Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 2: Mathematical Concepts

Divisibility Congruence Quadratic Residues

Part 1: Number Theory

```
\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}
```

Common sets

$$\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}$$

• **Divisibility:** $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.

$$\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}$$

- **Divisibility:** $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leq |b|$.

$$\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}$$

- Divisibility: $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leq |b|$.
- Theorem: There are infinitely many primes.

$$\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}$$

- **Divisibility:** $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leq |b|$.
- Theorem: There are infinitely many primes.
- Euclidean division: Let $a, b \in \mathbb{Z}$ with b > 0. There exist unique $q, r \in \mathbb{Z}$ with a = qb + r and $0 \le r < b$.

$$\begin{array}{lll} \mathbb{N} &=& \{1,2,3,\ldots\} & \text{(Natural numbers)} \\ \mathbb{N}_0 &=& \{0,1,2,3,\ldots\} & \text{(Non-negative integers)} \\ \mathbb{Z} &=& \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} & \text{(Integers)} \\ \mathbb{P} &=& \{2,3,5,7,11,13,\ldots\} & \text{(Primes)} \end{array}$$

- **Divisibility:** $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leq |b|$.
- Theorem: There are infinitely many primes.
- Euclidean division: Let $a, b \in \mathbb{Z}$ with b > 0. There exist unique $q, r \in \mathbb{Z}$ with a = qb + r and $0 \le r < b$.
- Notations: q = a quot b, r = a rem b.

- Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:
 - (1) $d \mid a \text{ and } d \mid b$.
 - (2) If $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
 - We denote $d = \gcd(a, b)$.

- Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:
 - (1) $d \mid a \text{ and } d \mid b$.
 - (2) If $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
 - We denote $d = \gcd(a, b)$.
- Euclidean gcd: gcd(a, b) = gcd(b, a rem b) (for b > 0).

- Let a, b ∈ Z, not both zero. Then d ∈ N is called the gcd of a and b, if:
 - (1) $d \mid a \text{ and } d \mid b$.
 - (2) If $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
 - We denote $d = \gcd(a, b)$.
- Euclidean gcd: gcd(a, b) = gcd(b, a rem b) (for b > 0).
- Extended gcd: Let $a, b \in \mathbb{Z}$, not both zero. There exist $u, v \in \mathbb{Z}$ such that

$$\gcd(a,b)=ua+vb.$$

$$899 = 2 \times 319 + 261,$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$29 = 261 - 4 \times 58$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$\begin{array}{rll} 29 & = & 261-4\times58 \\ & = & 261-4\times(319-1\times261) = (-4)\times319+5\times261 \end{array}$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$29 = 261 - 4 \times 58$$

$$= 261 - 4 \times (319 - 1 \times 261) = (-4) \times 319 + 5 \times 261$$

$$= (-4) \times 319 + 5 \times (899 - 2 \times 319)$$

$$899 = 2 \times 319 + 261,$$

$$319 = 1 \times 261 + 58,$$

$$261 = 4 \times 58 + 29,$$

$$58 = 2 \times 29.$$

Therefore,
$$gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29$$

$$\begin{array}{lll} 29 & = & 261-4\times58 \\ & = & 261-4\times(319-1\times261) = (-4)\times319+5\times261 \\ & = & (-4)\times319+5\times(899-2\times319) \\ & = & 5\times899+(-14)\times319. \end{array}$$

• Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a - b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.

- Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.
- Properties of congruence

- Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.
- Properties of congruence
 - Congruence is an equivalence relation on \mathbb{Z} .

- Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.
- Properties of congruence
 - Congruence is an equivalence relation on \mathbb{Z} .
 - If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

- Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.
- Properties of congruence
 - Congruence is an equivalence relation on \mathbb{Z} .
 - If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
 - If $a \equiv b \pmod{n}$ and $d \mid n$, then $a \equiv b \pmod{d}$.

- Let $n \in \mathbb{N}$. Two integers a, b are called **congruent** modulo n, denoted $a \equiv b \pmod{n}$, if $n \mid (a b)$ or equivalently if $a \operatorname{rem} n = b \operatorname{rem} n$.
- Properties of congruence
 - Congruence is an equivalence relation on \mathbb{Z} .
 - If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
 - If $a \equiv b \pmod{n}$ and $d \mid n$, then $a \equiv b \pmod{d}$.
 - Cancellation $ab \equiv ac \pmod{n}$ if and only if $b \equiv c \pmod{n/\gcd(a,n)}$.

• \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".

- \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".
- **Complete residue system:** A collection of *n* integers, with exactly one from each equivalence class.

- \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".
- Complete residue system: A collection of n integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$

- \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".
- Complete residue system: A collection of n integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$
- Arithmetic of \mathbb{Z}_n : Integer arithmetic modulo n.

Congruence (contd.)

- \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".
- Complete residue system: A collection of n integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$
- Arithmetic of Z_n: Integer arithmetic modulo n.
- Modular inverse: $a \in \mathbb{Z}_n$ is called invertible modulo n if $ua \equiv 1 \pmod{n}$ for some $u \in \mathbb{Z}_n$.

Congruence (contd.)

- \mathbb{Z}_n = The set of equivalence classes of the relation "congruence modulo n".
- Complete residue system: A collection of n integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$
- Arithmetic of \mathbb{Z}_n : Integer arithmetic modulo n.
- Modular inverse: $a \in \mathbb{Z}_n$ is called invertible modulo n if $ua \equiv 1 \pmod{n}$ for some $u \in \mathbb{Z}_n$.
- **Theorem:** $a \in \mathbb{Z}_n$ is invertible modulo n if and only if gcd(a, n) = 1. In this case, extended gcd gives ua + vn = 1. Then, $u \equiv a^{-1} \pmod{n}$.

• Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

• Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

• Call $\phi(n) = |\mathbb{Z}_n^*|$.

• Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

- Call $\phi(n) = |\mathbb{Z}_n^*|$.
- **Example:** If p is a prime, then $\phi(p) = p 1$.

• Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo n.

- Call $\phi(n) = |\mathbb{Z}_n^*|$.
- **Example:** If p is a prime, then $\phi(p) = p 1$.
- **Example:** $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. We have $\gcd(0, 6) = 6$, $\gcd(1, 6) = 1$, $\gcd(2, 6) = 2$, $\gcd(3, 6) = 3$, $\gcd(4, 6) = 2$, and $\gcd(5, 6) = 1$. So $\mathbb{Z}_6^* = \{1, 5\}$, that is, $\phi(6) = 2$.

• Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).$$

• Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).$$

• Fermat's little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \not\mid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

• Theorem: Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).$$

- Fermat's little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.
- Euler's theorem: Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with gcd(a, n) = 1. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

• Let $d = \gcd(a, n)$. The congruence $ax \equiv b \pmod{n}$ is solvable if and only if $d \mid b$. In that case, there are exactly d solutions modulo n.

- Let $d = \gcd(a, n)$. The congruence $ax \equiv b \pmod{n}$ is solvable if and only if $d \mid b$. In that case, there are exactly d solutions modulo n.
- Chinese remainder theorem (CRT) For pairwise coprime moduli $n_1, n_2, ..., n_r$ with product $N = n_1 n_2 \cdots n_r$, the congruences

$$x \equiv a_1 \pmod{n_1}, \ x \equiv a_2 \pmod{n_2}, \ \ldots, \ x \equiv a_r \pmod{n_r},$$

have a simultaneous solution unique modulo N.

- Let $d = \gcd(a, n)$. The congruence $ax \equiv b \pmod{n}$ is solvable if and only if $d \mid b$. In that case, there are exactly d solutions modulo n.
- Chinese remainder theorem (CRT) For pairwise coprime moduli $n_1, n_2, ..., n_r$ with product $N = n_1 n_2 \cdots n_r$, the congruences

$$x \equiv a_1 \pmod{n_1}, \ x \equiv a_2 \pmod{n_2}, \ \ldots, \ x \equiv a_r \pmod{n_r},$$

have a simultaneous solution unique modulo N.

Let $N_i = N/n_i$ and $v_i \equiv N_i^{-1} \pmod{n_i}$. The simultaneous solution is given by

$$x \equiv a_i v_i N_i \pmod{N}$$
.

$$x \equiv 1 \pmod{5}$$
, $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{7}$.

$$x \equiv 1 \pmod{5}$$
, $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{7}$.

•
$$n_1 = 5$$
, $n_2 = 6$ and $n_3 = 7$, so $N = n_1 n_2 n_3 = 210$.
 $a_1 = 1$, $a_2 = 5$ and $a_3 = 3$.

$$x \equiv 1 \pmod{5}$$
, $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{7}$.

- $n_1 = 5$, $n_2 = 6$ and $n_3 = 7$, so $N = n_1 n_2 n_3 = 210$. $a_1 = 1$, $a_2 = 5$ and $a_3 = 3$.
- $N_1 = n_2 n_3 = 42$, $N_2 = n_1 n_3 = 35$, and $N_3 = n_1 n_2 = 30$.

$$x \equiv 1 \pmod{5}$$
, $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{7}$.

- $n_1 = 5$, $n_2 = 6$ and $n_3 = 7$, so $N = n_1 n_2 n_3 = 210$. $a_1 = 1$, $a_2 = 5$ and $a_3 = 3$.
- $N_1 = n_2 n_3 = 42$, $N_2 = n_1 n_3 = 35$, and $N_3 = n_1 n_2 = 30$.
- $V_1 \equiv N_1^{-1} \equiv 42^{-1} \equiv 2^{-1} \equiv 3 \pmod{5}$. • $V_2 \equiv N_2^{-1} \equiv 35^{-1} \equiv 5^{-1} \equiv 5 \pmod{6}$. • $V_3 \equiv N_3^{-1} \equiv 30^{-1} \equiv 2^{-1} \equiv 4 \pmod{7}$.

$$x \equiv 1 \pmod{5}$$
, $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{7}$.

- $n_1 = 5$, $n_2 = 6$ and $n_3 = 7$, so $N = n_1 n_2 n_3 = 210$. $a_1 = 1$, $a_2 = 5$ and $a_3 = 3$.
- $N_1 = n_2 n_3 = 42$, $N_2 = n_1 n_3 = 35$, and $N_3 = n_1 n_2 = 30$.
- $V_1 \equiv N_1^{-1} \equiv 42^{-1} \equiv 2^{-1} \equiv 3 \pmod{5}$. • $V_2 \equiv N_2^{-1} \equiv 35^{-1} \equiv 5^{-1} \equiv 5 \pmod{6}$. • $V_3 \equiv N_3^{-1} \equiv 30^{-1} \equiv 2^{-1} \equiv 4 \pmod{7}$.
- The simultaneous solution is

$$x \equiv a_1 v_1 N_1 + a_2 v_2 N_2 + a_3 v_3 N_3$$

 $\equiv 126 + 875 + 360 \equiv 1361 \equiv 101 \pmod{210}.$

• Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all *i*. Combine the solutions by CRT.

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all *i*. Combine the solutions by CRT.
- How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all *i*. Combine the solutions by CRT.
- How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?
- Solve $f(x) \equiv 0 \pmod{p}$.

