Public-key Cryptography
Theory and Practice

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Chapter 2: Mathematical Concepts
Part 1: Number Theory
Divisibility
Common sets

\[\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)} \]
\[\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)} \]
\[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)} \]
\[\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)} \]
Common sets

\[\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)} \]
\[\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)} \]
\[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)} \]
\[\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)} \]

Divisibility: \(a \mid b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).
Common sets

\[\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)} \]
\[\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)} \]
\[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)} \]
\[\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)} \]

Divisibility: \(a \mid b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).

Corollary: If \(a \mid b \), then \(|a| \leq |b| \).
Divisibility

- **Common sets**

 \[\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)} \]
 \[\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)} \]
 \[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)} \]
 \[\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)} \]

- **Divisibility:** \(a \mid b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).

- **Corollary:** If \(a \mid b \), then \(|a| \leq |b| \).

- **Theorem:** There are infinitely many primes.
Common sets

\[
\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)}
\]

\[
\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)}
\]

\[
\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)}
\]

\[
\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)}
\]

Divisibility: \(a \mid b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).

Corollary: If \(a \mid b \), then \(|a| \leq |b| \).

Theorem: There are infinitely many primes.

Euclidean division: Let \(a, b \in \mathbb{Z} \) with \(b > 0 \). There exist unique \(q, r \in \mathbb{Z} \) with \(a = qb + r \) and \(0 \leq r < b \).
Divisibility

Common sets

\[\mathbb{N} = \{1, 2, 3, \ldots\} \quad \text{(Natural numbers)} \]
\[\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \quad \text{(Non-negative integers)} \]
\[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(Integers)} \]
\[\mathbb{P} = \{2, 3, 5, 7, 11, 13, \ldots\} \quad \text{(Primes)} \]

Divisibility: \(a \mid b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).

Corollary: If \(a \mid b \), then \(|a| \leq |b| \).

Theorem: There are infinitely many primes.

Euclidean division: Let \(a, b \in \mathbb{Z} \) with \(b > 0 \). There exist unique \(q, r \in \mathbb{Z} \) with \(a = qb + r \) and \(0 \leq r < b \).

Notations: \(q = a \ quot b \), \(r = a \ rem b \).
Greatest Common Divisor (GCD)
Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:

1. $d \mid a$ and $d \mid b$.
2. If $d' \mid a$ and $d' \mid b$, then $d' \mid d$.

We denote $d = \gcd(a, b)$.
Let \(a, b \in \mathbb{Z} \), not both zero. Then \(d \in \mathbb{N} \) is called the gcd of \(a \) and \(b \), if:

1. \(d \mid a \) and \(d \mid b \).
2. If \(d' \mid a \) and \(d' \mid b \), then \(d' \mid d \).

We denote \(d = \gcd(a, b) \).

Euclidean gcd: \(\gcd(a, b) = \gcd(b, a \ \text{rem} \ b) \) (for \(b > 0 \)).
Let \(a, b \in \mathbb{Z} \), not both zero. Then \(d \in \mathbb{N} \) is called the \(\text{gcd} \) of \(a \) and \(b \), if:

1. \(d \mid a \) and \(d \mid b \).
2. If \(d' \mid a \) and \(d' \mid b \), then \(d' \mid d \).

We denote \(d = \gcd(a, b) \).

Euclidean gcd: \(\gcd(a, b) = \gcd(b, a \ \text{rem} \ b) \) (for \(b > 0 \)).

Extended gcd: Let \(a, b \in \mathbb{Z} \), not both zero. There exist \(u, v \in \mathbb{Z} \) such that

\[
\gcd(a, b) = ua + vb.
\]
GCD: Example
GCD: Example

899 = 2 \times 319 + 261,
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
\[261 = 4 \times 58 + 29, \]
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
\[261 = 4 \times 58 + 29, \]
\[58 = 2 \times 29. \]
GCD: Example

\[
\begin{align*}
899 &= 2 \times 319 + 261, \\
319 &= 1 \times 261 + 58, \\
261 &= 4 \times 58 + 29, \\
58 &= 2 \times 29.
\end{align*}
\]

Therefore, \(\text{gcd}(899, 319) = \text{gcd}(319, 261) = \text{gcd}(261, 58) = \text{gcd}(58, 29) = \text{gcd}(29, 0) = 29 \)
GCD: Example

\[
\begin{align*}
899 &= 2 \times 319 + 261, \\
319 &= 1 \times 261 + 58, \\
261 &= 4 \times 58 + 29, \\
58 &= 2 \times 29.
\end{align*}
\]

Therefore, \(\text{gcd}(899, 319) = \text{gcd}(319, 261) = \text{gcd}(261, 58) = \text{gcd}(58, 29) = \text{gcd}(29, 0) = 29 \)

Extended gcd computation
GCD: Example

\[
\begin{align*}
899 &= 2 \times 319 + 261, \\
319 &= 1 \times 261 + 58, \\
261 &= 4 \times 58 + 29, \\
58 &= 2 \times 29.
\end{align*}
\]

Therefore, \(\gcd(899, 319) = \gcd(319, 261) = \gcd(261, 58) = \gcd(58, 29) = \gcd(29, 0) = 29 \)

Extended gcd computation

\[
29 = 261 - 4 \times 58
\]
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
\[261 = 4 \times 58 + 29, \]
\[58 = 2 \times 29. \]

Therefore, \(\text{gcd}(899, 319) = \text{gcd}(319, 261) = \text{gcd}(261, 58) = \text{gcd}(58, 29) = \text{gcd}(29, 0) = 29 \)

Extended gcd computation

\[29 = 261 - 4 \times 58 \]
\[= 261 - 4 \times (319 - 1 \times 261) = (-4) \times 319 + 5 \times 261 \]
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
\[261 = 4 \times 58 + 29, \]
\[58 = 2 \times 29. \]

Therefore, \(\gcd(899, 319) = \gcd(319, 261) = \gcd(261, 58) = \gcd(58, 29) = \gcd(29, 0) = 29 \)

Extended gcd computation

\[29 = 261 - 4 \times 58 \]
\[= 261 - 4 \times (319 - 1 \times 261) = (-4) \times 319 + 5 \times 261 \]
\[= (-4) \times 319 + 5 \times (899 - 2 \times 319) \]
GCD: Example

\[899 = 2 \times 319 + 261, \]
\[319 = 1 \times 261 + 58, \]
\[261 = 4 \times 58 + 29, \]
\[58 = 2 \times 29. \]

Therefore, \(\text{gcd}(899, 319) = \text{gcd}(319, 261) = \text{gcd}(261, 58) = \text{gcd}(58, 29) = \text{gcd}(29, 0) = 29 \)

Extended gcd computation

\[29 = 261 - 4 \times 58 \]
\[= 261 - 4 \times (319 - 1 \times 261) = (-4) \times 319 + 5 \times 261 \]
\[= (-4) \times 319 + 5 \times (899 - 2 \times 319) \]
\[= 5 \times 899 + (-14) \times 319. \]
Let $n \in \mathbb{N}$. Two integers a, b are called congruent modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a - b)$ or equivalently if $a \text{ rem } n = b \text{ rem } n$.
Let $n \in \mathbb{N}$. Two integers a, b are called congruent modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a - b)$ or equivalently if $a \text{ rem } n = b \text{ rem } n$.

Properties of congruence
Let \(n \in \mathbb{N} \). Two integers \(a, b \) are called congruent modulo \(n \), denoted \(a \equiv b \pmod{n} \), if \(n \mid (a - b) \) or equivalently if \(a \text{ rem } n = b \text{ rem } n \).

Properties of congruence

- Congruence is an equivalence relation on \(\mathbb{Z} \).
Let $n \in \mathbb{N}$. Two integers a, b are called congruent modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a - b)$ or equivalently if $a \text{ rem } n = b \text{ rem } n$.

Properties of congruence

- Congruence is an equivalence relation on \mathbb{Z}.
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
Let $n \in \mathbb{N}$. Two integers a, b are called congruent modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a - b)$ or equivalently if $a \text{rem } n = b \text{rem } n$.

Properties of congruence

- Congruence is an equivalence relation on \mathbb{Z}.
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
- If $a \equiv b \pmod{n}$ and $d \mid n$, then $a \equiv b \pmod{d}$.
Let \(n \in \mathbb{N} \). Two integers \(a, b \) are called **congruent** modulo \(n \), denoted \(a \equiv b \pmod{n} \), if \(n \mid (a - b) \) or equivalently if \(a \text{ rem } n = b \text{ rem } n \).

Properties of congruence

- Congruence is an equivalence relation on \(\mathbb{Z} \).
- If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(a + c \equiv b + d \pmod{n} \) and \(ac \equiv bd \pmod{n} \).
- If \(a \equiv b \pmod{n} \) and \(d \mid n \), then \(a \equiv b \pmod{d} \).
- **Cancellation**

 \(ab \equiv ac \pmod{n} \) if and only if \(b \equiv c \pmod{n / \gcd(a, n)} \).
Congruence (contd.)
Congruence (contd.)

- \(\mathbb{Z}_n = \) The set of equivalence classes of the relation "congruence modulo \(n \)."
Congruence (contd.)

- $\mathbb{Z}_n = \text{The set of equivalence classes of the relation "congruence modulo } n\text{".}$

- **Complete residue system:** A collection of n integers, with exactly one from each equivalence class.
Congruence (contd.)

- \(\mathbb{Z}_n \) = The set of equivalence classes of the relation “congruence modulo \(n \).
- **Complete residue system:** A collection of \(n \) integers, with exactly one from each equivalence class.
- Most common representation: \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\} \).
Congruence (contd.)

- \mathbb{Z}_n = The set of equivalence classes of the relation “congruence modulo n”.

- **Complete residue system:** A collection of n integers, with exactly one from each equivalence class.

- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$.

- Arithmetic of \mathbb{Z}_n: Integer arithmetic modulo n.
Congruence (contd.)

- $\mathbb{Z}_n = \text{The set of equivalence classes of the relation } \text{“congruence modulo } n \text{”}.$
- **Complete residue system:** A collection of n integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\}.$
- Arithmetic of \mathbb{Z}_n: Integer arithmetic modulo n.
- **Modular inverse:** $a \in \mathbb{Z}_n$ is called **invertible** modulo n if $ua \equiv 1 \pmod{n}$ for some $u \in \mathbb{Z}_n$.
Congruence (contd.)

- \(\mathbb{Z}_n = \) The set of equivalence classes of the relation “congruence modulo \(n \)

- **Complete residue system:** A collection of \(n \) integers, with exactly one from each equivalence class.

- Most common representation: \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\} \).

- Arithmetic of \(\mathbb{Z}_n \): Integer arithmetic modulo \(n \).

- **Modular inverse:** \(a \in \mathbb{Z}_n \) is called **invertible** modulo \(n \) if \(ua \equiv 1 \pmod{n} \) for some \(u \in \mathbb{Z}_n \).

- **Theorem:** \(a \in \mathbb{Z}_n \) is invertible modulo \(n \) if and only if \(\gcd(a, n) = 1 \). In this case, extended gcd gives \(ua + vn = 1 \). Then, \(u \equiv a^{-1} \pmod{n} \).
Euler Totient Function
Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.
Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

Call $\phi(n) = |\mathbb{Z}_n^*|$.
Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

Call $\phi(n) = |\mathbb{Z}_n^*|.$

Example: If p is a prime, then $\phi(p) = p - 1$.
Let \(n \in \mathbb{N} \). Define
\[
\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.
\]
Thus, \(\mathbb{Z}_n^* \) is the set of all elements of \(\mathbb{Z}_n \) that are invertible modulo \(n \).

Call \(\phi(n) = |\mathbb{Z}_n^*| \).

Example: If \(p \) is a prime, then \(\phi(p) = p - 1 \).

