn)
4 1 (1101)2 = 13 1682 × 127 ≡ 69 (modn)

3 1 (11011)2 = 27 692 × 127 ≡ 183 (modn)
2 0 (110110)2 = 54 1832 ≡ 79 (modn)

1 0 (1101100)2 = 108 792 ≡ 73 (modn)

0 1 (11011001)2 = 217 732 × 127 ≡ 102 (modn)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

A fundamental problem in computational number theory.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

A fundamental problem in computational number theory.

Probabilistic (that is, randomized) algorithms solve the
problem reasonably efficiently with arbitrarily small
probability of error.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

A fundamental problem in computational number theory.

Probabilistic (that is, randomized) algorithms solve the
problem reasonably efficiently with arbitrarily small
probability of error.

Some of these probabilistic algorithms can be converted to
deterministic polynomial-time algorithms under certain
unproven assumptions (Extended Riemann Hypothesis).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

A fundamental problem in computational number theory.

Probabilistic (that is, randomized) algorithms solve the
problem reasonably efficiently with arbitrarily small
probability of error.

Some of these probabilistic algorithms can be converted to
deterministic polynomial-time algorithms under certain
unproven assumptions (Extended Riemann Hypothesis).

The first known deterministic polynomial-time algorithm
with proofs not dependent on any conjectures is from
Agarwal, Kayal and Saxena (2002).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Primality Testing

A fundamental problem in computational number theory.

Probabilistic (that is, randomized) algorithms solve the
problem reasonably efficiently with arbitrarily small
probability of error.

Some of these probabilistic algorithms can be converted to
deterministic polynomial-time algorithms under certain
unproven assumptions (Extended Riemann Hypothesis).

The first known deterministic polynomial-time algorithm
with proofs not dependent on any conjectures is from
Agarwal, Kayal and Saxena (2002).

The AKS algorithm is not yet practical.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.
An integer n is called a pseudoprime to a base a with
gcd(a, n) = 1, if an−1 ≡ 1 (modn).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.
An integer n is called a pseudoprime to a base a with
gcd(a, n) = 1, if an−1 ≡ 1 (modn).
A prime is a pseudoprime to every coprime base.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.
An integer n is called a pseudoprime to a base a with
gcd(a, n) = 1, if an−1 ≡ 1 (modn).
A prime is a pseudoprime to every coprime base.
A prime has no witnesses to its compositeness.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.
An integer n is called a pseudoprime to a base a with
gcd(a, n) = 1, if an−1 ≡ 1 (modn).
A prime is a pseudoprime to every coprime base.
A prime has no witnesses to its compositeness.
If a composite integer n is not a pseudoprime to some
base, then n is not a pseudoprime to at least half of the
bases in Z

∗

n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test

Fermat’s little theorem: If n is prime, then an−1 ≡ 1 (modn)
for all a coprime to n.
The converse is not true: 635−1 ≡ (62)17 ≡ 1 (mod35).
However, 835−1 ≡ 29 6≡ 1 (mod35). So, 6 fails to prove the
compositeness of 35, but 8 proves it.
An integer n is called a pseudoprime to a base a with
gcd(a, n) = 1, if an−1 ≡ 1 (modn).
A prime is a pseudoprime to every coprime base.
A prime has no witnesses to its compositeness.
If a composite integer n is not a pseudoprime to some
base, then n is not a pseudoprime to at least half of the
bases in Z

∗

n.
In that case, the density of witnesses for the
compositeness of n is at least 1/2.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

If an−1
i 6≡ 1 (modn) for some i , declare n as composite.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

If an−1
i 6≡ 1 (modn) for some i , declare n as composite.

If this test declares n as composite, there is no error.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

If an−1
i 6≡ 1 (modn) for some i , declare n as composite.

If this test declares n as composite, there is no error.

If this test declares n as prime, there may be an error.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

If an−1
i 6≡ 1 (modn) for some i , declare n as composite.

If this test declares n as composite, there is no error.

If this test declares n as prime, there may be an error.

If n has (at least) one witness for its compositeness, then
the probability of error is 6 1/2t .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Fermat Test (contd.)

Choose t random bases a1, a2, . . . , at ∈ Z
∗

n.

If an−1
i ≡ 1 (modn) for all i , declare n as prime.

If an−1
i 6≡ 1 (modn) for some i , declare n as composite.

If this test declares n as composite, there is no error.

If this test declares n as prime, there may be an error.

If n has (at least) one witness for its compositeness, then
the probability of error is 6 1/2t .

By choosing t suitably, this probability can be made very
low.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Carmichael Numbers

There exist composite integers which have no (coprime)
witnesses of compositeness.