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all *i*. Combine the solutions by CRT.
- How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?
- Solve $f(x) \equiv 0 \pmod{p}$.
- Hensel lifting

Let $x \equiv \xi \pmod{p^r}$ be a solution of $f(x) \equiv 0 \pmod{p^r}$. All solutions of $f(x) \equiv 0 \pmod{p^{r+1}}$ are given by $x \equiv \xi + kp^r \pmod{p^{r+1}}$,

where

$$f'(\xi)k \equiv -\frac{f(\xi)}{p'} \pmod{p}$$
.

• Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\operatorname{ord}_n a$ to be the smallest of the *positive* integers h for which $a^h \equiv 1 \pmod{n}$.

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\operatorname{ord}_n a$ to be the smallest of the *positive* integers h for which $a^h \equiv 1 \pmod{n}$.
- **Example:** n = 17, a = 2. $a^1 \equiv 2 \pmod{n}$, $a^2 \equiv 4 \pmod{n}$, $a^3 \equiv 8 \pmod{n}$, $a^4 \equiv 16 \pmod{n}$, $a^5 \equiv 15 \pmod{n}$, $a^6 \equiv 13 \pmod{n}$, $a^7 \equiv 9 \pmod{n}$, and $a^8 \equiv 1 \pmod{n}$. So ord₁₇ 2 = 8.

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\operatorname{ord}_n a$ to be the smallest of the *positive* integers h for which $a^h \equiv 1 \pmod{n}$.
- **Example:** n = 17, a = 2. $a^1 \equiv 2 \pmod{n}$, $a^2 \equiv 4 \pmod{n}$, $a^3 \equiv 8 \pmod{n}$, $a^4 \equiv 16 \pmod{n}$, $a^5 \equiv 15 \pmod{n}$, $a^6 \equiv 13 \pmod{n}$, $a^7 \equiv 9 \pmod{n}$, and $a^8 \equiv 1 \pmod{n}$. So ord₁₇ 2 = 8.
- Theorem: $a^k \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n a \mid k$.

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\operatorname{ord}_n a$ to be the smallest of the *positive* integers h for which $a^h \equiv 1 \pmod{n}$.
- **Example:** n = 17, a = 2. $a^1 \equiv 2 \pmod{n}$, $a^2 \equiv 4 \pmod{n}$, $a^3 \equiv 8 \pmod{n}$, $a^4 \equiv 16 \pmod{n}$, $a^5 \equiv 15 \pmod{n}$, $a^6 \equiv 13 \pmod{n}$, $a^7 \equiv 9 \pmod{n}$, and $a^8 \equiv 1 \pmod{n}$. So ord₁₇ 2 = 8.
- Theorem: $a^k \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n a \mid k$.
- Theorem: Let $h = \operatorname{ord}_n a$. Then, $\operatorname{ord}_n a^k = h/\gcd(h, k)$.

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_n^*$. Define $\operatorname{ord}_n a$ to be the smallest of the *positive* integers h for which $a^h \equiv 1 \pmod{n}$.
- **Example:** n = 17, a = 2. $a^1 \equiv 2 \pmod{n}$, $a^2 \equiv 4 \pmod{n}$, $a^3 \equiv 8 \pmod{n}$, $a^4 \equiv 16 \pmod{n}$, $a^5 \equiv 15 \pmod{n}$, $a^6 \equiv 13 \pmod{n}$, $a^7 \equiv 9 \pmod{n}$, and $a^8 \equiv 1 \pmod{n}$. So ord₁₇ 2 = 8.
- Theorem: $a^k \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n a \mid k$.
- Theorem: Let $h = \operatorname{ord}_n a$. Then, $\operatorname{ord}_n a^k = h/\gcd(h, k)$.
- Theorem: ord_n $a \mid \phi(n)$.

Primitive Root

Primitive Root

• If $\operatorname{ord}_n a = \phi(n)$, then a is called a primitive root modulo n.

Primitive Root

- If $\operatorname{ord}_n a = \phi(n)$, then a is called a primitive root modulo n.
- Theorem (Gauss): An integer n > 1 has a primitive root if and only if n = 2, 4, p^e, 2p^e, where p is an odd prime and e ∈ N.

Primitive Root

- If $\operatorname{ord}_n a = \phi(n)$, then a is called a primitive root modulo n.
- Theorem (Gauss): An integer n > 1 has a primitive root if and only if n = 2, 4, p^e, 2p^e, where p is an odd prime and e ∈ N.
- **Example:** 3 is a primitive root modulo the prime n = 17:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
3 ^k (mod 17)	1	3	9	10	13	5	15	11	16	14	8	7	4	12

14	15	16
2	6	1

Primitive Root (contd.)

Primitive Root (contd.)

• **Example:** $n = 2 \times 3^2 = 18$ has a primitive root 5 with order $\phi(18) = 6$:

Primitive Root (contd.)

• **Example:** $n = 2 \times 3^2 = 18$ has a primitive root 5 with order $\phi(18) = 6$:

• **Example:** $n = 20 = 2^2 \times 5$ does not have a primitive root. We have $\phi(20) = 8$, and the orders of the elements of \mathbb{Z}_{20}^* are $\operatorname{ord}_{20} 1 = 1$, $\operatorname{ord}_{20} 3 = \operatorname{ord}_{20} 7 = \operatorname{ord}_{20} 13 = \operatorname{ord}_{20} 17 = 4$, and $\operatorname{ord}_{20} 9 = \operatorname{ord}_{20} 19 = 2$.

• Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).
- a is called a quadratic residue modulo p if $x^2 \equiv a \pmod{p}$ is solvable.
 - a is called a **quadratic non-residue** modulo p if $x^2 \equiv a \pmod{p}$ is not solvable.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).
- a is called a **quadratic residue** modulo p if $x^2 \equiv a \pmod{p}$ is solvable.
 - a is called a quadratic non-residue modulo p if $x^2 \equiv a \pmod{p}$ is not solvable.
- There are (p-1)/2 quadratic residues and (p-1)/2 quadratic non-residues modulo p.

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).
- a is called a quadratic residue modulo p if $x^2 \equiv a \pmod{p}$ is solvable.
 - a is called a **quadratic non-residue** modulo p if $x^2 \equiv a \pmod{p}$ is not solvable.
- There are (p-1)/2 quadratic residues and (p-1)/2 quadratic non-residues modulo p.
- **Example:** Take p = 11. The quadratic residues are 1, 3, 4, 5, 9 and the non-residues are 2, 6, 7, 8, 10.

Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

•
$$\left(\frac{1}{p}\right) = 1$$
, $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

- $\left(\frac{1}{p}\right) = 1$, $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.
- Euler's criterion: $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.

Let p be an odd prime. Define

$$\left(\frac{a}{p} \right) = \left\{ \begin{array}{cc} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{array} \right.$$

- $\left(\frac{1}{p}\right) = 1$, $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.
- Euler's criterion: $\left(\frac{\underline{a}}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.
- Law of quadratic reciprocity: For two odd primes p, q, we have $\left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p}\right)$.

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$
.

Let $n = p_1 p_2 \cdots p_t$ be an odd positive integer. Here, p_i are prime (not necessarily all distinct).

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$
.

The Jacobi symbol is an extension of the Legendre symbol.

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$
.

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, $\left(\frac{2}{9}\right) = \left(\frac{2}{3}\right)^2 = (-1)^2 = 1$, but the congruence $x^2 \equiv 2 \pmod{9}$ has no solutions.

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$
.

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, $\left(\frac{2}{9}\right) = \left(\frac{2}{3}\right)^2 = (-1)^2 = 1$, but the congruence $x^2 \equiv 2 \pmod{9}$ has no solutions.
- The Jacobi symbol satisfies the law of quadratic reciprocity: $\left(\frac{a}{b}\right) = (-1)^{(a-1)(b-1)/4} \left(\frac{b}{a}\right)$ for two odd integers a,b.

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$
.

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, $\left(\frac{2}{9}\right) = \left(\frac{2}{3}\right)^2 = (-1)^2 = 1$, but the congruence $x^2 \equiv 2 \pmod{9}$ has no solutions.
- The Jacobi symbol satisfies the law of quadratic reciprocity: $\left(\frac{a}{b}\right) = (-1)^{(a-1)(b-1)/4} \left(\frac{b}{a}\right)$ for two odd integers a, b.
- The Jacobi symbol leads to an efficient algorithm for the computation of the Legendre symbol.

Topics From Analytic Number Theory

Topics From Analytic Number Theory

The prime number theorem (PNT)

Let x be a positive real number, and $\pi(x)$ the number of primes $\leq x$. Then, $\pi(x) \to x/\ln x$ as $x \to \infty$.

Topics From Analytic Number Theory

The prime number theorem (PNT)

Let x be a positive real number, and $\pi(x)$ the number of primes $\leq x$. Then, $\pi(x) \to x/\ln x$ as $x \to \infty$.

Density of smooth integers

Let x,y be positive real numbers with x>y, $u=\ln x/\ln y$, and $\psi(x,y)$ the fraction of positive integers $\leqslant x$ with all prime factors $\leqslant y$. For $u\to\infty$ and $y\geqslant \ln^2 x$, we have $\psi(x,y)\to u^{-u+\mathrm{o}(u)}=\mathrm{e}^{-[(1+\mathrm{o}(1))u\ln u]}$.

Broups Rings and Field Finite Fields

Part 2: Algebra

A **group** (G, \diamond) is a set G with a binary operation \diamond , having the following properties.

A **group** (G, \diamond) is a set G with a binary operation \diamond , having the following properties.

$$a \diamond (b \diamond c) = (a \diamond b) \diamond c$$
 for all $a, b, c \in G$.

A **group** (G, \diamond) is a set G with a binary operation \diamond , having the following properties.

- \diamond is <u>associative</u>: $a \diamond (b \diamond c) = (a \diamond b) \diamond c$ for all $a, b, c \in G$.
- Existence of an identity element: There exists $e \in G$ such that $a \diamond e = e \diamond a = a$ for all $a \in G$.

A **group** (G, \diamond) is a set G with a binary operation \diamond , having the following properties.

- \diamond is <u>associative</u>: $a \diamond (b \diamond c) = (a \diamond b) \diamond c$ for all $a, b, c \in G$.
- Existence of an identity element: There exists $e \in G$ such that $a \diamond e = e \diamond a = a$ for all $a \in G$.
- Existence of <u>inverse</u>:
 For all a ∈ G, there exists b ∈ G with a ⋄ b = b ⋄ a = e.

A **group** (G, \diamond) is a set G with a binary operation \diamond , having the following properties.

- \diamond is <u>associative</u>: $a \diamond (b \diamond c) = (a \diamond b) \diamond c$ for all $a, b, c \in G$.
- Existence of an identity element: There exists $e \in G$ such that $a \diamond e = e \diamond a = a$ for all $a \in G$.
- Existence of <u>inverse</u>:
 For all a ∈ G, there exists b ∈ G with a ⋄ b = b ⋄ a = e.

A group $G = (G, \diamond)$ is called **Abelian** or **commutative**, if \diamond is <u>commutative</u>, that is, $a \diamond b = b \diamond a$ for all $a, b \in G$.