Example: \(\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \). We have \(\gcd(0, 6) = 6 \), \(\gcd(1, 6) = 1 \), \(\gcd(2, 6) = 2 \), \(\gcd(3, 6) = 3 \), \(\gcd(4, 6) = 2 \), and \(\gcd(5, 6) = 1 \). So \(\mathbb{Z}_6^* = \{1, 5\} \), that is, \(\phi(6) = 2 \).
Euler Totient Function (contd.)
Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_r} \right) = n \prod_{p | n} \left(1 - \frac{1}{p} \right).$$
Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).$$

Fermat’s little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$
\phi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).
$$

Fermat’s little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Euler’s theorem: Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $\gcd(a, n) = 1$. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Public-key Cryptography: Theory and Practice

Abhijit Das
Linear Congruences
Let \(d = \gcd(a, n) \). The congruence \(ax \equiv b \pmod{n} \) is solvable if and only if \(d \mid b \). In that case, there are exactly \(d \) solutions modulo \(n \).
Linear Congruences

- Let \(d = \gcd(a, n) \). The congruence \(ax \equiv b \pmod{n} \) is solvable if and only if \(d \mid b \). In that case, there are exactly \(d \) solutions modulo \(n \).

- **Chinese remainder theorem (CRT)**
 For pairwise coprime moduli \(n_1, n_2, \ldots, n_r \) with product \(N = n_1 n_2 \cdots n_r \), the congruences
 \[
 x \equiv a_1 \pmod{n_1}, \quad x \equiv a_2 \pmod{n_2}, \quad \ldots, \quad x \equiv a_r \pmod{n_r},
 \]
 have a simultaneous solution unique modulo \(N \).
Let $d = \gcd(a, n)$. The congruence $ax \equiv b \pmod{n}$ is solvable if and only if $d \mid b$. In that case, there are exactly d solutions modulo n.

Chinese remainder theorem (CRT)

For pairwise coprime moduli n_1, n_2, \ldots, n_r with product $N = n_1 n_2 \cdots n_r$, the congruences

$$x \equiv a_1 \pmod{n_1}, \quad x \equiv a_2 \pmod{n_2}, \quad \ldots, \quad x \equiv a_r \pmod{n_r},$$

have a simultaneous solution unique modulo N.

Let $N_i = N/n_i$ and $v_i \equiv N_i^{-1} \pmod{n_i}$. The simultaneous solution is given by

$$x \equiv a_i v_i N_i \pmod{N}.$$
CRT: Example
CRT: Example

Solve the following congruences simultaneously:

\[x \equiv 1 \pmod{5}, \quad x \equiv 5 \pmod{6}, \quad x \equiv 3 \pmod{7}. \]
CRT: Example

Solve the following congruences simultaneously:

\[x \equiv 1 \pmod{5}, \quad x \equiv 5 \pmod{6}, \quad x \equiv 3 \pmod{7}. \]

- \(n_1 = 5, \ n_2 = 6 \) and \(n_3 = 7 \), so \(N = n_1 n_2 n_3 = 210. \)
- \(a_1 = 1, \ a_2 = 5 \) and \(a_3 = 3. \)
CRT: Example

- Solve the following congruences simultaneously:
 \[x \equiv 1 \pmod{5}, \quad x \equiv 5 \pmod{6}, \quad x \equiv 3 \pmod{7}. \]
- \(n_1 = 5, \; n_2 = 6 \) and \(n_3 = 7 \), so \(N = n_1 n_2 n_3 = 210 \).
 \[a_1 = 1, \; a_2 = 5 \] and \(a_3 = 3 \).
- \(N_1 = n_2 n_3 = 42 \), \(N_2 = n_1 n_3 = 35 \), and \(N_3 = n_1 n_2 = 30 \).
CRT: Example

Solve the following congruences simultaneously:

\[x \equiv 1 \pmod{5}, \quad x \equiv 5 \pmod{6}, \quad x \equiv 3 \pmod{7}. \]

- \(n_1 = 5, \ n_2 = 6 \) and \(n_3 = 7 \), so \(N = n_1 n_2 n_3 = 210 \).
 - \(a_1 = 1, \ a_2 = 5 \) and \(a_3 = 3 \).
- \(N_1 = n_2 n_3 = 42, \ N_2 = n_1 n_3 = 35, \) and \(N_3 = n_1 n_2 = 30 \).
- \(v_1 \equiv N_1^{-1} \equiv 42^{-1} \equiv 2^{-1} \equiv 3 \pmod{5} \).
 - \(v_2 \equiv N_2^{-1} \equiv 35^{-1} \equiv 5^{-1} \equiv 5 \pmod{6} \).
 - \(v_3 \equiv N_3^{-1} \equiv 30^{-1} \equiv 2^{-1} \equiv 4 \pmod{7} \).

Public-key Cryptography: Theory and Practice
Abhijit Das
CRT: Example

Solve the following congruences simultaneously:

\[x \equiv 1 \pmod{5}, \quad x \equiv 5 \pmod{6}, \quad x \equiv 3 \pmod{7}. \]

\[n_1 = 5, \quad n_2 = 6 \quad \text{and} \quad n_3 = 7, \quad \text{so} \quad N = n_1 n_2 n_3 = 210. \]

\[a_1 = 1, \quad a_2 = 5 \quad \text{and} \quad a_3 = 3. \]

\[N_1 = n_2 n_3 = 42, \quad N_2 = n_1 n_3 = 35, \quad \text{and} \quad N_3 = n_1 n_2 = 30. \]

\[v_1 \equiv N_1^{-1} \equiv 42^{-1} \equiv 2^{-1} \equiv 3 \pmod{5}. \]

\[v_2 \equiv N_2^{-1} \equiv 35^{-1} \equiv 5^{-1} \equiv 5 \pmod{6}. \]

\[v_3 \equiv N_3^{-1} \equiv 30^{-1} \equiv 2^{-1} \equiv 4 \pmod{7}. \]

The simultaneous solution is

\[x \equiv a_1 v_1 N_1 + a_2 v_2 N_2 + a_3 v_3 N_3 \]

\[\equiv 126 + 875 + 360 \equiv 1361 \equiv 101 \pmod{210}. \]
Polynomial Congruences
Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \geq 2$. To solve: $f(x) \equiv 0 \pmod{n}$.
Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
Polynomial Congruences

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \geq 2$. To solve: $f(x) \equiv 0 \pmod{n}$.
- Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all i. Combine the solutions by CRT.
Let \(f(x) \in \mathbb{Z}[x] \) be a polynomial of degree \(d \geq 2 \).

To solve: \(f(x) \equiv 0 \pmod{n} \).

Let \(n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} \) be the prime factorization of \(n \).

Solve \(f(x) \equiv 0 \pmod{p_i^{e_i}} \) for all \(i \).

Combine the solutions by CRT.

How to solve \(f(x) \equiv 0 \pmod{p^e} \) for \(p \in \mathbb{P}, e \in \mathbb{N} \)?
Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \geq 2$. To solve: $f(x) \equiv 0 \pmod{n}$.

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.

Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all i. Combine the solutions by CRT.

How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?

Solve $f(x) \equiv 0 \pmod{p}$.
Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \geq 2$. To solve: $f(x) \equiv 0 \pmod{n}$.
Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.

- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all i. Combine the solutions by CRT.

How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?

- Solve $f(x) \equiv 0 \pmod{p}$.

Hensel lifting

Let $x \equiv \xi \pmod{p^r}$ be a solution of $f(x) \equiv 0 \pmod{p^r}$.
All solutions of $f(x) \equiv 0 \pmod{p^{r+1}}$ are given by

\[x \equiv \xi + kp^r \pmod{p^{r+1}}, \]

where

\[f'(\xi)k \equiv -\frac{f(\xi)}{p^r} \pmod{p}. \]
Multiplicative Order
Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\text{ord}_n a$ to be the smallest of the positive integers h for which $a^h \equiv 1 \pmod{n}$.
Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\text{ord}_n a$ to be the smallest of the positive integers h for which $a^h \equiv 1 \pmod{n}$.

Example: $n = 17, a = 2$. $a^1 \equiv 2 \pmod{n}$, $a^2 \equiv 4 \pmod{n}$, $a^3 \equiv 8 \pmod{n}$, $a^4 \equiv 16 \pmod{n}$, $a^5 \equiv 15 \pmod{n}$, $a^6 \equiv 13 \pmod{n}$, $a^7 \equiv 9 \pmod{n}$, and $a^8 \equiv 1 \pmod{n}$. So $\text{ord}_{17} 2 = 8$.
Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\text{ord}_n a$ to be the smallest of the positive integers h for which $a^h \equiv 1 \pmod{n}$.

Example: $n = 17, a = 2$. $a^1 \equiv 2 \pmod{17}, a^2 \equiv 4 \pmod{17}, a^3 \equiv 8 \pmod{17}, a^4 \equiv 16 \pmod{17}, a^5 \equiv 15 \pmod{17}, a^6 \equiv 13 \pmod{17}, a^7 \equiv 9 \pmod{17},$ and $a^8 \equiv 1 \pmod{17}$. So $\text{ord}_{17} 2 = 8$.

Theorem: $a^k \equiv 1 \pmod{n}$ if and only if $\text{ord}_n a \mid k$.
Let \(n \in \mathbb{N} \) and \(a \in \mathbb{Z}_n^* \). Define \(\text{ord}_n a \) to be the smallest of the positive integers \(h \) for which \(a^h \equiv 1 \pmod{n} \).

Example: \(n = 17, a = 2 \). \(a^1 \equiv 2 \pmod{n} \), \(a^2 \equiv 4 \pmod{n} \), \(a^3 \equiv 8 \pmod{n} \), \(a^4 \equiv 16 \pmod{n} \), \(a^5 \equiv 15 \pmod{n} \), \(a^6 \equiv 13 \pmod{n} \), \(a^7 \equiv 9 \pmod{n} \), and \(a^8 \equiv 1 \pmod{n} \). So \(\text{ord}_{17} 2 = 8 \).

Theorem: \(a^k \equiv 1 \pmod{n} \) if and only if \(\text{ord}_n a \mid k \).

Theorem: Let \(h = \text{ord}_n a \). Then, \(\text{ord}_n a^k = h / \gcd(h, k) \).
Let \(n \in \mathbb{N} \) and \(a \in \mathbb{Z}_n^* \). Define \(\text{ord}_n a \) to be the smallest of the positive integers \(h \) for which \(a^h \equiv 1 \pmod{n} \).

Example: \(n = 17, a = 2 \). \(a^1 \equiv 2 \pmod{n} \), \(a^2 \equiv 4 \pmod{n} \), \(a^3 \equiv 8 \pmod{n} \), \(a^4 \equiv 16 \pmod{n} \), \(a^5 \equiv 15 \pmod{n} \), \(a^6 \equiv 13 \pmod{n} \), \(a^7 \equiv 9 \pmod{n} \), and \(a^8 \equiv 1 \pmod{n} \). So \(\text{ord}_{17} 2 = 8 \).

Theorem: \(a^k \equiv 1 \pmod{n} \) if and only if \(\text{ord}_n a \mid k \).

Theorem: Let \(h = \text{ord}_n a \). Then, \(\text{ord}_n a^k = h / \gcd(h, k) \).

Theorem: \(\text{ord}_n a \mid \phi(n) \).
Primitive Root
If $\text{ord}_n a = \phi(n)$, then a is called a primitive root modulo n.
If \(\text{ord}_n a = \phi(n) \), then \(a \) is called a primitive root modulo \(n \).

Theorem (Gauss): An integer \(n > 1 \) has a primitive root if and only if \(n = 2, 4, p^e, 2p^e \), where \(p \) is an odd prime and \(e \in \mathbb{N} \).
If $\text{ord}_n a = \phi(n)$, then a is called a primitive root modulo n.

Theorem (Gauss): An integer $n > 1$ has a primitive root if and only if $n = 2, 4, p^e, 2p^e$, where p is an odd prime and $e \in \mathbb{N}$.

