Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 3: Algebraic and Number-theoretic Computations

Integer Arithmetic

- In cryptography, we deal with very large integers with full precision.
- Standard data types in programming languages cannot handle big integers.
- Special data types (like arrays of integers) are needed.
- The arithmetic routines on these specific data types have to be implemented.
- One may use an available library (like GMP).
- Size of an integer n is $\mathrm{O}(\log |n|)$.

Basic Integer Operations

Let a, b be two integer operands.
High-school algorithms

Operation	Running time
$a+b$	$\mathrm{O}(\max (\log a, \log b))$
$a-b$	$\mathrm{O}(\max (\log a, \log b))$
$a b$	$\mathrm{O}((\log a)(\log b))$
a^{2}	$\mathrm{O}\left(\log ^{2} a\right)$
$(a$ quot $b)$ and/or $(\operatorname{arem} b)$	$\mathrm{O}((\log a)(\log b))$

Fast multiplication: Assume a, b are of the same size s.

- Karatsuba multiplication: $\mathrm{O}\left(s^{1.585}\right)$
- FFT multiplication: $\mathrm{O}(s \log s)$
[not frequently used in cryptography]

Binary GCD

To compute the GCD of two positive integers a and b.
Write $a=2^{\alpha} a^{\prime}$ and $b=2^{\beta} b^{\prime}$ with a^{\prime}, b^{\prime} odd.
$\operatorname{gcd}(a, b)=2^{\min (\alpha, \beta)} \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$.
Assume that both a, b are odd and $a \geqslant b$.

- $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$.
- Write $a-b=2^{\gamma} c$ with $\gamma \geqslant 1$ and c odd.
- Then, $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, b)$.
- Repeat until one operand reduces to 0 .

Running time of Euclidean gcd: $\mathrm{O}\left(\max (\log a, \log b)^{3}\right)$.
Running time of binary gcd: $\mathrm{O}\left(\max (\log a, \log b)^{2}\right)$.

Extended Euclidean GCD

To compute the GCD of two positive integers a and b.
Define three sequences r_{i}, u_{i}, v_{i}.
Initialize: $\left[\begin{array}{lll}r_{0}=a, & u_{0}=1, & v_{0}=0, \\ r_{1}=b, & u_{1}=0, & v_{1}=1 .\end{array}\right]$
Iteration: For $i=2,3,4, \ldots$, do the following:

- Compute the quotient $q_{i}=r_{i-2}$ quot r_{i-1}.
- Compute $r_{i}=r_{i-2}-q_{i} r_{i-1}$.
- Compute $u_{i}=u_{i-2}-q_{i} u_{i-1}$.
- Compute $v_{i}=v_{i-2}-q_{i} v_{i-1}$.
- Break if $r_{i}=0$.

Extended Euclidean GCD (contd.)

- We maintain the invariance $u_{i} a+v_{i} b=r_{i}$ for all i.
- Suppose the loop terminates for $i=j$ (that is, $r_{j}=0$).
- $\operatorname{gcd}(a, b)=r_{j-1}=u_{j-1} a+v_{j-1} b$.
- One needs to remember the r, u, v values only from the two previous iterations.
- One can compute only the r and u sequences in the loop.
- One gets $v_{j-1}=\left(r_{j-1}-u_{j-1} a\right) / b$.
- The binary gcd algorithm can be similarly modified so as to compute the u and v sequences maintaining the invariant $u_{i} a+v_{i} b=r_{i}$ for all i.

Extended Euclidean GCD (Example)

To compute $\operatorname{gcd}(78,21)=78 u+21 v$.

i	q_{i}	r_{i}	u_{i}	v_{i}	$u_{i} a+v_{i} b$
0	-	78	1	0	78
1	-	21	0	1	21
2	3	15	1	-3	15
3	1	6	-1	4	6
4	2	3	3	-11	3
5	2	0	-7	26	0

Thus, $\operatorname{gcd}(78,21)=3=3 \times 78+(-11) \times 21$.

Modular Integer Arithmetic

Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.

- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$
- Subtraction: $a-b(\bmod n)= \begin{cases}a-b & \text { if } a \geqslant b \\ a-b+n & \text { if } a<b\end{cases}$
- Multiplication: $a b(\bmod n)=(a b)$ rem n.
- Inverse: $a \in \mathbb{Z}_{n}^{*}$ is invertible if and only if $\operatorname{gcd}(a, n)=1$. But then $1=u a+v n$ for some integers u, v. Take $a^{-1} \equiv u(\bmod n)$.

