Public-key Cryptography
Theory and Practice

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Chapter 3: Algebraic and Number-theoretic Computations
In cryptography, we deal with very large integers with full precision.

Standard data types in programming languages cannot handle big integers.

Special data types (like arrays of integers) are needed.

The arithmetic routines on these specific data types have to be implemented.

One may use an available library (like GMP).

Size of an integer n is $O(\log |n|)$.
Let a, b be two integer operands.

High-school algorithms

<table>
<thead>
<tr>
<th>Operation</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + b$</td>
<td>$O(\max(\log a, \log b))$</td>
</tr>
<tr>
<td>$a - b$</td>
<td>$O(\max(\log a, \log b))$</td>
</tr>
<tr>
<td>ab</td>
<td>$O((\log a)(\log b))$</td>
</tr>
<tr>
<td>a^2</td>
<td>$O(\log^2 a)$</td>
</tr>
<tr>
<td>$(a \text{ quot } b)$ and/or $(a \text{ rem } b)$</td>
<td>$O((\log a)(\log b))$</td>
</tr>
</tbody>
</table>

Fast multiplication: Assume a, b are of the same size s.

- **Karatsuba multiplication:** $O(s^{1.585})$
- **FFT multiplication:** $O(s \log s)$
 [not frequently used in cryptography]
Binary GCD

To compute the GCD of two positive integers a and b. Write $a = 2^\alpha a'$ and $b = 2^\beta b'$ with a', b' odd.

$\gcd(a, b) = 2^{\min(\alpha, \beta)} \gcd(a', b')$.

Assume that both a, b are odd and $a \geq b$.

- $\gcd(a, b) = \gcd(a - b, b)$.
- Write $a - b = 2^\gamma c$ with $\gamma \geq 1$ and c odd.
- Then, $\gcd(a, b) = \gcd(c, b)$.
- Repeat until one operand reduces to 0.

Running time of Euclidean gcd: $\mathcal{O}(\max(\log a, \log b)^3)$.

Running time of binary gcd: $\mathcal{O}(\max(\log a, \log b)^2)$.
To compute the GCD of two positive integers a and b.

Define three sequences r_i, u_i, v_i.

Initialize: \[
\begin{align*}
 r_0 &= a, & u_0 &= 1, & v_0 &= 0, \\
 r_1 &= b, & u_1 &= 0, & v_1 &= 1.
\end{align*}
\]

Iteration: For $i = 2, 3, 4, \ldots$, do the following:

- Compute the quotient $q_i = r_{i-2} \text{ quot } r_{i-1}$.
- Compute $r_i = r_{i-2} - q_i r_{i-1}$.
- Compute $u_i = u_{i-2} - q_i u_{i-1}$.
- Compute $v_i = v_{i-2} - q_i v_{i-1}$.
- Break if $r_i = 0$.
Extended Euclidean GCD (contd.)

- We maintain the invariance $u_i a + v_i b = r_i$ for all i.
- Suppose the loop terminates for $i = j$ (that is, $r_j = 0$).
- $\gcd(a, b) = r_{j-1} = u_{j-1} a + v_{j-1} b$.

- One needs to remember the r, u, v values only from the two previous iterations.
- One can compute only the r and u sequences in the loop.
- One gets $v_{j-1} = (r_{j-1} - u_{j-1} a)/b$.

- The binary gcd algorithm can be similarly modified so as to compute the u and v sequences maintaining the invariant $u_i a + v_i b = r_i$ for all i.
Extended Euclidean GCD (Example)

To compute $\text{gcd}(78, 21) = 78u + 21v$.

<table>
<thead>
<tr>
<th>i</th>
<th>q_i</th>
<th>r_i</th>
<th>u_i</th>
<th>v_i</th>
<th>$u_i a + v_i b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>78</td>
<td>1</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>–3</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>–1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>–11</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>–7</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, $\text{gcd}(78, 21) = 3 = 3 \times 78 + (-11) \times 21$.
Let $n \in \mathbb{N}$. Define $\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\}$.

- **Addition:** $a + b \pmod{n} = \begin{cases} a + b & \text{if } a + b < n \\ a + b - n & \text{if } a + b \geq n \end{cases}$

- **Subtraction:** $a - b \pmod{n} = \begin{cases} a - b & \text{if } a \geq b \\ a - b + n & \text{if } a < b \end{cases}$

- **Multiplication:** $ab \pmod{n} = (ab) \text{rem } n$.