Example: 3 is a primitive root modulo the prime $n = 17$:

$$
\begin{array}{cccccccccccccccc}
3^k \pmod{17} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
1 & 3 & 9 & 10 & 13 & 5 & 15 & 11 & 16 & 14 & 8 & 7 & 4 & 12 \\
\end{array}
$$
Primitive Root (contd.)
Example: \(n = 2 \times 3^2 = 18 \) has a primitive root 5 with order \(\phi(18) = 6 \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5^k \pmod{18})</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: \(n = 2 \times 3^2 = 18 \) has a primitive root 5 with order \(\phi(18) = 6 \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5^k \mod 18)</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Example: \(n = 20 = 2^2 \times 5 \) does not have a primitive root. We have \(\phi(20) = 8 \), and the orders of the elements of \(\mathbb{Z}_{20}^* \) are \(\text{ord}_{20} 1 = 1 \), \(\text{ord}_{20} 3 = \text{ord}_{20} 7 = \text{ord}_{20} 13 = \text{ord}_{20} 17 = 4 \), and \(\text{ord}_{20} 9 = \text{ord}_{20} 19 = 2 \).
Quadratic Residues
Quadratic Residues

Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
Quadratic Residues

- Quadratic congruence: \(ux^2 + vx + w \equiv 0 \pmod{n} \).
- By CRT and Hensel lifting, it suffices to take \(n = p \in \mathbb{P} \).
Quadratic Residues

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
Quadratic Residues

- Quadratic congruence: \(ux^2 + vx + w \equiv 0 \pmod{n} \).
- By CRT and Hensel lifting, it suffices to take \(n = p \in \mathbb{P} \).
- Assume that \(p \neq 2 \), that is, \(p \) is odd.
- Reduce the congruence to \(x^2 \equiv a \pmod{p} \).
Quadratic Residues

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).
Quadratic Residues

- Quadratic congruence: \(ux^2 + vx + w \equiv 0 \pmod{n}\).
- By CRT and Hensel lifting, it suffices to take \(n = p \in \mathbb{P}\).
- Assume that \(p \neq 2\), that is, \(p\) is odd.
- Reduce the congruence to \(x^2 \equiv a \pmod{p}\).
- Let \(a \in \mathbb{Z}_p^*\) (that is, \(a \not\equiv 0 \pmod{p}\)).
- \(a\) is called a **quadratic residue** modulo \(p\) if \(x^2 \equiv a \pmod{p}\) is solvable.
- \(a\) is called a **quadratic non-residue** modulo \(p\) if \(x^2 \equiv a \pmod{p}\) is not solvable.
Quadratic Residues

- Quadratic congruence: \(ux^2 + vx + w \equiv 0 \pmod{n} \).
- By CRT and Hensel lifting, it suffices to take \(n = p \in \mathbb{P} \).
- Assume that \(p \neq 2 \), that is, \(p \) is odd.
- Reduce the congruence to \(x^2 \equiv a \pmod{p} \).
- Let \(a \in \mathbb{Z}_p^* \) (that is, \(a \not\equiv 0 \pmod{p} \)).
- \(a \) is called a **quadratic residue** modulo \(p \) if \(x^2 \equiv a \pmod{p} \) is solvable.
- \(a \) is called a **quadratic non-residue** modulo \(p \) if \(x^2 \equiv a \pmod{p} \) is not solvable.
- There are \((p - 1)/2 \) quadratic residues and \((p - 1)/2 \) quadratic non-residues modulo \(p \).
Quadratic Residues

- Quadratic congruence: \(ux^2 + vx + w \equiv 0 \pmod{n} \).
- By CRT and Hensel lifting, it suffices to take \(n = p \in \mathbb{P} \).
- Assume that \(p \neq 2 \), that is, \(p \) is odd.
- Reduce the congruence to \(x^2 \equiv a \pmod{p} \).
- Let \(a \in \mathbb{Z}_p^* \) (that is, \(a \not\equiv 0 \pmod{p} \)).
- \(a \) is called a **quadratic residue** modulo \(p \)
 if \(x^2 \equiv a \pmod{p} \) is solvable.
- \(a \) is called a **quadratic non-residue** modulo \(p \)
 if \(x^2 \equiv a \pmod{p} \) is not solvable.
- There are \((p - 1)/2\) quadratic residues and \((p - 1)/2\)
 quadratic non-residues modulo \(p \).
- **Example:** Take \(p = 11 \). The quadratic residues are
 \(1, 3, 4, 5, 9 \) and the non-residues are \(2, 6, 7, 8, 10 \).
Legendre Symbol
Legendre Symbol

Let p be an odd prime. Define

$$\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}$$
Let p be an odd prime. Define

$$\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}$$

Properties
Let p be an odd prime. Define

\[
\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}
\]

Properties

\[
\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right).
\]
Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}$$

Properties

- $$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$
- $$\left(\frac{1}{p}\right) = 1,$$ $$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2},$$ $$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}.$$
Let p be an odd prime. Define
\[
\left(\frac{a}{p}\right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}
\]

Properties

- \[
\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).
\]
- \[
\left(\frac{1}{p}\right) = 1, \quad \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}, \quad \left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}.
\]
- **Euler’s criterion:** \[
\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.
\]
Let \(p \) be an odd prime. Define

\[
\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.
\end{cases}
\]

Properties

- \(\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right) \).
- \(\left(\frac{1}{p} \right) = 1, \quad \left(\frac{-1}{p} \right) = (-1)^{(p-1)/2}, \quad \left(\frac{2}{p} \right) = (-1)^{(p^2-1)/8}. \)

Euler’s criterion: \(\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p} \).

Law of quadratic reciprocity: For two odd primes \(p, q \), we have \(\left(\frac{p}{q} \right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p} \right) \).
Let $n = p_1 p_2 \cdots p_t$ be an odd positive integer. Here, p_i are prime (not necessarily all distinct).
Let \(n = p_1 p_2 \cdots p_t \) be an odd positive integer. Here, \(p_i \) are prime (not necessarily all distinct).

Define \(\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right) \left(\frac{a}{p_2} \right) \cdots \left(\frac{a}{p_t} \right) \).
Let \(n = p_1 p_2 \cdots p_t \) be an odd positive integer. Here, \(p_i \) are prime (not necessarily all distinct).

Define \(\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right) \left(\frac{a}{p_2} \right) \cdots \left(\frac{a}{p_t} \right) \).

The Jacobi symbol is an extension of the Legendre symbol.
Let \(n = p_1 p_2 \cdots p_t \) be an odd positive integer. Here, \(p_i \) are prime (not necessarily all distinct).

Define \(\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right) \left(\frac{a}{p_2} \right) \cdots \left(\frac{a}{p_t} \right) \).

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, \(\left(\frac{2}{9} \right) = \left(\frac{2}{3} \right)^2 = (-1)^2 = 1 \), but the congruence \(x^2 \equiv 2 \pmod{9} \) has no solutions.
Let \(n = p_1p_2 \cdots p_t \) be an odd positive integer. Here, \(p_i \) are prime (not necessarily all distinct).

Define \(\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right) \left(\frac{a}{p_2} \right) \cdots \left(\frac{a}{p_t} \right) \).

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, \(\left(\frac{2}{9} \right) = \left(\frac{2}{3} \right)^2 = (-1)^2 = 1 \), but the congruence \(x^2 \equiv 2 \pmod{9} \) has no solutions.
- The Jacobi symbol satisfies the law of quadratic reciprocity:
 \[
 \left(\frac{a}{b} \right) = (-1)^{(a-1)(b-1)/4} \left(\frac{b}{a} \right)
 \]
 for two odd integers \(a, b \).
Let $n = p_1p_2 \cdots p_t$ be an odd positive integer. Here, p_i are prime (not necessarily all distinct).

Define \[
\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right) \left(\frac{a}{p_2} \right) \cdots \left(\frac{a}{p_t} \right).
\]

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, \[
\left(\frac{2}{9} \right) = \left(\frac{2}{3} \right)^2 = (-1)^2 = 1,
\]
 but the congruence $x^2 \equiv 2 \pmod{9}$ has no solutions.
- The Jacobi symbol satisfies the law of quadratic reciprocity:
 \[
 \left(\frac{a}{b} \right) = (-1)^{(a-1)(b-1)/4} \left(\frac{b}{a} \right)
 \]
 for two odd integers a, b.
- The Jacobi symbol leads to an efficient algorithm for the computation of the Legendre symbol.
<table>
<thead>
<tr>
<th>Number Theory</th>
<th>Algebra</th>
<th>Elliptic Curves</th>
<th>Divisibility</th>
<th>Congruence</th>
<th>Quadratic Residues</th>
</tr>
</thead>
</table>

Topics From Analytic Number Theory
The prime number theorem (PNT)

Let x be a positive real number, and $\pi(x)$ the number of primes $\leq x$. Then, $\pi(x) \to x/\ln x$ as $x \to \infty$.
The prime number theorem (PNT)

Let \(x \) be a positive real number, and \(\pi(x) \) the number of primes \(\leq x \). Then, \(\pi(x) \to x / \ln x \) as \(x \to \infty \).

Density of smooth integers

Let \(x, y \) be positive real numbers with \(x > y \), \(u = \ln x / \ln y \), and \(\psi(x, y) \) the fraction of positive integers \(\leq x \) with all prime factors \(\leq y \). For \(u \to \infty \) and \(y \geq \ln^2 x \), we have
\[
\psi(x, y) \to u^{-u + o(u)} = e^{-[(1+o(1))u \ln u]}.
\]
Part 2: Algebra
A **group** \((G, \Diamond)\) is a set \(G\) with a binary operation \(\Diamond\), having the following properties.
A group \((G, \diamond)\) is a set \(G\) with a binary operation \(\diamond\), having the following properties.

- \(\diamond\) is associative:
 \[a \diamond (b \diamond c) = (a \diamond b) \diamond c\] for all \(a, b, c \in G\).
A group \((G, \Diamond)\) is a set \(G\) with a binary operation \(\Diamond\), having the following properties.

- \(\Diamond\) is **associative**:
 \[a \Diamond (b \Diamond c) = (a \Diamond b) \Diamond c \text{ for all } a, b, c \in G. \]

- Existence of an identity element:
 There exists \(e \in G\) such that \(a \Diamond e = e \Diamond a = a\) for all \(a \in G\).
A group \((G, \diamond)\) is a set \(G\) with a binary operation \(\diamond\), having the following properties.

- \(\diamond\) is **associative**:
 \[a \diamond (b \diamond c) = (a \diamond b) \diamond c \text{ for all } a, b, c \in G. \]

- Existence of an identity element:
 There exists \(e \in G\) such that \(a \diamond e = e \diamond a = a\) for all \(a \in G\).

- Existence of **inverse**:
 For all \(a \in G\), there exists \(b \in G\) with \(a \diamond b = b \diamond a = e\).
A group \((G, \diamond)\) is a set \(G\) with a binary operation \(\diamond\), having the following properties.

- \(\diamond\) is associative:
 \[a \diamond (b \diamond c) = (a \diamond b) \diamond c\] for all \(a, b, c \in G\).

- Existence of an identity element:
 There exists \(e \in G\) such that \(a \diamond e = e \diamond a = a\) for all \(a \in G\).

- Existence of inverse:
 For all \(a \in G\), there exists \(b \in G\) with \(a \diamond b = b \diamond a = e\).