Example of Modular Arithmetic

Take $n=257, a=127, b=217$.

- Addition: $a+b=344>257$, so

$$
a+b \equiv 344-257 \equiv 87(\bmod n)
$$

- Subtraction: $a-b=-90<0$, so $a-b \equiv-90+257 \equiv 167(\bmod n)$.
- Multiplication:

$$
a b \equiv(127 \times 217) \text { rem } 257 \equiv 27559 \text { rem } 257 \equiv 60(\bmod n)
$$

- Inverse: $\operatorname{gcd}(b, n)=1=(-45) b+38 n$, so $b^{-1} \equiv-45+257 \equiv 212(\bmod n)$.
- Division:

$$
a / b \equiv a b^{-1} \equiv(127 \times 212) \text { rem } 257 \equiv 196(\bmod n)
$$

Modular Exponentiation: Slow Algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
a^{2} & \equiv a \times a \equiv 195(\bmod n), \\
a^{3} & \equiv a^{2} \times a \equiv 195 \times 127 \equiv 93(\bmod n), \\
a^{4} & \equiv a^{3} \times a \equiv 93 \times 127 \equiv 246(\bmod n), \\
& \cdots \\
a^{216} & \equiv a^{215} \times a \equiv 131 \times 127 \equiv 189(\bmod n), \\
a^{217} & \equiv a^{216} \times a \equiv 189 \times 127 \equiv 102(\bmod n)
\end{aligned}
$$

Right-to-left Modular Exponentiation

To compute $a^{e}(\bmod n)$.

- Binary representation: $e=\left(e_{l-1} e_{I-2} \ldots e_{1} e_{0}\right)_{2}=$ $e_{I-1} 2^{I-1}+e_{I-2} 2^{I-2}+\cdots+e_{1} 2^{1}+e_{0} 2^{0}$.
- $a^{e} \equiv\left(a^{2^{l-1}}\right)^{e_{l-1}}\left(a^{2^{-2}}\right)^{e_{l-2}} \cdots\left(a^{2^{1}}\right)^{e_{1}}\left(a^{2^{0}}\right)^{e_{0}}(\bmod n)$.
- Compute a, $a^{2}, a^{2^{2}}, a^{2^{3}}, \ldots, a^{2^{l-1}}$ and multiply those $a^{2^{i}}$ modulo n for which $e_{i}=1$. Also for $i \geqslant 1$, we have $a^{2^{i}} \equiv\left(a^{2^{i-1}}\right)^{2}(\bmod n)$.

Right-to-left Modular Exponentiation (Example)

Take $n=257, a=127, e=217$.

- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e} \equiv a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2} \equiv 195(\bmod n), a^{2^{2}} \equiv(195)^{2} \equiv 246(\bmod n)$, $a^{2^{3}} \equiv(246)^{2} \equiv 121(\bmod n), a^{2^{4}} \equiv(121)^{2} \equiv 249(\bmod n)$, $a^{2^{5}} \equiv(249)^{2} \equiv 64(\bmod n), a^{2^{6}} \equiv(64)^{2} \equiv 241(\bmod n)$ and $a^{2^{7}} \equiv(241)^{2} \equiv 256(\bmod n)$.
- $a^{e} \equiv 256 \times 241 \times 249 \times 121 \times 127 \equiv 102(\bmod n)$.

Left-to-right Modular Exponentiation

To compute $a^{e}(\bmod n)$.

- Binary representation: $e=\left(e_{I-1} e_{I-2} \ldots e_{1} e_{0}\right)_{2}=$ $e_{I-1} 2^{I-1}+e_{I-2} 2^{I-2}+\cdots+e_{1} 2^{1}+e_{0} 2^{0}$.
- Define $\epsilon_{i}=\left(e_{I-1} e_{I-2} \ldots e_{i}\right)_{2}$ for $i=I, I-1, I-2, \ldots, 0$.
- $\epsilon_{I}=0$, and $\epsilon_{i}=2 \epsilon_{i+1}+e_{i}$ for $i<l$.
- $a^{\epsilon_{I}} \equiv 1(\bmod n)$ and $a^{\epsilon_{i}} \equiv\left(a^{\epsilon_{i+1}}\right)^{2} \times a^{e_{i}}(\bmod n)$.
- Finally, $\epsilon_{0}=e$, so output $a^{\epsilon_{0}}(\bmod n)$.
- Initialize product to 1 (corresponds to $i=I$).
- For $i=I-1, I-2, \ldots, 1,0$, square product. If $e_{i}=1$, then multiply product by a.
- Square-and-(conditionally)-multiply algorithm