- **Inverse:** $a \in \mathbb{Z}_n^*$ is invertible if and only if $\gcd(a, n) = 1$. But then $1 = ua + vn$ for some integers u, v. Take $a^{-1} \equiv u \pmod{n}$.
Example of Modular Arithmetic

Take \(n = 257, a = 127, b = 217 \).

- **Addition:** \(a + b = 344 > 257 \), so
 \[a + b \equiv 344 - 257 \equiv 87 \pmod{n}. \]

- **Subtraction:** \(a - b = -90 < 0 \), so
 \[a - b \equiv -90 + 257 \equiv 167 \pmod{n}. \]

- **Multiplication:**
 \[ab \equiv (127 \times 217) \text{ rem } 257 \equiv 27559 \text{ rem } 257 \equiv 60 \pmod{n}. \]

- **Inverse:**
 \[\gcd(b, n) = 1 = (-45)b + 38n, \] so
 \[b^{-1} \equiv -45 + 257 \equiv 212 \pmod{n}. \]

- **Division:**
 \[a/b \equiv ab^{-1} \equiv (127 \times 212) \text{ rem } 257 \equiv 196 \pmod{n}. \]
Let \(n \in \mathbb{N} \), \(a \in \mathbb{Z}_n \) and \(e \in \mathbb{N}_0 \). To compute \(a^e \) (mod \(n \)).

Compute \(a, a^2, a^3, \ldots, a^e \) successively by multiplying with \(a \) modulo \(n \).

Example: \(n = 257, a = 127, e = 217 \).

\[
\begin{align*}
a^2 &\equiv a \times a \equiv 195 \pmod{n}, \\
 a^3 &\equiv a^2 \times a \equiv 195 \times 127 \equiv 93 \pmod{n}, \\
 a^4 &\equiv a^3 \times a \equiv 93 \times 127 \equiv 246 \pmod{n}, \\
\ldots \\
 a^{216} &\equiv a^{215} \times a \equiv 131 \times 127 \equiv 189 \pmod{n}, \\
 a^{217} &\equiv a^{216} \times a \equiv 189 \times 127 \equiv 102 \pmod{n}.
\end{align*}
\]
To compute $a^e \pmod{n}$.

- Binary representation: $e = (e_{l-1} e_{l-2} \ldots e_1 e_0)_2 = e_{l-1} 2^{l-1} + e_{l-2} 2^{l-2} + \ldots + e_1 2^1 + e_0 2^0$.

- $a^e \equiv (a^{2^{l-1}})^{e_{l-1}} (a^{2^{l-2}})^{e_{l-2}} \cdots (a^{2^1})^{e_1} (a^{2^0})^{e_0} \pmod{n}$.

- Compute $a, a^2, a^{2^2}, a^{2^3}, \ldots, a^{2^{l-1}}$ and multiply those a^{2^i} modulo n for which $e_i = 1$. Also for $i \geq 1$, we have $a^{2^i} \equiv (a^{2^{i-1}})^2 \pmod{n}$.
Take $n = 257$, $a = 127$, $e = 217$.

- $e = (11011001)_2 = 2^7 + 2^6 + 2^4 + 2^3 + 2^0$. So $a^e \equiv a^{2^7} a^{2^6} a^{2^4} a^{2^3} a^{2^0} \pmod{n}$.

- $a^2 \equiv 195 \pmod{n}$, $a^{2^2} \equiv (195)^2 \equiv 246 \pmod{n}$,
 $a^{2^3} \equiv (246)^2 \equiv 121 \pmod{n}$, $a^{2^4} \equiv (121)^2 \equiv 249 \pmod{n}$,
 $a^{2^5} \equiv (249)^2 \equiv 64 \pmod{n}$, $a^{2^6} \equiv (64)^2 \equiv 241 \pmod{n}$ and
 $a^{2^7} \equiv (241)^2 \equiv 256 \pmod{n}$.

- $a^e \equiv 256 \times 241 \times 249 \times 121 \times 127 \equiv 102 \pmod{n}$.
Left-to-right Modular Exponentiation

To compute $a^e \pmod{n}$.