A group \(G = (G, \diamond)\) is called **Abelian** or **commutative**, if \(\diamond\) is commutative, that is, \(a \diamond b = b \diamond a\) for all \(a, b \in G\).
Examples
Examples

- \mathbb{Z} under integer addition
Examples

- \mathbb{Z} under integer addition
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
Examples

- \mathbb{Z} under integer addition
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication
Examples

- \(\mathbb{Z} \) under integer addition
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) under addition
- \(\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \) under multiplication
- \(\mathbb{Z}_n \) under addition modulo \(n \)
Examples

- \(\mathbb{Z} \) under integer addition
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) under addition
- \(\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \) under multiplication
- \(\mathbb{Z}_n \) under addition modulo \(n \)
- \(\mathbb{Z}_n^* \) under multiplication modulo \(n \)
Examples

- \(\mathbb{Z} \) under integer addition
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) under addition
- \(\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \) under multiplication
- \(\mathbb{Z}_n \) under addition modulo \(n \)
- \(\mathbb{Z}_n^* \) under multiplication modulo \(n \)
- The set of all \(m \times n \) real matrices under matrix addition
Examples

- \mathbb{Z} under integer addition
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo n
- The set of all $m \times n$ real matrices under matrix addition
- The set of all $n \times n$ invertible real matrices under matrix multiplication. This group is called the general linear group GL_n and is not Abelian.
Examples

- \(\mathbb{Z} \) under integer addition
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) under addition
- \(\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^* \) under multiplication
- \(\mathbb{Z}_n \) under addition modulo \(n \)
- \(\mathbb{Z}_n^* \) under multiplication modulo \(n \)
- The set of all \(m \times n \) real matrices under matrix addition
- The set of all \(n \times n \) invertible real matrices under matrix multiplication. This group is called the general linear group \(GL_n \) and is not Abelian.
- The set of all bijective function \(f : S \rightarrow S \) (for any set \(S \)) under composition of functions. This group is not Abelian, in general.
Subgroups

Let \((G, \Diamond)\) be a group and \(H \subseteq G\).
Subgroups

Let \((G, \odot)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \odot)\) is a group.
Subgroups

Let \((G, \diamond)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamond)\) is a group.
- **Theorem**: \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
Subgroups

Let \((G, \diamond)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamond)\) is a group.
- **Theorem:** \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
- **Theorem:** If \(G\) is finite, then \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation.
Let \((G, \diamond)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamond)\) is a group.
- **Theorem:** \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
- **Theorem:** If \(G\) is finite, then \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation.
- **Lagrange’s Theorem:** If \(G\) is a finite group and \(H\) a subgroup of \(G\), then \(|H|\) divides \(|G|\).
Let \((G, \diamond)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamond)\) is a group.
- **Theorem:** \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
- **Theorem:** If \(G\) is finite, then \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation.
- **Lagrange’s Theorem:** If \(G\) is a finite group and \(H\) a subgroup of \(G\), then \(|H|\) divides \(|G|\).
- **Examples**
Let (G, \Diamond) be a group and $H \subseteq G$.

- H is called a **subgroup** of G if (H, \Diamond) is a group.

Theorem: H is a subgroup of G if and only if H is closed under the group operation and the inverse.

Theorem: If G is finite, then H is a subgroup of G if and only if H is closed under the group operation.

Lagrange’s Theorem: If G is a finite group and H a subgroup of G, then $|H|$ divides $|G|$.

Examples
- $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.
Let \((G, \diamond)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamond)\) is a group.
- **Theorem:** \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
- **Theorem:** If \(G\) is finite, then \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation.
- **Lagrange’s Theorem:** If \(G\) is a finite group and \(H\) a subgroup of \(G\), then \(|H|\) divides \(|G|\).
- **Examples**
 - \((\mathbb{Z}, +)\) is a subgroup of \((\mathbb{R}, +)\).
 - \((\mathbb{Q}^*, \times)\) is a subgroup of \((\mathbb{C}^*, \times)\).
Subgroups

Let \((G, \diamondsuit)\) be a group and \(H \subseteq G\).

- \(H\) is called a **subgroup** of \(G\) if \((H, \diamondsuit)\) is a group.
- **Theorem:** \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation and the inverse.
- **Theorem:** If \(G\) is finite, then \(H\) is a subgroup of \(G\) if and only if \(H\) is closed under the group operation.
- **Lagrange’s Theorem:** If \(G\) is a finite group and \(H\) a subgroup of \(G\), then \(|H|\) divides \(|G|\).

Examples
- \((\mathbb{Z}, +)\) is a subgroup of \((\mathbb{R}, +)\).
- \((\mathbb{Q}^*, \times)\) is a subgroup of \((\mathbb{C}^*, \times)\).
- The set of all \(n \times n\) real matrices of determinant 1 is a subgroup of \(GL_n\).
Let \((G, \Diamond)\) and \((G', \Diamond')\) be groups and \(f : G \to G'\) a function.
Homomorphisms of Groups

Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \rightarrow G'\) a function.

- \(f\) is called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).
Homomorphisms of Groups

Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \rightarrow G'\) a function.

- \(f\) is called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).

- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \rightarrow G\) is again a homomorphism.
Homomorphisms of Groups

Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \rightarrow G'\) a function.

- \(f\) is called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).

- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \rightarrow G\) is again a homomorphism.

- An isomorphism \(G \rightarrow G\) is called an **automorphism**.
Homomorphisms of Groups

Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \to G'\) a function.
- \(f\) is a called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).
- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \to G\) is again a homomorphism.
- An isomorphism \(G \to G\) is called an **automorphism**.

Examples
Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \to G'\) a function.

- \(f\) is a called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).

- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \to G\) is again a homomorphism.

- An isomorphism \(G \to G\) is called an **automorphism**.

Examples

- The map \(z \mapsto \bar{z}\) (complex conjugation) is an automorphism of both \((\mathbb{C}, +)\) and \((\mathbb{C}^*, \times)\).
Homomorphisms of Groups

Let \((G, \cdot)\) and \((G', \cdot')\) be groups and \(f : G \rightarrow G'\) a function.

- \(f\) is called a **homomorphism** if \(f(a \cdot b) = f(a) \cdot' f(b)\) for all \(a, b \in G\).
- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \rightarrow G\) is again a homomorphism.
- An isomorphism \(G \rightarrow G\) is called an **automorphism**.
- **Examples**
 - The map \(z \mapsto \bar{z}\) (complex conjugation) is an automorphism of both \((\mathbb{C}, +)\) and \((\mathbb{C}^*, \times)\).
 - The map \(\mathbb{Z} \rightarrow \mathbb{Z}_n\) taking \(a \mapsto a \mod n\) is a homomorphism.
Homomorphisms of Groups

Let \((G, \diamond)\) and \((G', \diamond')\) be groups and \(f : G \to G'\) a function.

- \(f\) is a called a **homomorphism** if \(f(a \diamond b) = f(a) \diamond' f(b)\) for all \(a, b \in G\).

- A bijective homomorphism \(f\) is called an **isomorphism**, denoted \(G \cong G'\). In this case, \(f^{-1} : G' \to G\) is again a homomorphism.

- An isomorphism \(G \to G\) is called an **automorphism**.

Examples

- The map \(z \mapsto \bar{z}\) (complex conjugation) is an automorphism of both \((\mathbb{C}, +)\) and \((\mathbb{C}^*, \times)\).
- The map \(\mathbb{Z} \to \mathbb{Z}_n\) taking \(a \mapsto a \mod n\) is a homomorphism.
- Let \(\gcd(a, n) = 1\). The map \(\mathbb{Z}_n^* \to \mathbb{Z}_n^*\) taking \(x \mapsto ax \mod n\) is an automorphism of \(\mathbb{Z}_n^*\).
Let $G = (G, \cdot)$ be a multiplicative group.
Cyclic Groups

Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.
Cyclic Groups

Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.

- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique $r \in \{0, 1, 2, \ldots, r - 1\}$.
Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.

- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique $r \in \{0, 1, 2, \ldots, r - 1\}$.

Theorem: Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.
Cyclic Groups

Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.

- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique $r \in \{0, 1, 2, \ldots, r - 1\}$.

Theorem: Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.

Theorem: Every subgroup of a cyclic group is again cyclic.
Cyclic Groups

Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.

- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique $r \in \{0, 1, 2, \ldots, r - 1\}$.

Theorem: Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.

- **Theorem:** Every subgroup of a cyclic group is again cyclic.

- **Theorem:** Let G be a finite cyclic group, and H a subgroup of size m. An element $a \in G$ belongs to H if and only if $a^m = e$.

Public-key Cryptography: Theory and Practice

Abhijit Das
Cyclic Groups (contd.)

Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).
Cyclic Groups (contd.)

Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m-1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).
Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m - 1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).

- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).
Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m - 1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).

- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).

- By Lagrange’s theorem, \(m \mid n\).
Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set
 \[
 \{a^r \mid r = 0, 1, 2, \ldots, m - 1\},
 \]
 where \(m\) is the smallest positive integer with the property that \(a^m = e\).

- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).

- By Lagrange’s theorem, \(m \mid n\).

- \(a\) is a generator of \(G\) if \(m = n\).
Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set
 \[\{ a^r \mid r = 0, 1, 2, \ldots, m - 1 \} \], where \(m\) is the smallest positive integer with the property that \(a^m = e\).
- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).
- By Lagrange’s theorem, \(m \mid n\).
- \(a\) is a generator of \(G\) if \(m = n\).
- \(G\) contains exactly \(\phi(n)\) generators.

Examples
Cyclic Groups (contd.)

Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m - 1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).
- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).
- By Lagrange’s theorem, \(m \mid n\).
- \(a\) is a generator of \(G\) if \(m = n\).
- \(G\) contains exactly \(\phi(n)\) generators.

Examples

- \(\mathbb{Z}_n^*\) (under modular multiplication) is cyclic if and only if \(n\) is 2, 4, \(p^e\) or \(2p^e\) for an odd prime \(p\) and for \(e \in \mathbb{N}\).
Cyclic Groups (contd.)

Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m - 1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).
- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).
- By Lagrange’s theorem, \(m \mid n\).
- \(a\) is a generator of \(G\) if \(m = n\).
- \(G\) contains exactly \(\phi(n)\) generators.

Examples

- \(\mathbb{Z}_n^*\) (under modular multiplication) is cyclic if and only if \(n\) is 2, 4, \(p^e\) or \(2p^e\) for an odd prime \(p\) and for \(e \in \mathbb{N}\).
- In particular, \(\mathbb{Z}_p^*\) is cyclic for every \(p \in \mathbb{P}\).
Cyclic Groups (contd.)

Let \((G, \cdot)\) be a finite cyclic group of size \(n\). Let \(a \in G\).

- The **subgroup generated by** \(a\) is the set \(\{a^r \mid r = 0, 1, 2, \ldots, m - 1\}\), where \(m\) is the smallest positive integer with the property that \(a^m = e\).
- \(m\) is called the **order** of \(a\), denoted \(\text{ord}(a)\).
- By Lagrange’s theorem, \(m \mid n\).
- \(a\) is a generator of \(G\) if \(m = n\).
- \(G\) contains exactly \(\phi(n)\) generators.