Left-to-right Modular Exponentiation (Example)

Take $n=257, a=127$ and $e=217$.
We have the binary representation: $\boldsymbol{e}=(11011001)_{2}$.

i	e_{i}	ϵ_{i}	$a^{\epsilon_{i}}(\bmod n)$
8	-	0	1
7	1	$(1)_{2}=1$	$1^{2} \times 127 \equiv 127(\bmod n)$
6	1	$(11)_{2}=3$	$127^{2} \times 127 \equiv 93(\bmod n)$
5	0	$(110)_{2}=6$	$93^{2} \equiv 168(\bmod n)$
4	1	$(1101)_{2}=13$	$168^{2} \times 127 \equiv 69(\bmod n)$
3	1	$(11011)_{2}=27$	$69^{2} \times 127 \equiv 183(\bmod n)$
2	0	$(110110)_{2}=54$	$183^{2} \equiv 79(\bmod n)$
1	0	$(1101100)_{2}=108$	$79^{2} \equiv 73(\bmod n)$
0	1	$(11011001)_{2}=217$	$73^{2} \times 127 \equiv 102(\bmod n)$

Primality Testing

- A fundamental problem in computational number theory.
- Probabilistic (that is, randomized) algorithms solve the problem reasonably efficiently with arbitrarily small probability of error.
- Some of these probabilistic algorithms can be converted to deterministic polynomial-time algorithms under certain unproven assumptions (Extended Riemann Hypothesis).
- The first known deterministic polynomial-time algorithm with proofs not dependent on any conjectures is from Agarwal, Kayal and Saxena (2002).
- The AKS algorithm is not yet practical.

Fermat Test

- Fermat's little theorem: If n is prime, then $a^{n-1} \equiv 1(\bmod n)$ for all a coprime to n.
- The converse is not true: $6^{35-1} \equiv\left(6^{2}\right)^{17} \equiv 1(\bmod 35)$.
- However, $8^{35-1} \equiv 29 \not \equiv 1(\bmod 35)$. So, 6 fails to prove the compositeness of 35 , but 8 proves it.
- An integer n is called a pseudoprime to a base a with $\operatorname{gcd}(a, n)=1$, if $a^{n-1} \equiv 1(\bmod n)$.
- A prime is a pseudoprime to every coprime base.
- A prime has no witnesses to its compositeness.
- If a composite integer n is not a pseudoprime to some base, then n is not a pseudoprime to at least half of the bases in \mathbb{Z}_{n}^{*}.
- In that case, the density of witnesses for the compositeness of n is at least $1 / 2$.

Fermat Test (contd.)

- Choose t random bases $a_{1}, a_{2}, \ldots, a_{t} \in \mathbb{Z}_{n}^{*}$.
- If $a_{i}^{n-1} \equiv 1(\bmod n)$ for all i, declare n as prime.
- If $a_{i}^{n-1} \not \equiv 1(\bmod n)$ for some i, declare n as composite.
- If this test declares n as composite, there is no error.
- If this test declares n as prime, there may be an error.
- If n has (at least) one witness for its compositeness, then the probability of error is $\leqslant 1 / 2^{t}$.
- By choosing t suitably, this probability can be made very low.

Carmichael Numbers

There exist composite integers which have no (coprime) witnesses of compositeness.

These are called Carmichael numbers.

- Although not common, Carmichael numbers are infinite in number.
- The smallest Carmichael number is $561=3 \times 11 \times 17$.
- A Carmichael number must be odd, square-free, and the product of at least three (distinct) primes.
- For every prime divisor p of a Carmichael number n, we must have $(p-1) \mid(n-1)$.

Euler (or Solovay-Strassen) Test

An integer $n \in \mathbb{N}$ is called an Euler pseudoprime or a Solovay-Strassen pseudoprime to base a (with $\operatorname{gcd}(a, n)=1$) if $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)(\bmod n)$, where $\left(\frac{a}{n}\right)$ is the Jacobi symbol.