- Binary representation: $e = (e_{l-1}e_{l-2} \ldots e_1e_0)_2 = e_{l-1}2^{l-1} + e_{l-2}2^{l-2} + \ldots + e_12^1 + e_02^0$.
- Define $\epsilon_i = (e_{l-1}e_{l-2} \ldots e_i)_2$ for $i = l, l - 1, l - 2, \ldots, 0$.
- $\epsilon_l = 0$, and $\epsilon_i = 2\epsilon_{i+1} + e_i$ for $i < l$.
- $a^{\epsilon_l} \equiv 1 \pmod{n}$ and $a^{\epsilon_i} \equiv (a^{\epsilon_{i+1}})^2 \times a^{\epsilon_i} \pmod{n}$.
- Finally, $\epsilon_0 = e$, so output $a^{\epsilon_0} \pmod{n}$.
- Initialize product to 1 (corresponds to $i = l$).
- For $i = l - 1, l - 2, \ldots, 1, 0$, square product. If $e_i = 1$, then multiply product by a.
- Square-and-(conditionally)-multiply algorithm
Left-to-right Modular Exponentiation (Example)

Take \(n = 257 \), \(a = 127 \) and \(e = 217 \).

We have the binary representation: \(e = (11011001)_2 \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(e_i)</th>
<th>(\epsilon_i)</th>
<th>(a^{\epsilon_i} \pmod{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(1)_2 = 1</td>
<td>(1^2 \times 127 \equiv 127 \pmod{n})</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>(11)_2 = 3</td>
<td>(127^2 \times 127 \equiv 93 \pmod{n})</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>(110)_2 = 6</td>
<td>(93^2 \equiv 168 \pmod{n})</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(1101)_2 = 13</td>
<td>(168^2 \times 127 \equiv 69 \pmod{n})</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(11011)_2 = 27</td>
<td>(69^2 \times 127 \equiv 183 \pmod{n})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(110110)_2 = 54</td>
<td>(183^2 \equiv 79 \pmod{n})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(1101100)_2 = 108</td>
<td>(79^2 \equiv 73 \pmod{n})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(11011001)_2 = 217</td>
<td>(73^2 \times 127 \equiv 102 \pmod{n})</td>
</tr>
</tbody>
</table>
A fundamental problem in computational number theory.

Probabilistic (that is, randomized) algorithms solve the problem reasonably efficiently with arbitrarily small probability of error.

Some of these probabilistic algorithms can be converted to deterministic polynomial-time algorithms under certain unproven assumptions (Extended Riemann Hypothesis).

The first known deterministic polynomial-time algorithm with proofs not dependent on any conjectures is from Agarwal, Kayal and Saxena (2002).

The AKS algorithm is not yet practical.
Fermat Test

- Fermat’s little theorem: If \(n \) is prime, then \(a^{n-1} \equiv 1 \pmod{n} \) for all \(a \) coprime to \(n \).
- The converse is not true: \(6^{35-1} \equiv (6^2)^{17} \equiv 1 \pmod{35} \).
- However, \(8^{35-1} \equiv 29 \not\equiv 1 \pmod{35} \). So, 6 fails to prove the compositeness of 35, but 8 proves it.
- An integer \(n \) is called a \textbf{pseudoprime} to a base \(a \) with \(\gcd(a, n) = 1 \), if \(a^{n-1} \equiv 1 \pmod{n} \).
- A prime is a pseudoprime to every coprime base.
- A prime has \textbf{no witnesses} to its compositeness.
- If a composite integer \(n \) is not a pseudoprime to some base, then \(n \) is not a pseudoprime to at least half of the bases in \(\mathbb{Z}_n^* \).
- In that case, the density of witnesses for the compositeness of \(n \) is at least \(1/2 \).
Fermat Test (contd.)

- Choose t random bases $a_1, a_2, \ldots, a_t \in \mathbb{Z}_n^*$.
- If $a_i^{n-1} \equiv 1 \pmod{n}$ for all i, declare n as prime.
- If $a_i^{n-1} \not\equiv 1 \pmod{n}$ for some i, declare n as composite.

- If this test declares n as composite, there is no error.
- If this test declares n as prime, there may be an error.
- If n has (at least) one witness for its compositeness, then the probability of error is $\leq 1/2^t$.
- By choosing t suitably, this probability can be made very low.
Carmichael Numbers

There exist composite integers which have no (coprime) witnesses of compositeness.