Examples

- \(\mathbb{Z}_n^*\) (under modular multiplication) is cyclic if and only if \(n\) is \(2, 4, p^e\) or \(2p^e\) for an odd prime \(p\) and for \(e \in \mathbb{N}\).
- In particular, \(\mathbb{Z}_p^*\) is cyclic for every \(p \in \mathbb{P}\).
- The number of generators of \(\mathbb{Z}_p^*\) is \(\phi(p - 1)\).
A **ring** \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:
A ring \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:

- \((R, +)\) is an **Abelian group**.
A ring \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:

- \((R, +)\) is an **Abelian group**.
- \(\cdot\) is **associative**:
 \[
 a \cdot (b \cdot c) = (a \cdot b) \cdot c \text{ for all } a, b, c \in R.
 \]
A ring \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:

- \((R, +)\) is an **Abelian group**.
- \(\cdot\) is **associative**:
 \[a \cdot (b \cdot c) = (a \cdot b) \cdot c\] for all \(a, b, c \in R\).
- \(\cdot\) is **commutative**:
 \[a \cdot b = b \cdot a\] for all \(a, b \in R\).
A **ring** \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:

- \((R, +)\) is an **Abelian group**.
- \(\cdot\) is **associative**:
 \[a \cdot (b \cdot c) = (a \cdot b) \cdot c \text{ for all } a, b, c \in R. \]
- \(\cdot\) is **commutative**:
 \[a \cdot b = b \cdot a \text{ for all } a, b \in R. \]
- **Existence of multiplicative identity**:
 There exists an element \(1 \in R\) such that \(a \cdot 1 = 1 \cdot a = a\) for all \(a \in R\).
A **ring** \((R, +, \cdot)\) (commutative with identity) is a set \(R\) with two binary operations \(+\) and \(\cdot\), having the properties:

- \((R, +)\) is an **Abelian group**.
- \(\cdot\) is **associative**:
 \[a \cdot (b \cdot c) = (a \cdot b) \cdot c \text{ for all } a, b, c \in R. \]
- \(\cdot\) is **commutative**:
 \[a \cdot b = b \cdot a \text{ for all } a, b \in R. \]
- **Existence of multiplicative identity**:
 There exists an element \(1 \in R\) such that \(a \cdot 1 = 1 \cdot a = a\) for all \(a \in R\).
- \(\cdot\) is **distributive** over \(+\):
 \[a \cdot (b + c) = (a \cdot b) + (a \cdot c) \text{ and } (a + b) \cdot c = (a \cdot c) + (b \cdot c) \]
 for all \(a, b, c \in R\).
Let \((R, +, \cdot)\) be a ring.
Integral Domains and Fields

Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the **zero ring**).
Integral Domains and Fields

Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the zero ring).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a zero divisor.
Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the zero ring).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a zero divisor.
- \(R\) is called an integral domain if \(R\) is not the zero ring and \(R\) contains no non-zero zero divisors.
Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the \textbf{zero ring}).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a \textbf{zero divisor}.
- \(R\) is called an \textbf{integral domain} if \(R\) is not the zero ring and \(R\) contains no non-zero zero divisors.
- An element \(a \in R\) is called a \textbf{unit}, if there exists \(b \in R\) with \(ab = ba = 1\). The set of all units of \(R\) is a multiplicative group denoted \(R^*\).
Integral Domains and Fields

Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the zero ring).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a zero divisor.
- \(R\) is called an integral domain if \(R\) is not the zero ring and \(R\) contains no non-zero zero divisors.
- An element \(a \in R\) is called a unit, if there exists \(b \in R\) with \(ab = ba = 1\). The set of all units of \(R\) is a multiplicative group denoted \(R^*\).
- \(R\) is called a field, if \(R\) is not the zero ring, and every non-zero element of \(R\) is a unit (\(R^* = R \setminus \{0\}\)).
Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the **zero ring**).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a **zero divisor**.
- \(R\) is called an **integral domain** if \(R\) is not the zero ring and \(R\) contains no non-zero zero divisors.
- An element \(a \in R\) is called a **unit**, if there exists \(b \in R\) with \(ab = ba = 1\). The set of all units of \(R\) is a multiplicative group denoted \(R^*\).
- \(R\) is called a **field**, if \(R\) is not the zero ring, and every non-zero element of \(R\) is a unit \((R^* = R \setminus \{0\})\).
- **Theorem:** Every field is an integral domain.
Let \((R, +, \cdot)\) be a ring.

- If \(0 = 1\) in \(R\), then \(R = \{0\}\) (the zero ring).
- Let \(a \in R\). If there exists a non-zero \(b \in R\) with \(ab = 0\), then \(a\) is called a zero divisor.
- \(R\) is called an integral domain if \(R\) is not the zero ring and \(R\) contains no non-zero zero divisors.
- An element \(a \in R\) is called a unit, if there exists \(b \in R\) with \(ab = ba = 1\). The set of all units of \(R\) is a multiplicative group denoted \(R^*\).
- \(R\) is called a field, if \(R\) is not the zero ring, and every non-zero element of \(R\) is a unit \((R^* = R \setminus \{0\})\).

Theorem: Every field is an integral domain.

Theorem: Every finite integral domain is a field.
Rings: Examples
Rings: Examples

- \(\mathbb{Z} \) is an integral domain, but not a field.
Rings: Examples

- \(\mathbb{Z} \) is an integral domain, but not a field.
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields.
Rings: Examples

- \mathbb{Z} is an integral domain, but not a field.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
Rings: Examples

- \(\mathbb{Z} \) is an integral domain, but not a field.
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields.
- \(\mathbb{Z}_n \) is a ring.
- \(\mathbb{Z}_n \) is an integral domain (equivalently a field) if and only if \(n \) is prime.

Rings: Examples

- \mathbb{Z} is an integral domain, but not a field.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- \mathbb{Z}_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set $R[x]$ of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set $R[x_1, x_2, \ldots, x_n]$ of all n-variable polynomials with coefficients from R is a ring.

Rings: Examples

- \(\mathbb{Z} \) is an integral domain, but not a field.
- \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields.
- \(\mathbb{Z}_n \) is a ring.
- \(\mathbb{Z}_n \) is an integral domain (equivalently a field) if and only if \(n \) is prime.
- Let \(R \) be a ring. The set \(R[x] \) of all polynomials in one variable \(x \) and with coefficients from \(R \) is a ring. Likewise, the set \(R[x_1, x_2, \ldots, x_n] \) of all \(n \)-variable polynomials with coefficients from \(R \) is a ring.
- If \(R \) is an integral domain, then so also are \(R[x] \) and \(R[x_1, x_2, \ldots, x_n] \).
Rings: Examples

- \mathbb{Z} is an integral domain, but not a field.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- \mathbb{Z}_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set $R[x]$ of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set $R[x_1, x_2, \ldots, x_n]$ of all n-variable polynomials with coefficients from R is a ring.
- If R is an integral domain, then so also are $R[x]$ and $R[x_1, x_2, \ldots, x_n]$.
- $R[x]$ is not a field (even if R is a field).
Characteristics of Rings

Let $R = (R, +, \cdot)$ be a ring.
Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char} \ R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1 \ (m \text{ times}) = 0$.
Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char } R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) $= 0$.

- If no such integer exists, we say $\text{char } R = 0$.

Characteristics of Rings

Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char } R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.

- If no such integer exists, we say $\text{char } R = 0$.

- **Examples**
Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char } R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.

- If no such integer exists, we say $\text{char } R = 0$.

Examples

- The characteristic of \mathbb{Z}, \mathbb{R}, \mathbb{Q} or \mathbb{C} is 0.
Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char } R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) $= 0$.

- If no such integer exists, we say $\text{char } R = 0$.

Examples

- The characteristic of \mathbb{Z}, \mathbb{R}, \mathbb{Q} or \mathbb{C} is 0.
- The characteristic of \mathbb{Z}_n is n.
Let $R = (R, +, \cdot)$ be a ring.

- The **characteristic** of R, denoted $\text{char } R$, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) $= 0$.

- If no such integer exists, we say $\text{char } R = 0$.

Examples

- The characteristic of \mathbb{Z}, \mathbb{R}, \mathbb{Q} or \mathbb{C} is 0.
- The characteristic of \mathbb{Z}_n is n.
- Let a field F have positive characteristic p. Then, p is prime.
Homomorphisms of Rings

Let R and S be rings, and $f : R \rightarrow S$ a function.
Homomorphisms of Rings

Let R and S be rings, and $f : R \to S$ a function.

- f is called a **homomorphism** if the following conditions are satisfied:

 $f(a + b) = f(a) + f(b)$ for every $a, b \in R$,

 $f(ab) = f(a)f(b)$ for every $a, b \in R$, and

 $f(1_R) = 1_S$.
Let R and S be rings, and $f : R \to S$ a function.

- f is called a **homomorphism** if the following conditions are satisfied:
 \[
 f(a + b) = f(a) + f(b) \text{ for every } a, b \in R, \\
 f(ab) = f(a)f(b) \text{ for every } a, b \in R, \text{ and} \\
 f(1_R) = 1_S.
 \]

- A bijective homomorphism $f : R \to S$ is called an **isomorphism**. In that case, $f^{-1} : S \to R$ is again a homomorphism.
Let \(R \) and \(S \) be rings, and \(f : R \to S \) a function.

- \(f \) is called a **homomorphism** if the following conditions are satisfied:
 \[
 f(a + b) = f(a) + f(b) \quad \text{for every } a, b \in R,

 f(ab) = f(a)f(b) \quad \text{for every } a, b \in R, \text{ and}

 f(1_R) = 1_S.
 \]

- A bijective homomorphism \(f : R \to S \) is called an **isomorphism**. In that case, \(f^{-1} : S \to R \) is again a homomorphism.

- An **automorphism** of \(R \) is an isomorphism \(f : R \to R \).
Homomorphisms of Rings

Let \(R \) and \(S \) be rings, and \(f : R \rightarrow S \) a function.

- \(f \) is called a **homomorphism** if the following conditions are satisfied:

 \[
 f(a + b) = f(a) + f(b) \quad \text{for every } a, b \in R,
 \]

 \[
 f(ab) = f(a)f(b) \quad \text{for every } a, b \in R, \text{ and}
 \]

 \[
 f(1_R) = 1_S.
 \]

- A bijective homomorphism \(f : R \rightarrow S \) is called an **isomorphism**. In that case, \(f^{-1} : S \rightarrow R \) is again a homomorphism.

- An **automorphism** of \(R \) is an isomorphism \(f : R \rightarrow R \).

Examples
Homomorphisms of Rings

Let R and S be rings, and $f : R \rightarrow S$ a function.

- f is called a **homomorphism** if the following conditions are satisfied:

 \[
 f(a + b) = f(a) + f(b) \text{ for every } a, b \in R, \\
 f(ab) = f(a)f(b) \text{ for every } a, b \in R, \text{ and} \\
 f(1_R) = 1_S.
 \]

- A bijective homomorphism $f : R \rightarrow S$ is called an **isomorphism**. In that case, $f^{-1} : S \rightarrow R$ is again a homomorphism.

- An **automorphism** of R is an isomorphism $f : R \rightarrow R$.

Examples

- Complex conjugation ($z \mapsto \bar{z}$) is an automorphism of \mathbb{C}.

Public-key Cryptography: Theory and Practice

Abhijit Das
Homomorphisms of Rings

Let R and S be rings, and $f : R \to S$ a function.

- f is called a **homomorphism** if the following conditions are satisfied:
 \[
 f(a + b) = f(a) + f(b) \text{ for every } a, b \in R,
 \]
 \[
 f(ab) = f(a)f(b) \text{ for every } a, b \in R, \text{ and}
 \]
 \[
 f(1_R) = 1_S.
 \]

- A bijective homomorphism $f : R \to S$ is called an **isomorphism**. In that case, $f^{-1} : S \to R$ is again a homomorphism.

- An **automorphism** of R is an isomorphism $f : R \to R$.

Examples

- Complex conjugation ($z \mapsto \bar{z}$) is an automorphism of \mathbb{C}.
- The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \mod n$ is a homomorphism.
Let R and S be rings, and $f : R \to S$ a function.

- f is called a **homomorphism** if the following conditions are satisfied:
 \[
 f(a + b) = f(a) + f(b) \quad \text{for every } a, b \in R,
 \]
 \[
 f(ab) = f(a)f(b) \quad \text{for every } a, b \in R, \text{ and}
 \]
 \[
 f(1_R) = 1_S.
 \]

- A bijective homomorphism $f : R \to S$ is called an **isomorphism**. In that case, $f^{-1} : S \to R$ is again a homomorphism.

- An **automorphism** of R is an isomorphism $f : R \to R$.

Examples

- Complex conjugation ($z \mapsto \bar{z}$) is an automorphism of \mathbb{C}.
- The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \mod n$ is a homomorphism.
- A homomorphism $\mathbb{Z}_m \to \mathbb{Z}_n$ exists if and only if $n \mid m$.

Public-key Cryptography: Theory and Practice
Abhijit Das
Polynomials

Let K be a field, and $K[x]$ the polynomial ring over K.
Let K be a field, and $K[x]$ the polynomial ring over K.

Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that

\[f(x) = q(x)g(x) + r(x),\]
and\n
\[r(x) = 0 \text{ or } \deg r(x) < \deg g(x).\]
Let K be a field, and $K[x]$ the polynomial ring over K.