These are called Carmichael numbers.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Carmichael Numbers

There exist composite integers which have no (coprime)
witnesses of compositeness.

These are called Carmichael numbers.

Although not common, Carmichael numbers are infinite in
number.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Carmichael Numbers

There exist composite integers which have no (coprime)
witnesses of compositeness.

These are called Carmichael numbers.

Although not common, Carmichael numbers are infinite in
number.

The smallest Carmichael number is 561 = 3 × 11 × 17.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Carmichael Numbers

There exist composite integers which have no (coprime)
witnesses of compositeness.

These are called Carmichael numbers.

Although not common, Carmichael numbers are infinite in
number.

The smallest Carmichael number is 561 = 3 × 11 × 17.

A Carmichael number must be odd, square-free, and the
product of at least three (distinct) primes.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Carmichael Numbers

There exist composite integers which have no (coprime)
witnesses of compositeness.

These are called Carmichael numbers.

Although not common, Carmichael numbers are infinite in
number.

The smallest Carmichael number is 561 = 3 × 11 × 17.

A Carmichael number must be odd, square-free, and the
product of at least three (distinct) primes.

For every prime divisor p of a Carmichael number n, we
must have (p − 1) | (n − 1).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

If n is an Euler pseudoprime to base a, then n is also a
(Fermat) pseudoprime to base a. The converse is not true.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

If n is an Euler pseudoprime to base a, then n is also a
(Fermat) pseudoprime to base a. The converse is not true.

By Euler’s criterion, a prime is Euler pseudoprime to all
coprime bases.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

If n is an Euler pseudoprime to base a, then n is also a
(Fermat) pseudoprime to base a. The converse is not true.

By Euler’s criterion, a prime is Euler pseudoprime to all
coprime bases.

A composite integer n is Euler pseudoprime to at most half
the bases in Z

∗

n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

If n is an Euler pseudoprime to base a, then n is also a
(Fermat) pseudoprime to base a. The converse is not true.

By Euler’s criterion, a prime is Euler pseudoprime to all
coprime bases.

A composite integer n is Euler pseudoprime to at most half
the bases in Z

∗

n.

Even Carmichael numbers possess compositeness
witnesses under the revised criterion.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Euler (or Solovay-Strassen) Test

An integer n ∈ N is called an Euler pseudoprime or a
Solovay-Strassen pseudoprime to base a (with gcd(a, n) = 1)

if a(n−1)/2 ≡
(a

n

)

(modn), where
(a

n

)

is the Jacobi symbol.

If n is an Euler pseudoprime to base a, then n is also a
(Fermat) pseudoprime to base a. The converse is not true.

By Euler’s criterion, a prime is Euler pseudoprime to all
coprime bases.

A composite integer n is Euler pseudoprime to at most half
the bases in Z

∗

n.

Even Carmichael numbers possess compositeness
witnesses under the revised criterion.

Example: 5(561−1)/2 ≡ 67 (mod561), whereas
(5

561

)

= 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Suppose an−1 ≡ 1 (modn) (with gcd(a, n) = 1).
Write n − 1 = 2rn′ with n′ odd and r ∈ N.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Suppose an−1 ≡ 1 (modn) (with gcd(a, n) = 1).
Write n − 1 = 2rn′ with n′ odd and r ∈ N.

Consider the sequence bi ≡ (an′

)2i
(modn) for

i = 0, 1, 2, . . . , r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Suppose an−1 ≡ 1 (modn) (with gcd(a, n) = 1).
Write n − 1 = 2rn′ with n′ odd and r ∈ N.

Consider the sequence bi ≡ (an′

)2i
(modn) for

i = 0, 1, 2, . . . , r .

We have br ≡ 1 (modn).
Let j be the smallest index with bj ≡ 1 (modn).
Suppose j > 0. Then bj−1 is a modular square root of 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Suppose an−1 ≡ 1 (modn) (with gcd(a, n) = 1).
Write n − 1 = 2rn′ with n′ odd and r ∈ N.

Consider the sequence bi ≡ (an′

)2i
(modn) for

i = 0, 1, 2, . . . , r .

We have br ≡ 1 (modn).
Let j be the smallest index with bj ≡ 1 (modn).
Suppose j > 0. Then bj−1 is a modular square root of 1.

If bj−1 6≡ −1 (modn), then n is composite.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test

An odd prime has exactly two modular square roots of 1.

An odd composite integer which is not a prime power has
at least four modular square roots of 1.