Examples

ullet $\mathbb Z$ under integer addition

- $\bullet \ \mathbb{Z}$ under integer addition
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition

- Z under integer addition
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- $\bullet \ \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication

- Z under integer addition
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- \mathbb{Z}_n under addition modulo n

- Z under integer addition
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- ullet $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo n

- Z under integer addition
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- ullet $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo n
- The set of all $m \times n$ real matrices under matrix addition

- Z under integer addition
- \bullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo n
- The set of all $m \times n$ real matrices under matrix addition
- The set of all n × n invertible real matrices under matrix multiplication. This group is called the general linear group GLn and is not Abelian.

- Z under integer addition
- \bullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo n
- The set of all $m \times n$ real matrices under matrix addition
- The set of all n × n invertible real matrices under matrix multiplication. This group is called the general linear group GLn and is not Abelian.
- The set of all bijective function f: S → S (for any set S) under composition of functions. This group is not Abelian, in general.

Let (G, \diamond) be a group and $H \subseteq G$.

• H is called a **subgroup** of G if (H, \diamond) is a group.

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- Theorem: H is a subgroup of G if and only if H is closed under the group operation and the inverse.

- H is called a **subgroup** of G if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- Theorem: If G is finite, then H is a subgroup of G if and only if H is closed under the group operation.

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- Theorem: If G is finite, then H is a subgroup of G if and only if H is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- **Theorem:** If *G* is finite, then *H* is a subgroup of *G* if and only if *H* is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.
- Examples

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- **Theorem:** If *G* is finite, then *H* is a subgroup of *G* if and only if *H* is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.
- Examples
 - $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- **Theorem:** If *G* is finite, then *H* is a subgroup of *G* if and only if *H* is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.
- Examples
 - $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.
 - (\mathbb{Q}^*, \times) is a subgroup of (\mathbb{C}^*, \times) .

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- **Theorem:** If *G* is finite, then *H* is a subgroup of *G* if and only if *H* is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.
- Examples
 - $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.
 - (\mathbb{Q}^*, \times) is a subgroup of (\mathbb{C}^*, \times) .
 - The set of all $n \times n$ real matrices of determinant 1 is a subgroup of GL_n .

Let (G, \diamond) and (G', \diamond') be groups and $f : G \to G'$ a function.

• f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.
- Examples

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.
- Examples
 - The map $z \mapsto \bar{z}$ (complex conjugation) is an automorphism of both $(\mathbb{C}, +)$ and (\mathbb{C}^*, \times) .

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.
- Examples
 - The map $z \mapsto \bar{z}$ (complex conjugation) is an automorphism of both $(\mathbb{C}, +)$ and (\mathbb{C}^*, \times) .
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.

- f is a called a **homomorphism** if $f(a \diamond b) = f(a) \diamond' f(b)$ for all $a, b \in G$.
- A bijective homomorphism f is called an isomorphism, denoted G ≅ G'. In this case, f⁻¹: G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.
- Examples
 - The map $z \mapsto \bar{z}$ (complex conjugation) is an automorphism of both $(\mathbb{C}, +)$ and (\mathbb{C}^*, \times) .
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.
 - Let gcd(a, n) = 1. The map $\mathbb{Z}_n^* \to \mathbb{Z}_n^*$ taking $x \mapsto ax \text{ rem } n$ is an automorphism of \mathbb{Z}_n^* .

Let $G = (G, \cdot)$ be a multiplicative group.

• If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.
- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique $r \in \{0, 1, 2, ..., r 1\}$.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.
- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique r ∈ {0,1,2,...,r-1}.
- **Theorem:** Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.
- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique r ∈ {0,1,2,...,r-1}.
- **Theorem:** Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.
- Theorem: Every subgroup of a cyclic group is again cyclic.

- If there exists $g \in G$ such that every $a \in G$ can be written as $a = g^r$ for some $r \in \mathbb{Z}$, then G is called a **cyclic group**, and g is called a **generator** of G.
- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique r ∈ {0,1,2,...,r-1}.
- **Theorem:** Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Every finite cyclic group is isomorphic to $(\mathbb{Z}_n, +)$ for some n.
- Theorem: Every subgroup of a cyclic group is again cyclic.
- **Theorem:** Let G be a finite cyclic group, and H a subgroup of size m. An element $a \in G$ belongs to H if and only if $a^m = e$.

Let (G, \cdot) be a finite cyclic group of size n. Let $a \in G$.

• The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).
- By Lagrange's theorem, m | n.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).
- By Lagrange's theorem, m | n.
- a is a generator of G if m = n.

Let (G, \cdot) be a finite cyclic group of size n. Let $a \in G$.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).
- By Lagrange's theorem, $m \mid n$.
- a is a generator of G if m = n.
- *G* contains exactly $\phi(n)$ generators.

Examples

Let (G, \cdot) be a finite cyclic group of size n. Let $a \in G$.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).
- By Lagrange's theorem, $m \mid n$.
- a is a generator of G if m = n.
- *G* contains exactly $\phi(n)$ generators.

Examples

• \mathbb{Z}_n^* (under modular multiplication) is cyclic if and only if n is 2, 4, p^e or $2p^e$ for an odd prime p and for $e \in \mathbb{N}$.

Let (G, \cdot) be a finite cyclic group of size n. Let $a \in G$.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the order of a, denoted ord(a).
- By Lagrange's theorem, $m \mid n$.
- a is a generator of G if m = n.
- G contains exactly $\phi(n)$ generators.

Examples

- \mathbb{Z}_n^* (under modular multiplication) is cyclic if and only if n is 2, 4, p^e or $2p^e$ for an odd prime p and for $e \in \mathbb{N}$.
- In particular, \mathbb{Z}_p^* is cyclic for every $p \in \mathbb{P}$.