These are called **Carmichael numbers**.

- Although not common, Carmichael numbers are infinite in number.
- The smallest Carmichael number is $561 = 3 \times 11 \times 17$.
- A Carmichael number must be odd, square-free, and the product of at least three (distinct) primes.
- For every prime divisor p of a Carmichael number n, we must have $(p - 1) \mid (n - 1)$.
Euler (or Solovay-Strassen) Test

An integer \(n \in \mathbb{N} \) is called an **Euler pseudoprime** or a **Solovay-Strassen pseudoprime** to base \(a \) (with \(\gcd(a, n) = 1 \)) if \(a^{(n-1)/2} \equiv \left(\frac{a}{n} \right) \pmod{n} \), where \(\left(\frac{a}{n} \right) \) is the Jacobi symbol.

- If \(n \) is an Euler pseudoprime to base \(a \), then \(n \) is also a (Fermat) pseudoprime to base \(a \). The converse is not true.
- By Euler’s criterion, a prime is Euler pseudoprime to all coprime bases.
- A composite integer \(n \) is Euler pseudoprime to at most half the bases in \(\mathbb{Z}_n^* \).
- Even Carmichael numbers possess compositeness witnesses under the revised criterion.

Example: \(5^{(561-1)/2} \equiv 67 \pmod{561} \), whereas \(\left(\frac{5}{561} \right) = 1 \).
Miller-Rabin Test

- An odd prime has exactly two modular square roots of 1.
- An odd composite integer which is not a prime power has at least four modular square roots of 1.
- Suppose $a^{n-1} \equiv 1 \pmod{n}$ (with $\gcd(a, n) = 1$). Write $n - 1 = 2^r n'$ with n' odd and $r \in \mathbb{N}$.
- Consider the sequence $b_i \equiv (a^{n'})^{2^i} \pmod{n}$ for $i = 0, 1, 2, \ldots, r$.
- We have $b_r \equiv 1 \pmod{n}$.
 Let j be the smallest index with $b_j \equiv 1 \pmod{n}$.
 Suppose $j > 0$. Then b_{j-1} is a modular square root of 1.
- If $b_{j-1} \not\equiv -1 \pmod{n}$, then n is composite.
- Compute b_0 by modular exponentiation, and then compute $b_i \equiv b_{i-1}^2 \pmod{n}$ for $i = 1, 2, \ldots$.
Miller-Rabin Test (contd.)

- *n* is called a **Miller-Rabin pseudoprime** or a **strong pseudoprime** to the base *a*, if \(b_0 \equiv 1 \pmod{n} \) or \(b_{j-1} \equiv -1 \pmod{n} \) for some \(j \in \{1, 2, \ldots, r\} \).
- A strong pseudoprime is also an Euler pseudoprime (but not conversely) and so a Fermat pseudoprime.
- If *n* is an odd composite integer (but not a prime power), then *n* is a strong pseudoprime to at most \(1/4 \)-th of the bases in \(\mathbb{Z}_n^* \).
- This is true even for Carmichael numbers.

Example: \(n = 561 = 2^4 \times 35 + 1 \), so \(r = 4 \) and \(n' = 35 \).

For the base \(a = 2 \), we have:
- \(b_0 \equiv a^{n'} \equiv 263 \pmod{n} \), \(b_1 \equiv a^{2n'} \equiv 166 \pmod{n} \),
- \(b_2 \equiv a^{2^2n'} \equiv 67 \pmod{n} \), \(b_3 \equiv a^{2^3n'} \equiv 1 \pmod{n} \).

Thus, 67 is a non-trivial square root of 1 modulo 561.
The Agarwal-Kayal-Saxena (AKS) Test

- Deterministic test, unconditionally polynomial-time.
- \((x + a)^n \equiv x^n + a \pmod n\) (for every \(a\)) if and only if \(n\) is prime.
- Compute \((x + a)^n\) and \(x^n + a\) modulo \(n\) and some suitably chosen polynomials \(x^r - 1\) with small \(r\).
- A suitable \(r = \Theta(\ln^6 n)\) can be found. For this \(r\), at most \(2\sqrt{r} \ln n\) values of \(a\) need to be tried.
- The original AKS algorithm runs in \(O^\sim(\ln^{12} n)\) time.
- Lenstra and Pomerance’s improvement reduces the running time to \(O^\sim(\ln^6 n)\).
How to Choose *Cryptographic* Primes?