- **Euclidean division:** Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that
 \[
 f(x) = q(x)g(x) + r(x),
 \]
 and
 \[
 r(x) = 0 \text{ or } \deg r(x) < \deg g(x).
 \]

- We denote $q(x) = f(x) \text{ quot } g(x)$ and $r(x) = f(x) \text{ rem } g(x)$.
Let K be a field, and $K[x]$ the polynomial ring over K.

- **Euclidean division**: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that
 \[f(x) = q(x)g(x) + r(x), \text{ and} \]
 \[r(x) = 0 \text{ or } \deg r(x) < \deg g(x). \]

- We denote $q(x) = f(x) \quotient g(x)$ and $r(x) = f(x) \remainder g(x)$.

- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial $d(x)$ of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of $f(x)$ and $g(x)$.

Let K be a field, and $K[x]$ the polynomial ring over K.

- **Euclidean division:** Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that
 \[
 f(x) = q(x)g(x) + r(x), \quad \text{and}
 r(x) = 0 \text{ or } \deg r(x) < \deg g(x).
 \]
 We denote $q(x) = f(x) \ quot g(x)$ and $r(x) = f(x) \ rem g(x)$.

- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial $d(x)$ of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of $f(x)$ and $g(x)$.

- **Euclidean gcd:** $\gcd(f(x), g(x)) = \gcd(g(x), f(x) \ rem g(x))$.
Polynomials

Let K be a field, and $K[x]$ the polynomial ring over K.

- **Euclidean division:** Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that

 \[
 f(x) = q(x)g(x) + r(x), \text{ and } r(x) = 0 \text{ or } \deg r(x) < \deg g(x).
 \]

 We denote $q(x) = f(x) \text{ quot } g(x)$ and $r(x) = f(x) \text{ rem } g(x)$.

- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial $d(x)$ of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of $f(x)$ and $g(x)$.

- **Euclidean gcd:** $\gcd(f(x), g(x)) = \gcd(g(x), f(x) \text{ rem } g(x))$.

- **Extended gcd:** There exist $u(x), v(x) \in K[x]$ such that

 \[
 \gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x). \text{ We can choose } u(x), v(x) \text{ to satisfy } \deg u(x) < \deg g(x) \text{ and } \deg v(x) < \deg f(x).
 \]
Let $K \subseteq L$ be an extension of fields.
Algebraic Elements

Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.
- **Examples**
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.

Examples

- The element $\alpha = 5\sqrt{3} + \sqrt{-2} \in \mathbb{C}$ is algebraic over \mathbb{Q}, since $(\alpha^5 - 3)^2 + 2 = 0$.

Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.

Examples

- The element $\alpha = 5\sqrt{3} + \sqrt{-2} \in \mathbb{C}$ is algebraic over \mathbb{Q}, since $(\alpha^5 - 3)^2 + 2 = 0$.
- e and π are transcendental over \mathbb{Q}.
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.

Examples

- The element $\alpha = \sqrt[5]{3} + \sqrt{-2} \in \mathbb{C}$ is algebraic over \mathbb{Q}, since $(\alpha^5 - 3)^2 + 2 = 0$.
- e and π are transcendental over \mathbb{Q}.
- \mathbb{C} is an algebraic extension of \mathbb{R}.
Let $K \subseteq L$ be an extension of fields.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called **transcendental**.
- L is called an **algebraic extension** of K if every element of L is algebraic over K.

Examples

- The element $\alpha = \sqrt[5]{3} + \sqrt{-2} \in \mathbb{C}$ is algebraic over \mathbb{Q}, since $(\alpha^5 - 3)^2 + 2 = 0$.
- e and π are transcendental over \mathbb{Q}.
- \mathbb{C} is an algebraic extension of \mathbb{R}.
- \mathbb{C} is not an algebraic extension of \mathbb{Q}.
Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.
Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.

The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the \textbf{minimal polynomial} of α over K, denoted $\text{minpoly}_{\alpha,K}(x)$.
Let \(K \subset L \) be a field extension, and \(\alpha \in L \) algebraic over \(K \).

- The non-constant polynomial \(f(x) \in K[x] \) with the smallest degree, such that \(f(\alpha) = 0 \), is called the **minimal polynomial** of \(\alpha \) over \(K \), denoted \(\text{minpoly}_{\alpha,K}(x) \).

- \(\text{minpoly}_{\alpha,K}(x) \) is an irreducible polynomial of \(K[x] \).
Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.

- The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted $\text{minpoly}_{\alpha,K}(x)$.

- $\text{minpoly}_{\alpha,K}(x)$ is an irreducible polynomial of $K[x]$.

- Let $f(x) \in K[x]$. Then, $f(\alpha) = 0$ if and only if $\text{minpoly}_{\alpha,K}(x) \mid f(x)$.
Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.

- The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted $\text{minpoly}_{\alpha,K}(x)$.

- $\text{minpoly}_{\alpha,K}(x)$ is an irreducible polynomial of $K[x]$.

- Let $f(x) \in K[x]$. Then, $f(\alpha) = 0$ if and only if $\text{minpoly}_{\alpha,K}(x) \mid f(x)$.

- The roots of $\text{minpoly}_{\alpha,K}(x)$ are called **conjugates** of α (over K).
Let K be a field, and $f(x) \in K[x]$ be irreducible.
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\} = \{g(\alpha) \mid g(x) \in K[x], \deg g(x) < \deg f(x)\}.$$
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

$$= \{g(\alpha) \mid g(x) \in K[x], \deg g(x) < \deg f(x)\}.$$

- $K(\alpha)$ is a field.
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

 $$K(\alpha) = \{ g(\alpha) \mid g(x) \in K[x] \}$$

 $$= \{ g(\alpha) \mid g(x) \in K[x], \deg g(x) < \deg f(x) \}.$$

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α.
Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

$$= \{g(\alpha) \mid g(x) \in K[x], \deg g(x) < \deg f(x)\}.$$

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α.
- **Examples**
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set
 \[
 K(\alpha) = \{ g(\alpha) \mid g(x) \in K[x] \} = \{ g(\alpha) \mid g(x) \in K[x], \deg g(x) < \deg f(x) \}.
 \]

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α.

Examples
- $\mathbb{C} = \mathbb{R}(i)$ with $\text{minpoly}_{i,\mathbb{R}}(x) = x^2 + 1 \in \mathbb{R}[x]$.
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

$$K(\alpha) = \{ g(\alpha) | g(x) \in K[x] \}$$

$$= \{ g(\alpha) | g(x) \in K[x], \deg g(x) < \deg f(x) \}.$$

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α.

Examples

- $\mathbb{C} = \mathbb{R}(i)$ with $\text{minpoly}_{i,\mathbb{R}}(x) = x^2 + 1 \in \mathbb{R}[x]$.
- $\mathbb{Q}(i) = \{ a + ib | a, b \in \mathbb{Q} \}$ is a proper subfield of \mathbb{C}, obtained by adjoining a root of $x^2 + 1$ to \mathbb{Q}.
Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of $f(x)$.
- Define the set

$$K(\alpha) = \{ g(\alpha) | g(x) \in K[x] \}$$

$$= \{ g(\alpha) | g(x) \in K[x], \deg g(x) < \deg f(x) \}.$$

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α.

Examples

- $\mathbb{C} = \mathbb{R}(i)$ with $\text{minpoly}_{\mathbb{R}}(i, \mathbb{R})(x) = x^2 + 1 \in \mathbb{R}[x]$.
- $\mathbb{Q}(i) = \{ a + i b | a, b \in \mathbb{Q} \}$ is a proper subfield of \mathbb{C}, obtained by adjoining a root of $x^2 + 1$ to \mathbb{Q}.
- $\mathbb{Q}(\alpha) = \{ a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Q} \}$ is an extension of \mathbb{Q}, obtained by adjoining a root of $x^3 - 2 \in \mathbb{Q}[x]$.

A finite field K is a field with $|K|$ finite.
A finite field K is a field with $|K|$ finite. Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
A finite field K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.
A finite field K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.

Let K be a finite field with $|K| = q$.
Finite Fields

- A **finite field** K is a field with $|K|$ finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with $|K| = q$.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
Finite Fields

- A **finite field** K is a field with $|K|$ finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with $|K| = q$.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
A **finite field** K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.

Let K be a finite field with $|K| = q$.

K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.

$q = p^n$ for some $n \in \mathbb{N}$.

Any two finite fields of the same size are isomorphic.
A finite field K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.

Let K be a finite field with $|K| = q$.

K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.

$q = p^n$ for some $n \in \mathbb{N}$.

Any two finite fields of the same size are isomorphic.

$\mathbb{F}_q =$ The finite field of size q.

A **finite field** K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.

Let K be a finite field with $|K| = q$.

K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.

$q = p^n$ for some $n \in \mathbb{N}$.

Any two finite fields of the same size are isomorphic.

$\mathbb{F}_q = \text{The finite field of size } q$.

Prime fields: $\mathbb{F}_p = \mathbb{Z}_p$ for $p \in \mathbb{P}$.

Public-key Cryptography: Theory and Practice
Abhijit Das
A finite field K is a field with $|K|$ finite.

Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

There are other finite fields.

Let K be a finite field with $|K| = q$.

K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.

$q = p^n$ for some $n \in \mathbb{N}$.

Any two finite fields of the same size are isomorphic.

$\mathbb{F}_q =$ The finite field of size q.

Prime fields: $\mathbb{F}_p = \mathbb{Z}_p$ for $p \in \mathbb{P}$.

Extension fields: $\mathbb{F}_{p^n} \neq \mathbb{Z}_{p^n}$ (as rings) for $p \in \mathbb{P}$ and $n \geq 2$.
Properties of Finite Fields
Properties of Finite Fields

- **Fermat’s little theorem:**
 \[\alpha^{q-1} = 1 \text{ for every } \alpha \in \mathbb{F}_q^*. \]
 \[\beta^q = \beta \text{ for every } \beta \in \mathbb{F}_q. \]
Properties of Finite Fields

- **Fermat’s little theorem:**
 \[\alpha^{q-1} = 1 \text{ for every } \alpha \in \mathbb{F}_q^*. \]
 \[\beta^q = \beta \text{ for every } \beta \in \mathbb{F}_q. \]

- The multiplicative group \(\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\} \) is cyclic.
Fermat’s little theorem:

\[\alpha^{q-1} = 1 \text{ for every } \alpha \in \mathbb{F}_q^*. \]

\[\beta^q = \beta \text{ for every } \beta \in \mathbb{F}_q. \]

The multiplicative group \(\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\} \) is cyclic.

There are \(\phi(q - 1) \) generators of \(\mathbb{F}_q^*. \)
Properties of Finite Fields

- **Fermat’s little theorem:**

 \[\alpha^{q-1} = 1 \quad \text{for every } \alpha \in \mathbb{F}_q^*. \]

 \[\beta^q = \beta \quad \text{for every } \beta \in \mathbb{F}_q. \]

- The multiplicative group \(\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\} \) is cyclic.

- There are \(\phi(q - 1) \) generators of \(\mathbb{F}_q^* \).

- Let \(\mathbb{F}_q \subseteq \mathbb{F}_{q^m} \) be an extension of finite fields, and \(d \) a positive integral divisor of \(m \). Then, there exists a unique intermediate field \(\mathbb{F}_{q^d} \) (\(\mathbb{F}_q \subseteq \mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^m} \)).
Fermat’s little theorem:

\[\alpha^{q-1} = 1 \text{ for every } \alpha \in \mathbb{F}_q^*. \]
\[\beta^q = \beta \text{ for every } \beta \in \mathbb{F}_q. \]

The multiplicative group \(\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\} \) is cyclic.