Suppose an−1 ≡ 1 (modn) (with gcd(a, n) = 1).
Write n − 1 = 2rn′ with n′ odd and r ∈ N.

Consider the sequence bi ≡ (an′

)2i
(modn) for

i = 0, 1, 2, . . . , r .

We have br ≡ 1 (modn).
Let j be the smallest index with bj ≡ 1 (modn).
Suppose j > 0. Then bj−1 is a modular square root of 1.

If bj−1 6≡ −1 (modn), then n is composite.

Compute b0 by modular exponentiation, and then compute
bi ≡ b2

i−1 (modn) for i = 1, 2,

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Example: n = 561 = 24 × 35 + 1, so r = 4 and n′ = 35.
For the base a = 2, we have:

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Example: n = 561 = 24 × 35 + 1, so r = 4 and n′ = 35.
For the base a = 2, we have:
b0 ≡ an′ ≡ 263 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Example: n = 561 = 24 × 35 + 1, so r = 4 and n′ = 35.
For the base a = 2, we have:
b0 ≡ an′ ≡ 263 (modn), b1 ≡ a2n′ ≡ 166 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Example: n = 561 = 24 × 35 + 1, so r = 4 and n′ = 35.
For the base a = 2, we have:
b0 ≡ an′ ≡ 263 (modn), b1 ≡ a2n′ ≡ 166 (modn),
b2 ≡ a22n′ ≡ 67 (modn),

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

Miller-Rabin Test (contd.)

n is called a Miller-Rabin pseudoprime or a strong
pseudoprime to the base a, if b0 ≡ 1 (modn) or
bj−1 ≡ −1 (modn) for some j ∈ {1, 2, . . . , r}.
A strong pseudoprime is also an Euler pseudoprime (but
not conversely) and so a Fermat pseudoprime.
If n is an odd composite integer (but not a prime power),
then n is a strong pseudoprime to at most 1/4-th of the
bases in Z

∗

n.
This is true even for Carmichael numbers.

Example: n = 561 = 24 × 35 + 1, so r = 4 and n′ = 35.
For the base a = 2, we have:
b0 ≡ an′ ≡ 263 (modn), b1 ≡ a2n′ ≡ 166 (modn),
b2 ≡ a22n′ ≡ 67 (modn), b3 ≡ a23n′ ≡ 1 (modn).
Thus, 67 is a non-trivial square root of 1 modulo 561.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

(x + a)n ≡ xn + a (modn) (for every a) if and only if n is
prime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

(x + a)n ≡ xn + a (modn) (for every a) if and only if n is
prime.

Compute (x + a)n and xn + a modulo n and some suitably
chosen polynomials x r − 1 with small r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

(x + a)n ≡ xn + a (modn) (for every a) if and only if n is
prime.

Compute (x + a)n and xn + a modulo n and some suitably
chosen polynomials x r − 1 with small r .

A suitable r = O(ln6 n) can be found. For this r , at most
2
√

r ln n values of a need to be tried.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

(x + a)n ≡ xn + a (modn) (for every a) if and only if n is
prime.

Compute (x + a)n and xn + a modulo n and some suitably
chosen polynomials x r − 1 with small r .

A suitable r = O(ln6 n) can be found. For this r , at most
2
√

r ln n values of a need to be tried.

The original AKS algorithm runs in O (̃ln12 n) time.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

The Agarwal-Kayal-Saxena (AKS) Test

Deterministic test, unconditionally polynomial-time.

(x + a)n ≡ xn + a (modn) (for every a) if and only if n is
prime.

Compute (x + a)n and xn + a modulo n and some suitably
chosen polynomials x r − 1 with small r .

A suitable r = O(ln6 n) can be found. For this r , at most
2
√

r ln n values of a need to be tried.

The original AKS algorithm runs in O (̃ln12 n) time.

Lenstra and Pomerance’s improvement reduces the
running time to O (̃ln6 n).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).
A random search quickly gives t-bit primes. O(t) random
values need to be tried. Performance increases several
times by using sieving techniques.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).
A random search quickly gives t-bit primes. O(t) random
values need to be tried. Performance increases several
times by using sieving techniques.
Random primes are not necessarily secure for
cryptographic use.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).
A random search quickly gives t-bit primes. O(t) random
values need to be tried. Performance increases several
times by using sieving techniques.
Random primes are not necessarily secure for
cryptographic use.
A safe prime p is an odd prime with (p − 1)/2 prime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).
A random search quickly gives t-bit primes. O(t) random
values need to be tried. Performance increases several
times by using sieving techniques.
Random primes are not necessarily secure for
cryptographic use.
A safe prime p is an odd prime with (p − 1)/2 prime.
A strong prime p is an odd prime, such that

p − 1 has a large prime divisor (call it q),
p + 1 has a large prime divisor, and
q − 1 has a large prime divisor.