- Primes are abundant in nature (\mathbb{N}).
- A random search quickly gives t-bit primes. $O(t)$ random values need to be tried. Performance increases several times by using sieving techniques.
- Random primes are not necessarily secure for cryptographic use.
- A **safe prime** p is an odd prime with $(p - 1)/2$ prime.
- A **strong prime** p is an odd prime, such that
 - $p - 1$ has a large prime divisor (call it q),
 - $p + 1$ has a large prime divisor, and
 - $q - 1$ has a large prime divisor.

 Here, “large” means “of bit length ≥ 160”.
- The search for random primes can be modified to generate safe and strong primes.
The most practical finite fields are the prime fields \mathbb{F}_p and the fields \mathbb{F}_{2^n} of characteristic 2.

- The arithmetic of \mathbb{F}_p is integer arithmetic modulo p.
- The arithmetic of $\mathbb{F}_{2^n} = \mathbb{F}_2(\theta)$ (with $f(\theta) = 0$) is polynomial arithmetic modulo 2 and the defining polynomial $f(x)$.
- In cryptographic protocols, the extension degrees n may be several thousands.
- It is necessary to study the arithmetic of such big polynomials.
The coefficients of polynomials over \mathbb{F}_2 are bits.
Multiple coefficients are packed in a single machine word.
Addition is the word-by-word XOR operation.
For multiplication, shift and XOR.
Euclidean division is again a shift-and-subtract algorithm.
GCD can be computed by repeated Euclidean division.
Modular inverse is available from extended gcd computation.

Running times: Let the operands be $f(x), g(x) \in \mathbb{F}_2[x]$.

- $f(x) + g(x) \in \mathbb{F}_2[x]$ in \(O(\max(\deg f(x), \deg g(x))) \) time.
- $f(x)g(x) \in \mathbb{F}_2[x]$ in \(O(\deg f(x) \times \deg g(x)) \) time.
- $f(x) \text{ quot } g(x)$ and/or $f(x) \text{ rem } g(x)$ in \(O(\deg f(x) \times \deg g(x)) \) time.
- $\gcd(f(x), g(x)) \in \mathbb{F}_2[x]$ in \(O(\max(\deg f(x), \deg g(x))) \) time.
- $g(x)^{-1} \pmod{f(x)} \in \mathbb{F}_2[x]$ in \(O(\max(\deg f(x), \deg g(x))^3) \) time.
Irreducible Polynomials

Representation of \mathbb{F}_{2^n} requires an irreducible polynomial.

Testing irreducibility of $f(x) \in \mathbb{F}_2[x]$ with $\deg f(x) = n$:

For $i = 1, 2, 3, \ldots, \lfloor n/2 \rfloor$, compute $d_i(x) = \gcd(x^{2^i} - x, f(x))$.

If all $d_i(x) = 1$, declare $f(x)$ as irreducible.
If some $d_i(x) \neq 1$, declare $f(x)$ as reducible.

x^{2^i} are computed iteratively modulo $f(x)$ in order to keep their degree low (that is, less than $\deg f(x)$).

Locating random irreducible polynomial of degree n:

Generate random polynomials of degree n, until an irreducible polynomial is generated.

The density of irreducible polynomials is about $1/n$ in the set of all monic polynomials in $\mathbb{F}_2[x]$ of degree n.
Primitive elements

- \(\mathbb{F}_q^* \) is cyclic.
- The density of primitive elements in \(\mathbb{F}_q^* \) is \(\phi(q - 1)/(q - 1) \geq 1/(6 \ln \ln(q - 1)) \) for \(q \geq 7 \).
- Checking for primitive elements requires the factorization of \(q - 1 \). Let \(q - 1 = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} \).
- An element \(a \in \mathbb{F}_q^* \) is primitive if and only if \(a^{(q-1)/p_i} \neq 1 \) for all \(i = 1, 2, \ldots, t \).
Cryptosystems based on the finite field discrete logarithm problem use \mathbb{F}_q with $|q| \geq 1024$.

For fast implementation, one takes $q = p \in \mathbb{P}$ or $q = 2^n$.

One needs generators of \mathbb{F}_q^*. This requires the factorization of $q - 1$. This is an impractical requirement.