- If n is an Euler pseudoprime to base a, then n is also a (Fermat) pseudoprime to base a. The converse is not true.
- By Euler's criterion, a prime is Euler pseudoprime to all coprime bases.
- A composite integer n is Euler pseudoprime to at most half the bases in \mathbb{Z}_{n}^{*}.
- Even Carmichael numbers possess compositeness witnesses under the revised criterion.
Example: $5^{(561-1) / 2} \equiv 67(\bmod 561)$, whereas $\left(\frac{5}{561}\right)=1$.

Miller-Rabin Test

- An odd prime has exactly two modular square roots of 1 .
- An odd composite integer which is not a prime power has at least four modular square roots of 1 .
- Suppose $a^{n-1} \equiv 1(\bmod n)$ (with $\left.\operatorname{gcd}(a, n)=1\right)$. Write $n-1=2^{r} n^{\prime}$ with n^{\prime} odd and $r \in \mathbb{N}$.
- Consider the sequence $b_{i} \equiv\left(a^{n^{\prime}}\right)^{2^{i}}(\bmod n)$ for $i=0,1,2, \ldots, r$.
- We have $b_{r} \equiv 1(\bmod n)$.

Let j be the smallest index with $b_{j} \equiv 1(\bmod n)$. Suppose $j>0$. Then b_{j-1} is a modular square root of 1 .

- If $b_{j-1} \not \equiv-1(\bmod n)$, then n is composite.
- Compute b_{0} by modular exponentiation, and then compute $b_{i} \equiv b_{i-1}^{2}(\bmod n)$ for $i=1,2, \ldots$.

Miller-Rabin Test (contd.)

- n is called a Miller-Rabin pseudoprime or a strong pseudoprime to the base a, if $b_{0} \equiv 1(\bmod n)$ or $b_{j-1} \equiv-1(\bmod n)$ for some $j \in\{1,2, \ldots, r\}$.
- A strong pseudoprime is also an Euler pseudoprime (but not conversely) and so a Fermat pseudoprime.
- If n is an odd composite integer (but not a prime power), then n is a strong pseudoprime to at most $1 / 4$-th of the bases in \mathbb{Z}_{n}^{*}.
- This is true even for Carmichael numbers.

Example: $n=561=2^{4} \times 35+1$, so $r=4$ and $n^{\prime}=35$.
For the base $a=2$, we have:
$b_{0} \equiv a^{n^{\prime}} \equiv 263(\bmod n), b_{1} \equiv a^{2 n^{\prime}} \equiv 166(\bmod n)$,
$b_{2} \equiv a^{2^{2} n^{\prime}} \equiv 67(\bmod n), b_{3} \equiv a^{2^{3} n^{\prime}} \equiv 1(\bmod n)$.
Thus, 67 is a non-trivial square root of 1 modulo 561.

The Agarwal-Kayal-Saxena (AKS) Test

- Deterministic test, unconditionally polynomial-time.
- $(x+a)^{n} \equiv x^{n}+a(\bmod n)$ (for every a) if and only if n is prime.
- Compute $(x+a)^{n}$ and $x^{n}+$ a modulo n and some suitably chosen polynomials $x^{r}-1$ with small r.
- A suitable $r=\mathrm{O}\left(\mathrm{In}^{6} n\right)$ can be found. For this r, at most $2 \sqrt{r} \ln n$ values of a need to be tried.
- The original AKS algorithm runs in $\mathrm{O}^{\sim}\left(\mathrm{In}^{12} n\right)$ time.
- Lenstra and Pomerance's improvement reduces the running time to $\mathrm{O}^{\sim}\left(\mathrm{ln}^{6} n\right)$.

How to Choose Cryptographic Primes?

- Primes are abundant in nature (\mathbb{N}).
- A random search quickly gives t-bit primes. $\mathrm{O}(t)$ random values need to be tried. Performance increases several times by using sieving techniques.
- Random primes are not necessarily secure for cryptographic use.
- A safe prime p is an odd prime with $(p-1) / 2$ prime.
- A strong prime p is an odd prime, such that
$p-1$ has a large prime divisor (call it q),
$p+1$ has a large prime divisor, and
$q-1$ has a large prime divisor. Here, "large" means "of bit length $\geqslant 160$ ".
- The search for random primes can be modified to generate safe and strong primes.