Here, “large” means “of bit length > 160”.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

GCD
Modular Exponentiation
Primality Testing

How to Choose Cryptographic Primes?

Primes are abundant in nature (N).
A random search quickly gives t-bit primes. O(t) random
values need to be tried. Performance increases several
times by using sieving techniques.
Random primes are not necessarily secure for
cryptographic use.
A safe prime p is an odd prime with (p − 1)/2 prime.
A strong prime p is an odd prime, such that

p − 1 has a large prime divisor (call it q),
p + 1 has a large prime divisor, and
q − 1 has a large prime divisor.

Here, “large” means “of bit length > 160”.
The search for random primes can be modified to generate
safe and strong primes.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

The most practical finite fields are the prime fields Fp and
the fields F2n of characteristic 2.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

The most practical finite fields are the prime fields Fp and
the fields F2n of characteristic 2.

The arithmetic of Fp is integer arithmetic modulo p.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

The most practical finite fields are the prime fields Fp and
the fields F2n of characteristic 2.

The arithmetic of Fp is integer arithmetic modulo p.

The arithmetic of F2n = F2(θ) (with f (θ) = 0) is polynomial
arithmetic modulo 2 and the defining polynomial f (x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

The most practical finite fields are the prime fields Fp and
the fields F2n of characteristic 2.

The arithmetic of Fp is integer arithmetic modulo p.

The arithmetic of F2n = F2(θ) (with f (θ) = 0) is polynomial
arithmetic modulo 2 and the defining polynomial f (x).

In cryptographic protocols, the extension degrees n may
be several thousands.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Arithmetic in Finite Fields

The most practical finite fields are the prime fields Fp and
the fields F2n of characteristic 2.

The arithmetic of Fp is integer arithmetic modulo p.

The arithmetic of F2n = F2(θ) (with f (θ) = 0) is polynomial
arithmetic modulo 2 and the defining polynomial f (x).

In cryptographic protocols, the extension degrees n may
be several thousands.

It is necessary to study the arithmetic of such big
polynomials.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.
Euclidean division is again a shift-and-subtract algorithm.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.
Euclidean division is again a shift-and-subtract algorithm.
GCD can be computed by repeated Euclidean division.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.
Euclidean division is again a shift-and-subtract algorithm.
GCD can be computed by repeated Euclidean division.
Modular inverse is available from extended gcd
computation.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Polynomial Arithmetic

The coefficients of polynomials over F2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.
Euclidean division is again a shift-and-subtract algorithm.
GCD can be computed by repeated Euclidean division.
Modular inverse is available from extended gcd
computation.

Running times: Let the operands be f (x), g(x) ∈ F2[x].
f (x) + g(x) O(max(deg f (x), deg g(x))

f (x)g(x) O(deg f (x) × deg g(x))
f (x) quotg(x) and/or f (x) remg(x) O(deg f (x) × deg g(x))

gcd(f (x), g(x)) O(max(deg f (x), deg g(x))3)

g(x)−1 (mod f (x)) O(max(deg f (x), deg g(x))3)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Testing irreducibility of f (x) ∈ F2[x] with deg f (x) = n:

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Testing irreducibility of f (x) ∈ F2[x] with deg f (x) = n:

For i = 1, 2, 3, . . . , ⌊n/2⌋, compute di(x) = gcd(x2i−x , f (x)).
If all di(x) = 1, declare f (x) as irreducible.
If some di(x) 6= 1, declare f (x) as reducible.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Testing irreducibility of f (x) ∈ F2[x] with deg f (x) = n:

For i = 1, 2, 3, . . . , ⌊n/2⌋, compute di(x) = gcd(x2i−x , f (x)).
If all di(x) = 1, declare f (x) as irreducible.
If some di(x) 6= 1, declare f (x) as reducible.

x2i
are computed iteratively modulo f (x) in order to keep their

degree low (that is, less than deg f (x)).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Testing irreducibility of f (x) ∈ F2[x] with deg f (x) = n:

For i = 1, 2, 3, . . . , ⌊n/2⌋, compute di(x) = gcd(x2i−x , f (x)).
If all di(x) = 1, declare f (x) as irreducible.
If some di(x) 6= 1, declare f (x) as reducible.

x2i
are computed iteratively modulo f (x) in order to keep their

degree low (that is, less than deg f (x)).

Locating random irreducible polynomial of degree n:

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Irreducible Polynomials

Representation of F2n requires an irreducible polynomial.