There are \(\phi(q - 1) \) generators of \(\mathbb{F}_q^*. \)

Let \(\mathbb{F}_q \subseteq \mathbb{F}_{q^m} \) be an extension of finite fields, and \(d \) a positive integral divisor of \(m \). Then, there exists a unique intermediate field \(\mathbb{F}_{q^d} \) (\(\mathbb{F}_q \subseteq \mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^m} \)).

The polynomial \(X^{q^r} - X \) is the product of all monic irreducible polynomials of \(\mathbb{F}_q[x] \) of degrees dividing \(r \).
To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.
To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of $f(x)$. Since $f(x)$ is irreducible, $\theta \not\in \mathbb{F}_p$.
Representation of Extension Fields

To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of $f(x)$. Since $f(x)$ is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent
 $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1} \mid a_i \in \mathbb{F}_p\}$.
Representation of Extension Fields

To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of $f(x)$. Since $f(x)$ is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1} | a_i \in \mathbb{F}_p\}$.
- This is called the **polynomial basis representation** of \mathbb{F}_{p^n}, because the elements of \mathbb{F}_{p^n} are \mathbb{F}_p-linear combinations of the basis elements $1, \theta, \theta^2, \ldots, \theta^{n-1}$.
Representation of Extension Fields

To represent the finite field \mathbb{F}_{p^n}, $n \geq 2$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of $f(x)$. Since $f(x)$ is irreducible, $\theta \not\in \mathbb{F}_p$.
- One can represent
 \[\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1} \mid a_i \in \mathbb{F}_p\}. \]
- This is called the **polynomial basis representation** of \mathbb{F}_{p^n}, because the elements of \mathbb{F}_{p^n} are \mathbb{F}_p-linear combinations of the basis elements $1, \theta, \theta^2, \ldots, \theta^{n-1}$.
- The irreducible polynomial $f(x)$ is called the **defining polynomial** for this representation.
Let $\mathbb{F}_q = \mathbb{F}_p^n = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1}$ and
$\beta = b_0 + b_1 \theta + b_2 \theta^2 + \cdots + b_{n-1} \theta^{n-1}$ be two elements of \mathbb{F}_q.

Arithmetic in Extension Fields
Arithmetic in Extension Fields

Let $\mathbb{F}_q = \mathbb{F}_p^n = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \cdots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q.

Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).
Let $F_q = F_p^n = F_p(\theta)$ with $f(\theta) = 0$.

Let $\alpha = a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1}$ and $\beta = b_0 + b_1 \theta + b_2 \theta^2 + \cdots + b_{n-1} \theta^{n-1}$ be two elements of F_q.

- **Addition:** $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of F_p (arithmetic modulo p).

- **Subtraction:** Similar to addition.
Let $\mathbb{F}_q = \mathbb{F}_p^n = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

Let $\alpha = a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1}$ and $\beta = b_0 + b_1 \theta + b_2 \theta^2 + \cdots + b_{n-1} \theta^{n-1}$ be two elements of \mathbb{F}_q.

- **Addition:** $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1) \theta + (a_2 + b_2) \theta^2 + \cdots + (a_{n-1} + b_{n-1}) \theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).

- **Subtraction:** Similar to addition.

- **Multiplication:** Multiply $\alpha(x)$ and $\beta(x)$ as polynomials over \mathbb{F}_p. Compute remainder $\rho(x)$ of Euclidean division of this product by $f(x)$. The coefficient arithmetic is that of \mathbb{F}_p. Take $\rho = \rho(\alpha) = \alpha \beta$.
Let $\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1 \theta + a_2 \theta^2 + \cdots + a_{n-1} \theta^{n-1}$ and $\beta = b_0 + b_1 \theta + b_2 \theta^2 + \cdots + b_{n-1} \theta^{n-1}$ be two elements of \mathbb{F}_q.

- **Addition:** $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).

- **Subtraction:** Similar to addition.

- **Multiplication:** Multiply $\alpha(x)$ and $\beta(x)$ as polynomials over \mathbb{F}_p. Compute remainder $\rho(x)$ of Euclidean division of this product by $f(x)$. The coefficient arithmetic is that of \mathbb{F}_p.
 Take $\rho = \rho(\alpha) = \alpha \beta$.

- **Inverse:** If $\alpha \neq 0$, then $\gcd(\alpha(x), f(x)) = 1 = u(x)\alpha(x) + v(x)f(x)$ (extended gcd). So $u(\theta)\alpha(\theta) = 1$, that is, $\alpha^{-1} = u(\theta)$.
Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.
Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.
Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.

Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.
Define $F_8 = F_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$F_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.

Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.

$\alpha + \beta = \theta^2 + 1$.
Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.

Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.

- $\alpha + \beta = \theta^2 + 1$.
- In a field of characteristic 2, we have $-1 = 1$, that is, subtraction is the same as addition.
Arithmetic in \mathbb{F}_8

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.

Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.

- $\alpha + \beta = \theta^2 + 1$.
- In a field of characteristic 2, we have $-1 = 1$, that is, subtraction is the same as addition.
- $\alpha \beta = (\theta + 1)(\theta^2 + \theta) = \theta^3 + \theta = (\theta^3 + \theta + 1) + 1 = 1$.
Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}$.

Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.

- $\alpha + \beta = \theta^2 + 1$.
- In a field of characteristic 2, we have $-1 = 1$, that is, subtraction is the same as addition.
- $\alpha \beta = (\theta + 1)(\theta^2 + \theta) = \theta^3 + \theta = (\theta^3 + \theta + 1) + 1 = 1$.
- $(\theta + 1)(\theta^2 + \theta) + (\theta^3 + \theta + 1) = 1$, that is, $\alpha^{-1} = \theta^2 + \theta = \beta$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.

Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.

Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.

$\alpha + \beta = 3\psi + 2 = 2$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.

Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\alpha - \beta = -\psi = 2\psi$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.

Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\alpha - \beta = -\psi = 2\psi$.
- $\alpha\beta = (\psi + 1)(2\psi + 1) = 2\psi^2 + 1 = 2(\psi^2 + 1) + 2 = 2$.
Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.

Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\alpha - \beta = -\psi = 2\psi$.
- $\alpha \beta = (\psi + 1)(2\psi + 1) = 2\psi^2 + 1 = 2(\psi^2 + 1) + 2 = 2$.
- $(\psi + 1)(\psi + 2) + 2(\psi^2 + 1) = 1$, so $\alpha^{-1} = \psi + 2$.

Public-key Cryptography: Theory and Practice
Abhijit Das
Let $\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.
Normal basis representation

Let $\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

- $f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}})$.
Let $\mathbb{F}_q = \mathbb{F}_p^n = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

- $f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}})$.
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q.
Normal basis representation

Let $\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

- $f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}})$.
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q.
- Suppose that $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p, Then, θ is called a normal element and $f(x)$ is called a normal polynomial.
Normal basis representation

Let $\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

- $f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}})$.
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q.
- Suppose that $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p, then θ is called a normal element and $f(x)$ is called a normal polynomial.
- The elements $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$ constitute a normal basis of \mathbb{F}_q over \mathbb{F}_p.
Normal basis representation

Let $\mathbb{F}_q = \mathbb{F}_p^n = \mathbb{F}_p(\theta)$ with $f(\theta) = 0$.

- $f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}})$.
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q.
- Suppose that $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p, then θ is called a normal element and $f(x)$ is called a normal polynomial.
- The elements $\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}}$ constitute a normal basis of \mathbb{F}_q over \mathbb{F}_p.
- Every element in \mathbb{F}_q can be represented uniquely as $a_0\theta + a_1\theta^p + a_2\theta^2 + \cdots + a_{n-1}\theta^{p^{n-1}}$ with each $a_i \in \mathbb{F}_p$.
Normal basis representation

Let \(\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta) \) with \(f(\theta) = 0 \).

- \(f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}}) \).
- The conjugates of \(\theta \) are \(\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}} \). They are all in \(\mathbb{F}_q \).
- Suppose that \(\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}} \) are linearly independent over \(\mathbb{F}_p \), then, \(\theta \) is called a normal element and \(f(x) \) is called a normal polynomial.
- The elements \(\theta, \theta^p, \theta^{p^2}, \ldots, \theta^{p^{n-1}} \) constitute a normal basis of \(\mathbb{F}_q \) over \(\mathbb{F}_p \).
- Every element in \(\mathbb{F}_q \) can be represented uniquely as \(a_0 \theta + a_1 \theta^p + a_2 \theta^2 + \cdots + a_{n-1} \theta^{p^{n-1}} \) with each \(a_i \in \mathbb{F}_p \).
- Normal basis representation often speeds up exponentiation in \(\mathbb{F}_q \).
Part 3: Elliptic Curves
The Weierstrass Equation

Let K be a field.
Let K be a field.

An **elliptic curve** E over K is defined by the equation:

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_i \in K.$$

The curve should be **smooth** (no singularities).
Let K be a field.

An **elliptic curve** E over K is defined by the equation:

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms
Let K be a field.

An **elliptic curve** E over K is defined by the equation:

$$E : y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

- $\text{char } K \neq 2, 3$: $y^2 = x^3 + ax + b, \ a, b \in K.$
Let K be a field.

An **elliptic curve** E over K is defined by the equation:

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

- $\text{char } K \neq 2, 3$: $y^2 = x^3 + ax + b, \ a, b \in K$.
- $\text{char } K \neq 2$: $y^2 = x^3 + b_2 x^2 + b_4 x + b_6, \ b_i \in K$.

The Weierstrass Equation

Let K be a field.

An elliptic curve E over K is defined by the equation:

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \ a_i \in K.$$

The curve should be smooth (no singularities).

Special forms

- char $K \neq 2, 3$: $y^2 = x^3 + ax + b, \ a, b \in K$.
- char $K \neq 2$: $y^2 = x^3 + b_2 x^2 + b_4 x + b_6, \ b_i \in K$.
- char $K = 2$:
 - Non-supersingular curve: $y^2 + xy = x^3 + ax^2 + b, \ a, b \in K$.
 - Supersingular curve: $y^2 + ay = x^3 + bx + c, \ a, b, c \in K$.
Elliptic Curves Over \(\mathbb{R} \): Example

(a) \(y^2 = x^3 - x + 1 \)

(b) \(y^2 = x^3 - x \)
Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:
The Elliptic Curve Group

Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:

- There is a single point at infinity on \(E\), denoted by \(O\).
The Elliptic Curve Group

Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:

- There is a single point at infinity on \(E\), denoted by \(O\).
- This point cannot be visualized in the two-dimensional \((x, y)\) plane.
The Elliptic Curve Group

Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:
- There is a single point at infinity on \(E\), denoted by \(O\).
- This point cannot be visualized in the two-dimensional \((x, y)\) plane.
- The point exists in the projective plane.
Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \textit{\(K\)-rational point} on \(E\).

Point at infinity:
- There is a single point at infinity on \(E\), denoted by \(O\).
- This point cannot be visualized in the two-dimensional \((x, y)\) plane.
- The point exists in the projective plane.

\(E(K)\) is the set of all finite \(K\)-rational points on \(E\) and the point at infinity.
The Elliptic Curve Group

Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:
- There is a single point at infinity on \(E\), denoted by \(\mathcal{O}\).
- This point cannot be visualized in the two-dimensional \((x, y)\) plane.
- The point exists in the projective plane.

\(E(K)\) is the set of all finite \(K\)-rational points on \(E\) and the point at infinity.

An additive group structure can be defined on \(E(K)\).
The Elliptic Curve Group

Any \((x, y) \in K^2\) satisfying the equation of an elliptic curve \(E\) is called a \(K\)-rational point on \(E\).

Point at infinity:
- There is a single point at infinity on \(E\), denoted by \(\mathcal{O}\).
- This point cannot be visualized in the two-dimensional \((x, y)\) plane.
- The point exists in the projective plane.

\(E(K)\) is the set of all finite \(K\)-rational points on \(E\) and the point at infinity.

An additive group structure can be defined on \(E(K)\).