Arithmetic in Finite Fields

- The most practical finite fields are the prime fields \mathbb{F}_{p} and the fields $\mathbb{F}_{2^{n}}$ of characteristic 2.
- The arithmetic of \mathbb{F}_{p} is integer arithmetic modulo p.
- The arithmetic of $\mathbb{F}_{2^{n}}=\mathbb{F}_{2}(\theta)$ (with $f(\theta)=0$) is polynomial arithmetic modulo 2 and the defining polynomial $f(x)$.
- In cryptographic protocols, the extension degrees n may be several thousands.
- It is necessary to study the arithmetic of such big polynomials.

Polynomial Arithmetic

- The coefficients of polynomials over \mathbb{F}_{2} are bits.
- Multiple coefficients are packed in a single machine word.
- Addition is the word-by-word XOR operation.
- For multiplication, shift and XOR.
- Euclidean division is again a shift-and-subtract algorithm.
- GCD can be computed by repeated Euclidean division.
- Modular inverse is available from extended gcd computation.
- Running times: Let the operands be $f(x), g(x) \in \mathbb{F}_{2}[x]$.

$$
\begin{gathered}
f(x)+g(x) \\
f(x) g(x)
\end{gathered}
$$

$f(x)$ quot $g(x)$ and/or $f(x)$ rem $g(x)$

$$
\begin{gathered}
\operatorname{gcd}(f(x), g(x)) \\
g(x)^{-1}(\bmod f(x))
\end{gathered}
$$

$O(\max (\operatorname{deg} f(x), \operatorname{deg} g(x))$
$O(\operatorname{deg} f(x) \times \operatorname{deg} g(x))$
$\mathrm{O}(\operatorname{deg} f(x) \times \operatorname{deg} g(x))$
$\mathrm{O}\left(\max (\operatorname{deg} f(x), \operatorname{deg} g(x))^{3}\right)$
$O\left(\max (\operatorname{deg} f(x), \operatorname{deg} g(x))^{3}\right)$

Irreducible Polynomials

Representation of $\mathbb{F}_{2^{n}}$ requires an irreducible polynomial.
Testing irreducibility of $f(x) \in \mathbb{F}_{2}[x]$ with $\operatorname{deg} f(x)=n$:

If all $d_{i}(x)=1$, declare $f(x)$ as irreducible.
If some $d_{i}(x) \neq 1$, declare $f(x)$ as reducible.
$x^{2^{i}}$ are computed iteratively modulo $f(x)$ in order to keep their degree low (that is, less than $\operatorname{deg} f(x)$).

Locating random irreducible polynomial of degree n :
Generate random polynomials of degree n, until an irreducible polynomial is generated.
The density of irreducible polynomials is about $1 / n$ in the set of all monic polynomials in $\mathbb{F}_{2}[x]$ of degree n.

Primitive elements

- \mathbb{F}_{q}^{*} is cyclic.
- The density of primitive elements in \mathbb{F}_{q}^{*} is $\phi(q-1) /(q-1) \geqslant 1 /(6 \ln \ln (q-1))$ for $q \geqslant 7$.
- Checking for primitive elements requires the factorization of $q-1$. Let $q-1=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$.
- An element $a \in \mathbb{F}_{q}^{*}$ is primitive if and only if $a^{(q-1) / p_{i}} \neq 1$ for all $i=1,2, \ldots, t$.

Good Finite Fields for Cryptography

- Cryptosystems based on the finite field discrete logarithm problem use \mathbb{F}_{q} with $|q| \geqslant 1024$.
- For fast implementation, one takes $q=p \in \mathbb{P}$ or $q=2^{n}$.
- One needs generators of \mathbb{F}_{q}^{*}. This requires the factorization of $q-1$. This is an impractical requirement.
- Elements of \mathbb{F}_{q}^{*} with prime orders $r \geqslant 2^{160}$ often suffice.
- For the field \mathbb{F}_{p}, the prime p can be so chosen that $p-1$ has a large prime divisor r. Safe and strong primes may be used.
- For $\mathbb{F}_{2^{n}}$, we have no choice but to factor $2^{n}-1$. For some values of n, a complete or partial knowledge of the factorization of $2^{n}-1$ may aid the choice of a suitable r.

Suitably Large Prime Factors of 2^{n} - 1

Examples

- $2^{1279}-1=r$ is a 1279 -bit prime.
- $2^{1223}-1=2447 \times 31799 \times 439191833149903 \times r$, where r is an 1149-bit prime.
- $2^{1489}-1=71473 \times 27201739919 \times 51028917464688167 \times$ $13822844053570368983 \times r \times m$, where $r=$ 122163266112900081138309323835006063277267764895871 is a 167-bit prime, and m is an 1153-bit composite integer with unknown factorization.