Testing irreducibility of f (x) ∈ F2[x] with deg f (x) = n:

For i = 1, 2, 3, . . . , ⌊n/2⌋, compute di(x) = gcd(x2i−x , f (x)).
If all di(x) = 1, declare f (x) as irreducible.
If some di(x) 6= 1, declare f (x) as reducible.

x2i
are computed iteratively modulo f (x) in order to keep their

degree low (that is, less than deg f (x)).

Locating random irreducible polynomial of degree n:

Generate random polynomials of degree n,
until an irreducible polynomial is generated.

The density of irreducible polynomials is about 1/n in the set of
all monic polynomials in F2[x] of degree n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Primitive elements

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Primitive elements

F
∗

q is cyclic.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Primitive elements

F
∗

q is cyclic.

The density of primitive elements in F∗

q is
φ(q − 1)/(q − 1) > 1/(6 ln ln(q − 1)) for q > 7.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Primitive elements

F
∗

q is cyclic.

The density of primitive elements in F∗

q is
φ(q − 1)/(q − 1) > 1/(6 ln ln(q − 1)) for q > 7.

Checking for primitive elements requires the factorization
of q − 1. Let q − 1 = pe1

1 pe2
2 · · · pet

t .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Primitive elements

F
∗

q is cyclic.

The density of primitive elements in F∗

q is
φ(q − 1)/(q − 1) > 1/(6 ln ln(q − 1)) for q > 7.

Checking for primitive elements requires the factorization
of q − 1. Let q − 1 = pe1

1 pe2
2 · · · pet

t .

An element a ∈ F
∗

q is primitive if and only if a(q−1)/pi 6= 1 for
all i = 1, 2, . . . , t .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

For fast implementation, one takes q = p ∈ P or q = 2n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

For fast implementation, one takes q = p ∈ P or q = 2n.

One needs generators of F
∗

q. This requires the
factorization of q − 1. This is an impractical requirement.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

For fast implementation, one takes q = p ∈ P or q = 2n.

One needs generators of F
∗

q. This requires the
factorization of q − 1. This is an impractical requirement.

Elements of F∗

q with prime orders r > 2160 often suffice.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

For fast implementation, one takes q = p ∈ P or q = 2n.

One needs generators of F
∗

q. This requires the
factorization of q − 1. This is an impractical requirement.

Elements of F∗

q with prime orders r > 2160 often suffice.

For the field Fp, the prime p can be so chosen that p − 1
has a large prime divisor r . Safe and strong primes may be
used.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Good Finite Fields for Cryptography

Cryptosystems based on the finite field discrete logarithm
problem use Fq with |q| > 1024.

For fast implementation, one takes q = p ∈ P or q = 2n.

One needs generators of F
∗

q. This requires the
factorization of q − 1. This is an impractical requirement.

Elements of F∗

q with prime orders r > 2160 often suffice.

For the field Fp, the prime p can be so chosen that p − 1
has a large prime divisor r . Safe and strong primes may be
used.

For F2n , we have no choice but to factor 2n − 1. For some
values of n, a complete or partial knowledge of the
factorization of 2n − 1 may aid the choice of a suitable r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Suitably Large Prime Factors of 2n − 1

Examples

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Suitably Large Prime Factors of 2n − 1

Examples

21279 − 1 = r is a 1279-bit prime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Suitably Large Prime Factors of 2n − 1

Examples

21279 − 1 = r is a 1279-bit prime.

21223 − 1 = 2447 × 31799 × 439191833149903 × r , where r is
an 1149-bit prime.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Suitably Large Prime Factors of 2n − 1

Examples

21279 − 1 = r is a 1279-bit prime.

21223 − 1 = 2447 × 31799 × 439191833149903 × r , where r is
an 1149-bit prime.

21489 − 1 = 71473 × 27201739919 × 51028917464688167 ×
13822844053570368983 × r × m, where r =
122163266112900081138309323835006063277267764895871
is a 167-bit prime, and m is an 1153-bit composite integer with
unknown factorization.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Since r is prime, every non-identity element of H is a
generator of H.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Since r is prime, every non-identity element of H is a
generator of H.

Search for α

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Since r is prime, every non-identity element of H is a
generator of H.

Search for α

Choose β randomly from F
∗

q.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Since r is prime, every non-identity element of H is a
generator of H.

Search for α

Choose β randomly from F
∗

q.

Set α = β(q−1)/r .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Elements of Large Orders in F
∗
q

Let r be a prime divisor of q − 1 with |r | > 160.
Goal: To obtain an element α ∈ F

∗

q with ordα = r .