Elements of \mathbb{F}_q^* with prime orders $r \geq 2^{160}$ often suffice.

For the field \mathbb{F}_p, the prime p can be so chosen that $p - 1$ has a large prime divisor r. Safe and strong primes may be used.

For \mathbb{F}_{2^n}, we have no choice but to factor $2^n - 1$. For some values of n, a complete or partial knowledge of the factorization of $2^n - 1$ may aid the choice of a suitable r.
Examples

- $2^{1279} - 1 = r$ is a 1279-bit prime.

- $2^{1223} - 1 = 2447 \times 31799 \times 439191833149903 \times r$, where r is an 1149-bit prime.

- $2^{1489} - 1 = 71473 \times 27201739919 \times 51028917464688167 \times 13822844053570368983 \times r \times m$, where $r = 122163266112900081138309323835006063277267764895871$ is a 167-bit prime, and m is an 1153-bit composite integer with unknown factorization.
Let r be a prime divisor of $q - 1$ with $|r| \geq 160$.

Goal: To obtain an element $\alpha \in \mathbb{F}_q^*$ with $\text{ord} \alpha = r$.

Mathematical facts

- \mathbb{F}_q^* is cyclic and contains a unique subgroup H of order r.
- An element α of \mathbb{F}_q^* is in H if and only if $\alpha^r = 1$.
- Since r is prime, every non-identity element of H is a generator of H.

Search for α

- Choose β randomly from \mathbb{F}_q^*.
- Set $\alpha = \beta^{(q-1)/r}$.
- If $\alpha \neq 1$, return α, else choose another β and repeat.
Factoring Polynomials Over Finite Fields

To factor $f(x) \in \mathbb{F}_q[x]$ with $\deg f(x) = d$. Let $q = p^n$.

- No deterministic polynomial-time algorithm is known.
- Polynomial-time randomized algorithms are known.
- A common approach is to use the following three steps.
 - **Square-free factorization (SFF):** Express $f(x)$ as a product of square-free polynomials.
 - **Distinct-degree factorization (DDF):** Let $f(x)$ be square-free. Express $f(x) = f_1(x)f_2(x) \cdots f_d(x)$, where $f_i(x)$ is the product of irreducible factors of $f(x)$ of degree i.
 - **Equal-degree factorization (EDF):** Let $f(x)$ be a square-free product of irreducible polynomials of the same known degree. Determine all these irreducible factors.

- The only probabilistic part is EDF.
Square-free Factorization (SFF)

- Compute the formal derivative $f'(x)$.
- If $f'(x) = 0$, then $f(x)$ must be of the form

 $$a_1 x^{p e_1} + a_2 x^{p e_2} + \cdots + a_k x^{p e_k}.$$

 Write $f(x) = g(x)^p$, where

 $$g(x) = a_1^{p^{n-1}} x^{e_1} + a_2^{p^{n-1}} x^{e_2} + \cdots + a_k^{p^{n-1}} x^{e_k}.$$

 Recursively compute the SFF of $g(x)$.

- If $f'(x) \neq 0$, then $f(x)/\gcd(f(x), f'(x))$ is square-free. Recursively compute the SFF of $\gcd(f(x), f'(x))$.

Let $f(x) \in \mathbb{F}_q = \mathbb{F}_{p^n}$ be a square-free polynomial of degree d. Goal: To write $f(x) = f_1(x)f_2(x) \cdots f_d(x)$, where $f_i(x)$ is the product of irreducible factors of $f(x)$ of degree i.

- $x^{q^i} - x$ is the product of all monic irreducible polynomials of $\mathbb{F}_q[x]$ with degrees dividing i.
- $\gcd(f(x), x^{q^i} - x)$ is the product of all irreducible factors of $f(x)$ with degrees dividing i.
- $\gcd(f(x)/(f_1(x)f_2(x) \cdots f_{i-1}(x)), x^{q^i} - x)$ is the product of all irreducible factors of $f(x)$ of degree equal to i.

For $i = 1, 2, 3, \ldots$, do the following:

- Compute $g_i(x) \equiv x^{q^i} - x \pmod{f(x)}$.
- Compute $f_i(x) = \gcd(f(x), g_i(x))$.
- Replace $f(x)$ by $f(x)/f_i(x)$.
- If $f(x) = 1$, break.
Equal-degree Factorization (EDF)

Let $f(x) \in \mathbb{F}_q[x]$ be a square-free polynomial of degree d with each irreducible factor of degree δ.