Let (G, \cdot) be a finite cyclic group of size n. Let $a \in G$.

- The **subgroup generated by** a is the set $\{a^r \mid r = 0, 1, 2, \dots, m-1\}$, where m is the smallest positive integer with the property that $a^m = e$.
- m is called the **order** of a, denoted ord(a).
- By Lagrange's theorem, $m \mid n$.
- a is a generator of G if m = n.
- G contains exactly $\phi(n)$ generators.

Examples

- \mathbb{Z}_n^* (under modular multiplication) is cyclic if and only if n is 2, 4, p^e or $2p^e$ for an odd prime p and for $e \in \mathbb{N}$.
- In particular, \mathbb{Z}_p^* is cyclic for every $p \in \mathbb{P}$.
- The number of generators of \mathbb{Z}_p^* is $\phi(p-1)$.

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

 \bullet (R,+) is an Abelian group.

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

- \bullet (R,+) is an Abelian group.
- · is associative:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

- \bullet (R,+) is an Abelian group.
- · is associative:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

• is <u>commutative</u>:

$$a \cdot b = b \cdot a$$
 for all $a, b \in R$.

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

- (R, +) is an Abelian group.
- · is associative:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

• is <u>commutative</u>:

$$a \cdot b = b \cdot a$$
 for all $a, b \in R$.

Existence of multiplicative identity:
 There exists an element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R.

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set R with two binary operations + and \cdot , having the properties:

- \bullet (R,+) is an Abelian group.
- is <u>associative</u>:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 for all $a, b, c \in R$.

• is commutative:

$$a \cdot b = b \cdot a$$
 for all $a, b \in R$.

- Existence of multiplicative identity:
 There exists an element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R.
- is <u>distributive</u> over +: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

for all
$$a, b, c \in R$$
.

Let $(R, +, \cdot)$ be a ring.

• If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let a ∈ R. If there exists a non-zero b ∈ R with ab = 0, then a is called a zero divisor.

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let $a \in R$. If there exists a non-zero $b \in R$ with ab = 0, then a is called a **zero divisor**.
- R is called an integral domain if R is not the zero ring and R contains no non-zero zero divisors.

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let $a \in R$. If there exists a non-zero $b \in R$ with ab = 0, then a is called a **zero divisor**.
- R is called an integral domain if R is not the zero ring and R contains no non-zero zero divisors.
- An element a ∈ R is called a unit, if there exists b ∈ R with ab = ba = 1. The set of all units of R is a multiplicative group denoted R*.

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let $a \in R$. If there exists a non-zero $b \in R$ with ab = 0, then a is called a **zero divisor**.
- R is called an integral domain if R is not the zero ring and R contains no non-zero zero divisors.
- An element a ∈ R is called a unit, if there exists b ∈ R with ab = ba = 1. The set of all units of R is a multiplicative group denoted R*.
- R Is called a **field**, if R is not the zero ring, and every non-zero element of R is a unit (R* = R \ {0}).

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let $a \in R$. If there exists a non-zero $b \in R$ with ab = 0, then a is called a **zero divisor**.
- R is called an integral domain if R is not the zero ring and R contains no non-zero zero divisors.
- An element a ∈ R is called a unit, if there exists b ∈ R with ab = ba = 1. The set of all units of R is a multiplicative group denoted R*.
- R Is called a **field**, if R is not the zero ring, and every non-zero element of R is a unit (R* = R \ {0}).
- Theorem: Every field is an integral domain.

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let $a \in R$. If there exists a non-zero $b \in R$ with ab = 0, then a is called a **zero divisor**.
- R is called an integral domain if R is not the zero ring and R contains no non-zero zero divisors.
- An element a ∈ R is called a unit, if there exists b ∈ R with ab = ba = 1. The set of all units of R is a multiplicative group denoted R*.
- R Is called a **field**, if R is not the zero ring, and every non-zero element of R is a unit (R* = R \ {0}).
- Theorem: Every field is an integral domain.
- Theorem: Every finite integral domain is a field.

ullet $\mathbb Z$ is an integral domain, but not a field.

- $\bullet \ \mathbb{Z}$ is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.

- $\bullet \ \mathbb{Z}$ is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.

- ullet \mathbb{Z} is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \bullet \mathbb{Z}_n is a ring.
- Z_n is an integral domain (equivalently a field) if and only if n is prime.

- ullet \mathbb{Z} is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- Z_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set R[x] of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set $R[x_1, x_2, \ldots, x_n]$ of all n-variable polynomials with coefficients from R is a ring.

- ullet \mathbb{Z} is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- Z_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set R[x] of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set $R[x_1, x_2, \ldots, x_n]$ of all n-variable polynomials with coefficients from R is a ring.
- If R is an integral domain, then so also are R[x] and $R[x_1, x_2, \dots, x_n]$.

- ullet $\mathbb Z$ is an integral domain, but not a field.
- ullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- Z_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set R[x] of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set $R[x_1, x_2, \ldots, x_n]$ of all n-variable polynomials with coefficients from R is a ring.
- If R is an integral domain, then so also are R[x] and $R[x_1, x_2, \dots, x_n]$.
- R[x] is not a field (even if R is a field).

Let
$$R = (R, +, \cdot)$$
 be a ring.

Let
$$R = (R, +, \cdot)$$
 be a ring.

• The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.

- The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.
- If no such integer exists, we say char R = 0.

- The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.
- If no such integer exists, we say char R = 0.
- Examples

- The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.
- If no such integer exists, we say char R = 0.
- Examples
 - The characteristic of \mathbb{Z} , \mathbb{R} , \mathbb{Q} or \mathbb{C} is 0.