Elements of Large Orders in \mathbb{F}_{a}^{*}

Let r be a prime divisor of $q-1$ with $|r| \geqslant 160$.
Goal: To obtain an element $\alpha \in \mathbb{F}_{q}^{*}$ with ord $\alpha=r$.

Mathematical facts

- \mathbb{F}_{q}^{*} is cyclic and contains a unique subgroup H of order r.
- An element α of \mathbb{F}_{q}^{*} is in H if and only if $\alpha^{r}=1$.
- Since r is prime, every non-identity element of H is a generator of H.

Search for α

- Choose β randomly from \mathbb{F}_{q}^{*}.
- Set $\alpha=\beta^{(q-1) / r}$.
- If $\alpha \neq 1$, return α, else choose another β and repeat.

Factoring Polynomials Over Finite Fields

To factor $f(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{deg} f(x)=d$. Let $q=p^{n}$.

- No deterministic polynomial-time algorithm is known.
- Polynomial-time randomized algorithms are known.
- A common approach is to use the following three steps.
- Square-free factorization (SFF): Express $f(x)$ as a product of square-free polynomials.
- Distinct-degree factorization (DDF): Let $f(x)$ be square-free. Express $f(x)=f_{1}(x) f_{2}(x) \cdots f_{d}(x)$, where $f_{i}(x)$ is the product of irreducible factors of $f(x)$ of degree i.
- Equal-degree factorization (EDF): Let $f(x)$ be a square-free product of irreducible polynomials of the same known degree. Determine all these irreducible factors.
- The only probabilistic part is EDF.

Square-free Factorization (SFF)

- Compute the formal derivative $f^{\prime}(x)$.
- If $f^{\prime}(x)=0$, then $f(x)$ must be of the form

$$
a_{1} x^{p e_{1}}+a_{2} x^{p e_{2}}+\cdots+a_{k} x^{p e_{k}}
$$

Write $f(x)=g(x)^{p}$, where

$$
g(x)=a_{1}^{p^{n-1}} x^{e_{1}}+a_{2}^{p^{n-1}} x^{e_{2}}+\cdots+a_{k}^{p^{n-1}} x^{e_{k}}
$$

Recursively compute the SFF of $g(x)$.

- If $f^{\prime}(x) \neq 0$, then $f(x) / \operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$ is square-free.

Recursively compute the SFF of $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$.

Distinct-degree Factorization (DDF)

Let $f(x) \in \mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ be a square-free polynomial of degree d. Goal: To write $f(x)=f_{1}(x) f_{2}(x) \cdots f_{d}(x)$, where $f_{i}(x)$ is the product of irreducible factors of $f(x)$ of degree i.

- $x^{q^{i}}-x$ is the product of all monic irreducible polynomials of $\mathbb{F}_{q}[x]$ with degrees dividing i.
- $\operatorname{gcd}\left(f(x), x^{q^{i}}-x\right)$ is the product of all irreducible factors of $f(x)$ with degrees dividing i.
- $\operatorname{gcd}\left(f(x) /\left(f_{1}(x) f_{2}(x) \cdots f_{i-1}(x)\right), x^{q^{i}}-x\right)$ is the product of all irreducible factors of $f(x)$ of degree equal to i.
- For $i=1,2,3, \ldots$, do the following:
- Compute $g_{i}(x) \equiv x^{q^{i}}-x(\bmod f(x))$.
- Compute $f_{i}(x)=\operatorname{gcd}\left(f(x), g_{i}(x)\right)$.
- Replace $f(x)$ by $f(x) / f_{i}(x)$.
- If $f(x)=1$, break.

Equal-degree Factorization (EDF)

Let $f(x) \in \mathbb{F}_{q}[x]$ be a square-free polynomial of degree d with each irreducible factor of degree δ.

Case 1: q is odd.