Mathematical facts

F
∗

q is cyclic and contains a unique subgroup H of order r .

An element α of F
∗

q is in H if and only if αr = 1.

Since r is prime, every non-identity element of H is a
generator of H.

Search for α

Choose β randomly from F
∗

q.

Set α = β(q−1)/r .

If α 6= 1, return α, else choose another β and repeat.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.
A common approach is to use the following three steps.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.
A common approach is to use the following three steps.

Square-free factorization (SFF): Express f (x) as a
product of square-free polynomials.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.
A common approach is to use the following three steps.

Square-free factorization (SFF): Express f (x) as a
product of square-free polynomials.
Distinct-degree factorization (DDF): Let f (x) be
square-free. Express f (x) = f1(x)f2(x) · · · fd (x), where fi(x)
is the product of irreducible factors of f (x) of degree i.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.
A common approach is to use the following three steps.

Square-free factorization (SFF): Express f (x) as a
product of square-free polynomials.
Distinct-degree factorization (DDF): Let f (x) be
square-free. Express f (x) = f1(x)f2(x) · · · fd (x), where fi(x)
is the product of irreducible factors of f (x) of degree i.
Equal-degree factorization (EDF): Let f (x) be a
square-free product of irreducible polynomials of the same
known degree. Determine all these irreducible factors.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Factoring Polynomials Over Finite Fields

To factor f (x) ∈ Fq[x] with deg f (x) = d . Let q = pn.

No deterministic polynomial-time algorithm is known.

Polynomial-time randomized algorithms are known.
A common approach is to use the following three steps.

Square-free factorization (SFF): Express f (x) as a
product of square-free polynomials.
Distinct-degree factorization (DDF): Let f (x) be
square-free. Express f (x) = f1(x)f2(x) · · · fd (x), where fi(x)
is the product of irreducible factors of f (x) of degree i.
Equal-degree factorization (EDF): Let f (x) be a
square-free product of irreducible polynomials of the same
known degree. Determine all these irreducible factors.

The only probabilistic part is EDF.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Square-free Factorization (SFF)

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Square-free Factorization (SFF)

Compute the formal derivative f ′(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Square-free Factorization (SFF)

Compute the formal derivative f ′(x).

If f ′(x) = 0, then f (x) must be of the form

a1xpe1 + a2xpe2 + · · · + akxpek .

Write f (x) = g(x)p, where

g(x) = apn−1

1 xe1 + apn−1

2 xe2 + · · · + apn−1

k xek .

Recursively compute the SFF of g(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Square-free Factorization (SFF)

Compute the formal derivative f ′(x).

If f ′(x) = 0, then f (x) must be of the form

a1xpe1 + a2xpe2 + · · · + akxpek .

Write f (x) = g(x)p, where

g(x) = apn−1

1 xe1 + apn−1

2 xe2 + · · · + apn−1

k xek .

Recursively compute the SFF of g(x).

If f ′(x) 6= 0, then f (x)/ gcd(f (x), f ′(x)) is square-free.

Recursively compute the SFF of gcd(f (x), f ′(x)).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .
For i = 1, 2, 3, . . ., do the following:

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .
For i = 1, 2, 3, . . ., do the following:

Compute gi(x) ≡ xqi − x (mod f (x)).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .
For i = 1, 2, 3, . . ., do the following:

Compute gi(x) ≡ xqi − x (mod f (x)).
Compute fi(x) = gcd(f (x), gi (x)).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .
For i = 1, 2, 3, . . ., do the following:

Compute gi(x) ≡ xqi − x (mod f (x)).
Compute fi(x) = gcd(f (x), gi (x)).
Replace f (x) by f (x)/fi(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Distinct-degree Factorization (DDF)

Let f (x) ∈ Fq = Fpn be a square-free polynomial of degree d .
Goal: To write f (x) = f1(x)f2(x) · · · fd (x), where fi(x) is the
product of irreducible factors of f (x) of degree i .

xqi − x is the product of all monic irreducible polynomials
of Fq[x] with degrees dividing i .

gcd(f (x), xqi − x) is the product of all irreducible factors of
f (x) with degrees dividing i .

gcd(f (x)/(f1(x)f2(x) · · · fi−1(x)), xqi − x) is the product of all
irreducible factors of f (x) of degree equal to i .
For i = 1, 2, 3, . . ., do the following:

Compute gi(x) ≡ xqi − x (mod f (x)).
Compute fi(x) = gcd(f (x), gi (x)).
Replace f (x) by f (x)/fi(x).
If f (x) = 1, break.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

g(x)qδ − g(x) = g(x)(g(x)(q
δ
−1)/2 − 1)(g(x)(q

δ
−1)/2 + 1).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

g(x)qδ − g(x) = g(x)(g(x)(q
δ
−1)/2 − 1)(g(x)(q

δ
−1)/2 + 1).