\(\mathcal{O}\) acts as the identity of the group.
The Opposite of a Point

- Ordinary Points
 - P
 - Q
 - $-P$

- Special Points
 - Q
 - $-P$
 - P

(a) (b)
Addition of Two Points

Chord and tangent rule

(a) (b)
Doubling of a Point

Chord and tangent rule

(a)

(b)
Addition and Doubling Formulas

Let \(P = (h_1, k_1) \) and \(Q = (h_2, k_2) \) be finite points. Assume that \(P + Q \neq O \) and \(2P \neq O \). Let \(P + Q = (h_3, k_3) \) (Note that \(P + Q = 2P \) if \(P = Q \)).

\[
E : y^2 = x^3 + ax + b
\]

\[
-P = (h_1, -k_1)
\]

\[
h_3 = \lambda^2 - h_1 - h_2
\]

\[
k_3 = \lambda(h_1 - h_3) - k_1, \text{ where}
\]

\[
\lambda = \begin{cases}
\frac{k_2 - k_1}{h_2 - h_1}, & \text{if } P \neq Q, \\
\frac{3h_1^2 + a}{2k_1}, & \text{if } P = Q.
\end{cases}
\]
Addition and Doubling in Non-supersingular Curves

\[E : y^2 + xy = x^3 + ax^2 + b \text{ (with char } K = 2). \]

\[-P = (h_1, k_1 + h_1), \]

\[h_3 = \begin{cases}
\left(\frac{k_1 + k_2}{h_1 + h_2} \right)^2 + \frac{k_1 + k_2}{h_1 + h_2} + h_1 + h_2 + a, & \text{if } P \neq Q, \\
\frac{h_1^2 + b}{h_1^2}, & \text{if } P = Q,
\end{cases} \]

\[k_3 = \begin{cases}
\left(\frac{k_1 + k_2}{h_1 + h_2} \right) (h_1 + h_3) + h_3 + k_1, & \text{if } P \neq Q, \\
\frac{h_1^2 + \left(h_1 + \frac{k_1}{h_1} + 1 \right)}{h_1} h_3, & \text{if } P = Q.
\end{cases} \]
Addition and Doubling in Supersingular Curves

\(E : y^2 + ay = x^3 + bx + c \) (with char \(K = 2 \)).

\[
-P = (h_1, k_1 + a),
\]

\[
h_3 = \begin{cases}
(k_1 + k_2)^2 + h_1 + h_2, & \text{if } P \neq Q, \\
\frac{h_1^4 + b^2}{a^2}, & \text{if } P = Q,
\end{cases}
\]

\[
k_3 = \begin{cases}
\left(\frac{k_1 + k_2}{h_1 + h_2} \right) (h_1 + h_3) + k_1 + a, & \text{if } P \neq Q, \\
\left(\frac{h_1^2 + b}{a} \right) (h_1 + h_3) + k_1 + a, & \text{if } P = Q.
\end{cases}
\]
Example 1

Take $K = \mathbb{F}_7$ and $E_1 : y^2 = x^3 + x + 3$.

There are six points in $E_1(\mathbb{F}_7)$: $P_0 = O$, $P_1 = (4, 1)$, $P_2 = (4, 6)$, $P_3 = (5, 0)$, $P_4 = (6, 1)$ and $P_5 = (6, 6)$.

Multiples of these points

<table>
<thead>
<tr>
<th>P</th>
<th>$2P$</th>
<th>$3P$</th>
<th>$4P$</th>
<th>$5P$</th>
<th>$6P$</th>
<th>ord P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_0 = O$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$P_1 = (4, 1)$</td>
<td>(6, 6)</td>
<td>(5, 0)</td>
<td>(6, 1)</td>
<td>(4, 6)</td>
<td>O</td>
<td>6</td>
</tr>
<tr>
<td>$P_2 = (4, 6)$</td>
<td>(6, 1)</td>
<td>(5, 0)</td>
<td>(6, 6)</td>
<td>(4, 1)</td>
<td>O</td>
<td>6</td>
</tr>
<tr>
<td>$P_3 = (5, 0)$</td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$P_4 = (6, 1)$</td>
<td>(6, 6)</td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>$P_5 = (6, 6)$</td>
<td>(6, 1)</td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Example 2

Represent $\mathbb{F}_8 = \mathbb{F}_2(\xi)$, where $\xi^3 + \xi + 1 = 0$.

Consider the non-supersingular curve $E_2 : y^2 + xy = x^3 + x^2 + \xi$ over \mathbb{F}_8.

There are ten points in $E_2(\mathbb{F}_8)$:

\[
\begin{align*}
P_0 &= \mathcal{O}, \\
P_1 &= (0, \xi^2 + \xi), \\
P_2 &= (1, \xi^2), \\
P_3 &= (1, \xi^2 + 1), \\
P_4 &= (\xi, \xi^2), \\
P_5 &= (\xi, \xi^2 + \xi), \\
P_6 &= (\xi + 1, \xi^2 + 1), \\
P_7 &= (\xi + 1, \xi^2 + \xi), \\
P_8 &= (\xi^2 + \xi, 1), \\
P_9 &= (\xi^2 + \xi, \xi^2 + \xi + 1).
\end{align*}
\]
Elliptic Curves Over Finite Fields

Example 2 (contd.)

<table>
<thead>
<tr>
<th></th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
<th>8P</th>
<th>9P</th>
<th>10P</th>
<th>ord P</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P_1</td>
<td>\mathcal{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>P_2</td>
<td>P_7</td>
<td>P_6</td>
<td>P_3</td>
<td>\mathcal{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>P_3</td>
<td>P_6</td>
<td>P_7</td>
<td>P_2</td>
<td>\mathcal{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>P_4</td>
<td>P_3</td>
<td>P_9</td>
<td>P_6</td>
<td>P_1</td>
<td>P_7</td>
<td>P_8</td>
<td>P_2</td>
<td>P_5</td>
<td>\mathcal{O}</td>
<td>10</td>
</tr>
<tr>
<td>P_5</td>
<td>P_2</td>
<td>P_8</td>
<td>P_7</td>
<td>P_1</td>
<td>P_6</td>
<td>P_9</td>
<td>P_3</td>
<td>P_4</td>
<td>\mathcal{O}</td>
<td>10</td>
</tr>
<tr>
<td>P_6</td>
<td>P_2</td>
<td>P_3</td>
<td>P_7</td>
<td>\mathcal{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>P_7</td>
<td>P_3</td>
<td>P_2</td>
<td>P_6</td>
<td>\mathcal{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>P_8</td>
<td>P_6</td>
<td>P_4</td>
<td>P_2</td>
<td>P_1</td>
<td>P_3</td>
<td>P_5</td>
<td>P_7</td>
<td>P_9</td>
<td>\mathcal{O}</td>
<td>10</td>
</tr>
<tr>
<td>P_9</td>
<td>P_7</td>
<td>P_5</td>
<td>P_3</td>
<td>P_1</td>
<td>P_2</td>
<td>P_4</td>
<td>P_6</td>
<td>P_8</td>
<td>\mathcal{O}</td>
<td>10</td>
</tr>
</tbody>
</table>
Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.
Size of the Elliptic Curve Group

Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**

 $$|E(\mathbb{F}_q)| = q + 1 - t,$$

 where $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.

Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**
 \[|E(\mathbb{F}_q)| = q + 1 - t, \text{ where } -2\sqrt{q} \leq t \leq 2\sqrt{q}. \]
- t is called the **trace of Frobenius** at q.
Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**
 \[|E(\mathbb{F}_q)| = q + 1 - t, \text{ where } -2\sqrt{q} \leq t \leq 2\sqrt{q}. \]
- t is called the **trace of Frobenius** at q.
- If $t = 1$, then E is called **anomalous**.
Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:** $|E(\mathbb{F}_q)| = q + 1 - t$, where $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.
- t is called the **trace of Frobenius** at q.
- If $t = 1$, then E is called **anomalous**.
- If $p | t$, then E is called **supersingular**.
Size of the Elliptic Curve Group

Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**
 $|E(\mathbb{F}_q)| = q + 1 - t$, where $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.
- t is called the **trace of Frobenius** at q.
- If $t = 1$, then E is called **anomalous**.
- If $p \mid t$, then E is called **supersingular**.
- If $p \nmid t$, then E is called **non-supersingular**.
Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**
 $$|E(\mathbb{F}_q)| = q + 1 - t,$$
 where $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.
- t is called the **trace of Frobenius** at q.
- If $t = 1$, then E is called **anomalous**.
- If $p | t$, then E is called **supersingular**.
- If $p \nmid t$, then E is called **non-supersingular**.
- Let $\alpha, \beta \in \mathbb{C}$ satisfy $1 - tx + qx^2 = (1 - \alpha x)(1 - \beta x)$. Then,
 $$|E(\mathbb{F}_{q^m})| = q^m + 1 - (\alpha^m + \beta^m).$$
Let E be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

- **Hasse’s Theorem:**
 \[|E(\mathbb{F}_q)| = q + 1 - t, \text{ where } -2\sqrt{q} \leq t \leq 2\sqrt{q}. \]
- t is called the trace of Frobenius at q.
- If $t = 1$, then E is called anomalous.
- If $p \mid t$, then E is called supersingular.
- If $p \nmid t$, then E is called non-supersingular.
- Let $\alpha, \beta \in \mathbb{C}$ satisfy $1 - tx + qx^2 = (1 - \alpha x)(1 - \beta x)$. Then,
 \[|E(\mathbb{F}_{q^m})| = q^m + 1 - (\alpha^m + \beta^m). \]

Note: $E(\mathbb{F}_q)$ is not necessarily cyclic.
A hyperelliptic curve of genus $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2 + u(x)y = v(x),$$

where $u(x), v(x) \in K[x]$, $v(x)$ is monic, $\deg u(x) \leq g$, and $\deg v(x) = 2g + 1$.
A hyperelliptic curve of genus $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2 + u(x)y = v(x),$$

where $u(x), v(x) \in K[x]$, $v(x)$ is monic, $\deg u(x) \leq g$, and $\deg v(x) = 2g + 1$.

Elliptic curves are hyperelliptic curves of genus 1.
A **hyperelliptic curve** of **genus** \(g \in \mathbb{N} \) over a field \(K \) is defined by the equation:

\[
y^2 + u(x)y = v(x),
\]

where \(u(x), v(x) \in K[x] \), \(v(x) \) is monic, \(\deg u(x) \leq g \), and \(\deg v(x) = 2g + 1 \).

- Elliptic curves are hyperelliptic curves of genus 1.
- The curve must be smooth (no points of singularity).
A **hyperelliptic curve** of **genus** $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2 + u(x)y = v(x),$$

where $u(x), v(x) \in K[x]$, $v(x)$ is monic, $\deg u(x) \leq g$, and $\deg v(x) = 2g + 1$.

- Elliptic curves are hyperelliptic curves of genus 1.
- The curve must be smooth (no points of singularity).
- If $\text{char } K \neq 2$, then the equation can be simplified to

 $$y^2 = v(x)$$

with $v(x) \in K[x]$ monic of degree $2g + 1$.
Hyperelliptic Curves: Example

A hyperelliptic curve over \(\mathbb{R} \): \(y^2 = x(x^2 - 1)(x^2 - 2) \)
The Hyperelliptic Curve Group
A group can be defined on the rational points of a hyperelliptic curve.
A group can be defined on the rational points of a hyperelliptic curve.

The theory of divisors should be used in order to understand the construction of this group.
A group can be defined on the rational points of a hyperelliptic curve.

The theory of divisors should be used in order to understand the construction of this group.

For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.
A group can be defined on the rational points of a hyperelliptic curve.

The theory of divisors should be used in order to understand the construction of this group.

For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.

For hyperelliptic curves of genus ≥ 2, the chord-and-tangent rule holds no longer.
A group can be defined on the rational points of a hyperelliptic curve.
The theory of divisors should be used in order to understand the construction of this group.
For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.
For hyperelliptic curves of genus ≥ 2, the chord-and-tangent rule holds no longer.
The hyperelliptic curve group is also used in cryptography.