- Take a random polynomial $g(x) \in \mathbb{F}_{q}[x]$ of small degree.
- $x^{q^{\delta}}-x \mid g(x)^{q^{\delta}}-g(x)$, so $f(x) \mid g(x)^{q^{\delta}}-g(x)$.
- $g(x)^{q^{\delta}}-g(x)=g(x)\left(g(x)^{\left(q^{\delta}-1\right) / 2}-1\right)\left(g(x)^{\left(q^{\delta}-1\right) / 2}+1\right)$.
- Compute $h(x)=\operatorname{gcd}\left(f(x), g(x)^{\left(q^{\delta}-1\right) / 2}-1\right)$.
- $h(x)$ is a non-trivial factor of $f(x)$ with probability $1 / 2$.
- If a non-trivial split is obtained, recursively compute the EDF of $h(x)$ and $f(x) / h(x)$.
- Otherwise, choose a different $g(x)$ and repeat the above steps.

Equal-degree Factorization (contd.)

Case 2: $q=2^{n}$.

- Take a random polynomial $g(x) \in \mathbb{F}_{q}[x]$ of small degree.
- $x^{q^{\delta}}+x \mid g(x)^{q^{\delta}}+g(x)$, so $f(x) \mid g(x)^{q^{\delta}}+g(x)$.
- $g(x)^{q^{\delta}}+g(x)=g_{1}(x)\left(g_{1}(x)+1\right)$, where

$$
g_{1}(x)=g(x)^{2^{n \delta-1}}+g(x)^{2^{n \delta-2}}+\cdots+g(x)^{2}+g(x) .
$$

- Compute $h(x)=\operatorname{gcd}\left(f(x), g_{1}(x)\right)$.
- $h(x)$ is a non-trivial factor of $f(x)$ with probability $1 / 2$.
- If a non-trivial split is obtained, recursively compute the EDF of $h(x)$ and $f(x) / h(x)$.
- Otherwise, choose a different $g(x)$ and repeat the above steps.

Finding Roots of Polynomials Over Finite Fields

Let $f(x) \in \mathbb{F}_{q}[x]$ be a non-constant polynomial.
Goal: To compute all the roots of $f(x)$ in \mathbb{F}_{q}.

- Use a special case of the polynomial factoring algorithm.
- Compute $f_{1}(x)=\operatorname{gcd}\left(f(x), x^{q}-x\right)$, where $x^{q}-x$ is computed modulo $f(x)$.
- $f_{1}(x)$ is the product of all (pairwise distinct) linear factors of $f(x)$, that is, $f_{1}(x)$ has exactly the same roots as $f(x)$.
- Call EDF on $f_{1}(x)$ with $\delta=1$.
- In the EDF, one typically chooses $g(x)=x+b$ for random $b \in \mathbb{F}_{q}$.

Arithmetic of Elliptic Curves

Let E be an elliptic curve defined over \mathbb{F}_{q}.

- Each finite point in $E\left(\mathbb{F}_{q}\right)$ is represented by a pair of field elements and takes $\mathrm{O}(\log q)$ space.
- Point addition and doubling require a few operations in the field \mathbb{F}_{q}.
- Computation of $m P$ for $m \in \mathbb{N}$ and $P \in E\left(\mathbb{F}_{q}\right)$ is the additive analog of modular exponentiation and can be performed by a repeated double-and-add algorithm.
- A random finite point $(h, k) \in E\left(\mathbb{F}_{q}\right)$ can be computed by first choosing h and then solving a quadratic equation in k.

Point Counting

For selecting cryptographically good elliptic curves E over \mathbb{F}_{q}, we need to count the size of $E\left(\mathbb{F}_{q}\right)$.

- The SEA (Schoof-Elkies-Atkins) algorithm is used.
- The algorithm is reasonably efficient for prime fields.
- $\left|E\left(\mathbb{F}_{q}\right)\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
- Choose small primes $p_{1}, p_{2}, \ldots, p_{r}$ with $p_{1} p_{2} \cdots p_{r}>4 \sqrt{q}$.
- Determine t modulo each p_{i}.
- Combine these values by CRT.
- This gives a unique value of t in the range $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.

Good Elliptic Curves for Cryptography

- First, choose a ground field \mathbb{F}_{q}. Security requirements demand $|q|$ in the range 160-300 bits.
- Randomly select an elliptic curve E over \mathbb{F}_{q}.
- Determine $\left|E\left(\mathbb{F}_{q}\right)\right|$.
- If E is anomalous or supersingular, choose another E and repeat.
- Factor $\left|E\left(\mathbb{F}_{q}\right)\right|$, and check whether E has a point of prime order $r \geqslant 2^{160}$.
- If so, return E.
- Otherwise, choose another E and repeat.