Compute h(x) = gcd(f (x), g(x)(q
δ
−1)/2 − 1).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

g(x)qδ − g(x) = g(x)(g(x)(q
δ
−1)/2 − 1)(g(x)(q

δ
−1)/2 + 1).

Compute h(x) = gcd(f (x), g(x)(q
δ
−1)/2 − 1).

h(x) is a non-trivial factor of f (x) with probability 1/2.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

g(x)qδ − g(x) = g(x)(g(x)(q
δ
−1)/2 − 1)(g(x)(q

δ
−1)/2 + 1).

Compute h(x) = gcd(f (x), g(x)(q
δ
−1)/2 − 1).

h(x) is a non-trivial factor of f (x) with probability 1/2.

If a non-trivial split is obtained, recursively compute the
EDF of h(x) and f (x)/h(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (EDF)

Let f (x) ∈ Fq [x] be a square-free polynomial of degree d with
each irreducible factor of degree δ.

Case 1: q is odd.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ − x | g(x)qδ − g(x), so f (x) | g(x)qδ − g(x).

g(x)qδ − g(x) = g(x)(g(x)(q
δ
−1)/2 − 1)(g(x)(q

δ
−1)/2 + 1).

Compute h(x) = gcd(f (x), g(x)(q
δ
−1)/2 − 1).

h(x) is a non-trivial factor of f (x) with probability 1/2.

If a non-trivial split is obtained, recursively compute the
EDF of h(x) and f (x)/h(x).

Otherwise, choose a different g(x) and repeat the above
steps.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

g(x)qδ

+ g(x) = g1(x)(g1(x) + 1), where

g1(x) = g(x)2nδ−1
+ g(x)2nδ−2

+ · · · + g(x)2 + g(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

g(x)qδ

+ g(x) = g1(x)(g1(x) + 1), where

g1(x) = g(x)2nδ−1
+ g(x)2nδ−2

+ · · · + g(x)2 + g(x).

Compute h(x) = gcd(f (x), g1(x)).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

g(x)qδ

+ g(x) = g1(x)(g1(x) + 1), where

g1(x) = g(x)2nδ−1
+ g(x)2nδ−2

+ · · · + g(x)2 + g(x).

Compute h(x) = gcd(f (x), g1(x)).

h(x) is a non-trivial factor of f (x) with probability 1/2.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

g(x)qδ

+ g(x) = g1(x)(g1(x) + 1), where

g1(x) = g(x)2nδ−1
+ g(x)2nδ−2

+ · · · + g(x)2 + g(x).

Compute h(x) = gcd(f (x), g1(x)).

h(x) is a non-trivial factor of f (x) with probability 1/2.

If a non-trivial split is obtained, recursively compute the
EDF of h(x) and f (x)/h(x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Equal-degree Factorization (contd.)

Case 2: q = 2n.

Take a random polynomial g(x) ∈ Fq[x] of small degree.

xqδ

+ x | g(x)qδ

+ g(x), so f (x) | g(x)qδ

+ g(x).

g(x)qδ

+ g(x) = g1(x)(g1(x) + 1), where

g1(x) = g(x)2nδ−1
+ g(x)2nδ−2

+ · · · + g(x)2 + g(x).

Compute h(x) = gcd(f (x), g1(x)).

h(x) is a non-trivial factor of f (x) with probability 1/2.

If a non-trivial split is obtained, recursively compute the
EDF of h(x) and f (x)/h(x).

Otherwise, choose a different g(x) and repeat the above
steps.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Use a special case of the polynomial factoring algorithm.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Use a special case of the polynomial factoring algorithm.

Compute f1(x) = gcd(f (x), xq − x), where xq − x is
computed modulo f (x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Use a special case of the polynomial factoring algorithm.

Compute f1(x) = gcd(f (x), xq − x), where xq − x is
computed modulo f (x).

f1(x) is the product of all (pairwise distinct) linear factors of
f (x), that is, f1(x) has exactly the same roots as f (x).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Use a special case of the polynomial factoring algorithm.

Compute f1(x) = gcd(f (x), xq − x), where xq − x is
computed modulo f (x).

f1(x) is the product of all (pairwise distinct) linear factors of
f (x), that is, f1(x) has exactly the same roots as f (x).