Case 1: q is odd.

- Take a random polynomial $g(x) \in \mathbb{F}_q[x]$ of small degree.
- $x^{q^\delta} - x \mid g(x)^{q^\delta} - g(x)$, so $f(x) \mid g(x)^{q^\delta} - g(x)$.
- $g(x)^{q^\delta} - g(x) = g(x)(g(x)(q^\delta - 1)/2 - 1)(g(x)(q^\delta - 1)/2 + 1)$.
- Compute $h(x) = \gcd(f(x), g(x)^{(q^\delta - 1)/2} - 1)$.
- $h(x)$ is a non-trivial factor of $f(x)$ with probability $1/2$.
- If a non-trivial split is obtained, recursively compute the EDF of $h(x)$ and $f(x)/h(x)$.
- Otherwise, choose a different $g(x)$ and repeat the above steps.
Equal-degree Factorization (contd.)

Case 2: $q = 2^n$.

- Take a random polynomial $g(x) \in \mathbb{F}_q[x]$ of small degree.
- $x^{q^\delta} + x \mid g(x)^{q^\delta} + g(x)$, so $f(x) \mid g(x)^{q^\delta} + g(x)$.
- $g(x)^{q^\delta} + g(x) = g_1(x)(g_1(x) + 1)$, where

 $g_1(x) = g(x)^{2^{n\delta - 1}} + g(x)^{2^{n\delta - 2}} + \cdots + g(x)^{2} + g(x)$.
- Compute $h(x) = \gcd(f(x), g_1(x))$.
- $h(x)$ is a non-trivial factor of $f(x)$ with probability $1/2$.
- If a non-trivial split is obtained, recursively compute the EDF of $h(x)$ and $f(x)/h(x)$.
- Otherwise, choose a different $g(x)$ and repeat the above steps.
Let $f(x) \in \mathbb{F}_q[x]$ be a non-constant polynomial.

Goal: To compute all the roots of $f(x)$ in \mathbb{F}_q.

- Use a special case of the polynomial factoring algorithm.
- Compute $f_1(x) = \gcd(f(x), x^q - x)$, where $x^q - x$ is computed modulo $f(x)$.
- $f_1(x)$ is the product of all (pairwise distinct) linear factors of $f(x)$, that is, $f_1(x)$ has exactly the same roots as $f(x)$.
- Call EDF on $f_1(x)$ with $\delta = 1$.
- In the EDF, one typically chooses $g(x) = x + b$ for random $b \in \mathbb{F}_q$.
Let E be an elliptic curve defined over \mathbb{F}_q.

- Each finite point in $E(\mathbb{F}_q)$ is represented by a pair of field elements and takes $O(\log q)$ space.
- Point addition and doubling require a few operations in the field \mathbb{F}_q.
- Computation of mP for $m \in \mathbb{N}$ and $P \in E(\mathbb{F}_q)$ is the additive analog of modular exponentiation and can be performed by a repeated double-and-add algorithm.
- A random finite point $(h, k) \in E(\mathbb{F}_q)$ can be computed by first choosing h and then solving a quadratic equation in k.
For selecting cryptographically good elliptic curves E over \mathbb{F}_q, we need to count the size of $E(\mathbb{F}_q)$.

- The **SEA (Schoof-Elkies-Atkins) algorithm** is used.
- The algorithm is reasonably efficient for prime fields.
- $|E(\mathbb{F}_q)| = q + 1 - t$ with $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.
- Choose small primes p_1, p_2, \ldots, p_r with $p_1p_2 \cdots p_r > 4\sqrt{q}$.
- Determine t modulo each p_i.
- Combine these values by CRT.
- This gives a unique value of t in the range $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.
Good Elliptic Curves for Cryptography

First, choose a ground field \mathbb{F}_q. Security requirements demand $|q|$ in the range 160–300 bits.

- Randomly select an elliptic curve E over \mathbb{F}_q.
- Determine $|E(\mathbb{F}_q)|$.
- If E is anomalous or supersingular, choose another E and repeat.
- Factor $|E(\mathbb{F}_q)|$, and check whether E has a point of prime order $r \geq 2^{160}$.
- If so, return E.
- Otherwise, choose another E and repeat.