Call EDF on f1(x) with δ = 1.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Polynomial Arithmetic
Good Finite Fields for Cryptography
Polynomial Factoring and Root Finding

Finding Roots of Polynomials Over Finite Fields

Let f (x) ∈ Fq [x] be a non-constant polynomial.
Goal: To compute all the roots of f (x) in Fq.

Use a special case of the polynomial factoring algorithm.

Compute f1(x) = gcd(f (x), xq − x), where xq − x is
computed modulo f (x).

f1(x) is the product of all (pairwise distinct) linear factors of
f (x), that is, f1(x) has exactly the same roots as f (x).

Call EDF on f1(x) with δ = 1.

In the EDF, one typically chooses g(x) = x + b for random
b ∈ Fq.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over Fq.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over Fq.

Each finite point in E(Fq) is represented by a pair of field
elements and takes O(log q) space.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over Fq.

Each finite point in E(Fq) is represented by a pair of field
elements and takes O(log q) space.

Point addition and doubling require a few operations in the
field Fq.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over Fq.

Each finite point in E(Fq) is represented by a pair of field
elements and takes O(log q) space.

Point addition and doubling require a few operations in the
field Fq.

Computation of mP for m ∈ N and P ∈ E(Fq) is the
additive analog of modular exponentiation and can be
performed by a repeated double-and-add algorithm.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over Fq.

Each finite point in E(Fq) is represented by a pair of field
elements and takes O(log q) space.

Point addition and doubling require a few operations in the
field Fq.

Computation of mP for m ∈ N and P ∈ E(Fq) is the
additive analog of modular exponentiation and can be
performed by a repeated double-and-add algorithm.

A random finite point (h, k) ∈ E(Fq) can be computed by
first choosing h and then solving a quadratic equation in k .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

|E(Fq)| = q + 1 − t with −2
√

q 6 t 6 2
√

q.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

|E(Fq)| = q + 1 − t with −2
√

q 6 t 6 2
√

q.

Choose small primes p1, p2, . . . , pr with p1p2 · · · pr > 4
√

q.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

|E(Fq)| = q + 1 − t with −2
√

q 6 t 6 2
√

q.

Choose small primes p1, p2, . . . , pr with p1p2 · · · pr > 4
√

q.

Determine t modulo each pi .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

|E(Fq)| = q + 1 − t with −2
√

q 6 t 6 2
√

q.

Choose small primes p1, p2, . . . , pr with p1p2 · · · pr > 4
√

q.

Determine t modulo each pi .

Combine these values by CRT.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Point Counting

For selecting cryptographically good elliptic curves E over Fq,
we need to count the size of E(Fq).

The SEA (Schoof-Elkies-Atkins) algorithm is used.

The algorithm is reasonably efficient for prime fields.

|E(Fq)| = q + 1 − t with −2
√

q 6 t 6 2
√

q.

Choose small primes p1, p2, . . . , pr with p1p2 · · · pr > 4
√

q.

Determine t modulo each pi .

Combine these values by CRT.

This gives a unique value of t in the range
−2

√
q 6 t 6 2

√
q.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Determine |E(Fq)|.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Determine |E(Fq)|.
If E is anomalous or supersingular, choose another E and
repeat.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Determine |E(Fq)|.
If E is anomalous or supersingular, choose another E and
repeat.

Factor |E(Fq)|, and check whether E has a point of prime
order r > 2160.

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Determine |E(Fq)|.
If E is anomalous or supersingular, choose another E and
repeat.

Factor |E(Fq)|, and check whether E has a point of prime
order r > 2160.

If so, return E .

Public-key Cryptography: Theory and Practice Abhijit Das

Integer Arithmetic
Arithmetic in Finite Fields

Arithmetic of Elliptic Curves

Point Counting
Good Elliptic Curves for Cryptography

Good Elliptic Curves for Cryptography

First, choose a ground field Fq. Security requirements
demand |q| in the range 160–300 bits.

Randomly select an elliptic curve E over Fq.

Determine |E(Fq)|.
If E is anomalous or supersingular, choose another E and
repeat.

Factor |E(Fq)|, and check whether E has a point of prime
order r > 2160.

If so, return E .

Otherwise, choose another E and repeat.

Public-key Cryptography: Theory and Practice Abhijit Das

	Integer Arithmetic
	GCD
	Modular Exponentiation
	Primality Testing

	Arithmetic in Finite Fields
	Polynomial Arithmetic
	Good Finite Fields for Cryptography
	Polynomial Factoring and Root Finding

	Arithmetic of Elliptic Curves
	Point Counting
	Good Elliptic Curves for Cryptography