- The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.
- If no such integer exists, we say char R = 0.
- Examples
 - The characteristic of \mathbb{Z} , \mathbb{R} , \mathbb{Q} or \mathbb{C} is 0.
 - The characteristic of \mathbb{Z}_n is n.

- The **characteristic** of R, denoted char R, is the smallest positive integer m such that $1 + 1 + \cdots + 1$ (m times) = 0.
- If no such integer exists, we say char R = 0.
- Examples
 - The characteristic of \mathbb{Z} , \mathbb{R} , \mathbb{Q} or \mathbb{C} is 0.
 - The characteristic of \mathbb{Z}_n is n.
 - Let a field F have positive characteristic p. Then, p is prime.

Homomorphisms of Rings

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

Homomorphisms of Rings

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

 f is called a homomorphism if the following conditions are satisfied:

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

Homomorphisms of Rings

Let *R* and *S* be rings, and $f: R \rightarrow S$ a function.

 f is called a homomorphism if the following conditions are satisfied:

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.

Let *R* and *S* be rings, and $f: R \rightarrow S$ a function.

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

- A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.
- An **automorphism** of R is an isomorphism $f: R \rightarrow R$.

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

- A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.
- An **automorphism** of R is an isomorphism $f: R \rightarrow R$.
- Examples

Let *R* and *S* be rings, and $f: R \rightarrow S$ a function.

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

- A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.
- An **automorphism** of *R* is an isomorphism $f: R \rightarrow R$.
- Examples
 - Complex conjugation $(z \mapsto \bar{z})$ is an automorphism of \mathbb{C} .

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

- A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.
- An **automorphism** of *R* is an isomorphism $f: R \rightarrow R$.
- Examples
 - Complex conjugation $(z \mapsto \overline{z})$ is an automorphism of \mathbb{C} .
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

$$f(a+b) = f(a) + f(b)$$
 for every $a, b \in R$, $f(ab) = f(a)f(b)$ for every $a, b \in R$, and $f(1_R) = 1_S$.

- A bijective homomorphism f: R → S is called an isomorphism. In that case, f⁻¹: S → R is again a homomorphism.
- An **automorphism** of *R* is an isomorphism $f: R \rightarrow R$.
- Examples
 - Complex conjugation $(z \mapsto \overline{z})$ is an automorphism of \mathbb{C} .
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.
 - A homomorphism $\mathbb{Z}_m \to \mathbb{Z}_n$ exists if and only if $n \mid m$.

Let K be a field, and K[x] the polynomial ring over K.

Let K be a field, and K[x] the polynomial ring over K.

• Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $g(x), r(x) \in K[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
, and $r(x) = 0$ or deg $r(x) < \deg g(x)$.

Let K be a field, and K[x] the polynomial ring over K.

• Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $g(x), r(x) \in K[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
, and $r(x) = 0$ or deg $r(x) < \deg g(x)$.

• We denote q(x) = f(x) quot g(x) and r(x) = f(x) rem g(x).

Let K be a field, and K[x] the polynomial ring over K.

• Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
, and $r(x) = 0$ or deg $r(x) < \deg g(x)$.

- We denote q(x) = f(x) quot g(x) and r(x) = f(x) rem g(x).
- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial d(x) of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of f(x) and g(x).

Let K be a field, and K[x] the polynomial ring over K.

• Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $g(x), r(x) \in K[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
, and $r(x) = 0$ or deg $r(x) < \deg g(x)$.

- We denote q(x) = f(x) quot g(x) and r(x) = f(x) rem g(x).
- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial d(x) of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of f(x) and g(x).
- Euclidean gcd: gcd(f(x), g(x)) = gcd(g(x), f(x) rem g(x)).

Let K be a field, and K[x] the polynomial ring over K.

• Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
, and $r(x) = 0$ or deg $r(x) < \deg g(x)$.

- We denote g(x) = f(x) quot g(x) and r(x) = f(x) rem g(x).
- For $f(x), g(x) \in K[x]$, not both zero, the monic polynomial d(x) of the largest degree with $d(x) \mid f(x)$ and $d(x) \mid g(x)$ is called the **gcd** of f(x) and g(x).
- Euclidean gcd: gcd(f(x), g(x)) = gcd(g(x), f(x) rem g(x)).
- Extended gcd: There exist u(x), $v(x) \in K[x]$ such that gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x). We can choose u(x), v(x) to satisfy deg u(x) < deg g(x) and deg v(x) < deg f(x).

Let $K \subseteq L$ be an extension of fields.

• An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples
 - The element $\alpha = \sqrt[5]{3 + \sqrt{-2}} \in \mathbb{C}$ is algebraic over \mathbb{Q} , since $(\alpha^5 3)^2 + 2 = 0$.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples
 - The element $\alpha = \sqrt[5]{3 + \sqrt{-2}} \in \mathbb{C}$ is algebraic over \mathbb{Q} , since $(\alpha^5 3)^2 + 2 = 0$.
 - e and π are transcendental over \mathbb{Q} .

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples
 - The element $\alpha = \sqrt[5]{3 + \sqrt{-2}} \in \mathbb{C}$ is algebraic over \mathbb{Q} , since $(\alpha^5 3)^2 + 2 = 0$.
 - e and π are transcendental over \mathbb{Q} .
 - ullet C is an algebraic extension of $\mathbb R$.

- An element $\alpha \in L$ is called **algebraic** over K if $f(\alpha) = 0$ for some non-constant $f(x) \in K[x]$.
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples
 - The element $\alpha = \sqrt[5]{3 + \sqrt{-2}} \in \mathbb{C}$ is algebraic over \mathbb{Q} , since $(\alpha^5 3)^2 + 2 = 0$.
 - e and π are transcendental over \mathbb{Q} .
 - \bullet \mathbb{C} is an algebraic extension of \mathbb{R} .
 - C is not an algebraic extension of Q.

Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.

• The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted minpoly_{α ,K}(x).

- The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted minpoly_{α ,K}(x).
- minpoly $\alpha K(x)$ is an irreducible polynomial of K[x].

- The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted minpoly_{α ,K}(x).
- minpoly $_{\alpha,K}(x)$ is an irreducible polynomial of K[x].
- Let $f(x) \in K[x]$. Then, $f(\alpha) = 0$ if and only if minpoly_{α,K}(x) | f(x).

- The non-constant polynomial $f(x) \in K[x]$ with the smallest degree, such that $f(\alpha) = 0$, is called the **minimal polynomial** of α over K, denoted minpoly_{α ,K}(x).
- minpoly $\alpha K(x)$ is an irreducible polynomial of K[x].
- Let $f(x) \in K[x]$. Then, $f(\alpha) = 0$ if and only if minpoly_{α,K}(x) | f(x).
- The roots of minpoly_{α,K}(x) are called conjugates of α (over K).

Let K be a field, and $f(x) \in K[x]$ be irreducible.

• Let α be a root of f(x).

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

• $K(\alpha)$ is a field.

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α .

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α .
- Examples

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α .
- Examples

•
$$\mathbb{C} = \mathbb{R}(i)$$
 with minpoly_{i, $\mathbb{R}(x) = x^2 + 1 \in \mathbb{R}[x]$.}

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α .
- Examples
 - $\mathbb{C} = \mathbb{R}(i)$ with minpoly_{i, $\mathbb{R}}(x) = x^2 + 1 \in \mathbb{R}[x]$.</sub>
 - $\mathbb{Q}(i) = \{a + ib \mid a, b \in \mathbb{Q}\}$ is a proper subfield of \mathbb{C} , obtained by adjoining a root of $x^2 + 1$ to \mathbb{Q} .

- Let α be a root of f(x).
- Define the set

$$K(\alpha) = \{g(\alpha) \mid g(x) \in K[x]\}$$

= \{g(\alpha) \| g(x) \in K[x], \deg g(x) < \deg f(x)\}.

- $K(\alpha)$ is a field.
- $K(\alpha)$ is the smallest field that contains K and α .
- Examples
 - $\mathbb{C} = \mathbb{R}(i)$ with minpoly_{i, \mathbb{R}} $(x) = x^2 + 1 \in \mathbb{R}[x]$.
 - $\mathbb{Q}(i) = \{a + ib \mid a, b \in \mathbb{Q}\}$ is a proper subfield of \mathbb{C} , obtained by adjoining a root of $x^2 + 1$ to \mathbb{Q} .
 - $\mathbb{Q}(\alpha) = \{a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbb{Q}\}$ is an extension of \mathbb{Q} , obtained by adjoining a root of $x^3 2 \in \mathbb{Q}[x]$.

Finite Fields

Finite Fields

• A **finite field** K is a field with |K| finite.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
- Any two finite fields of the same size are isomorphic.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
- Any two finite fields of the same size are isomorphic.
- \mathbb{F}_q = The finite field of size q.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
- Any two finite fields of the same size are isomorphic.
- \mathbb{F}_q = The finite field of size q.
- Prime fields: $\mathbb{F}_{p} = \mathbb{Z}_{p}$ for $p \in \mathbb{P}$.

- A **finite field** K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let K be a finite field with |K| = q.
- K contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
- Any two finite fields of the same size are isomorphic.
- \mathbb{F}_q = The finite field of size q.
- Prime fields: $\mathbb{F}_{p} = \mathbb{Z}_{p}$ for $p \in \mathbb{P}$.
- Extension fields: $\mathbb{F}_{p^n} \neq \mathbb{Z}_{p^n}$ (as rings) for $p \in \mathbb{P}$ and $n \geqslant 2$.

$$\alpha^{q-1} = 1$$
 for every $\alpha \in \mathbb{F}_q^*$. $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

Fermat's little theorem:

$$\alpha^{q-1} = 1$$
 for every $\alpha \in \mathbb{F}_q^*$. $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

• The multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ is cyclic.

$$\alpha^{q-1} = 1$$
 for every $\alpha \in \mathbb{F}_q^*$.
 $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

- The multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ is cyclic.
- There are $\phi(q-1)$ generators of \mathbb{F}_q^* .

$$\alpha^{q-1} = 1$$
 for every $\alpha \in \mathbb{F}_q^*$.
 $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

- The multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ is cyclic.
- There are $\phi(q-1)$ generators of \mathbb{F}_q^* .
- Let F_q ⊆ F_{q^m} be an extension of finite fields, and d a
 positive integral divisor of m. Then, there exists a unique
 intermediate field F_{q^d} (F_q ⊆ F_{q^d} ⊆ F_{q^m}).

$$\alpha^{q-1} = 1$$
 for every $\alpha \in \mathbb{F}_q^*$.
 $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

- ullet The multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ is cyclic.
- There are $\phi(q-1)$ generators of \mathbb{F}_q^* .
- Let F_q ⊆ F_{q^m} be an extension of finite fields, and d a
 positive integral divisor of m. Then, there exists a unique
 intermediate field F_{q^d} (F_q ⊆ F_{q^d} ⊆ F_{q^m}).
- The polynomial $X^{q^r} X$ is the product of all monic irreducible polynomials of $\mathbb{F}_q[x]$ of degrees dividing r.

To represent the finite field \mathbb{F}_{p^n} , $n \ge 2$.

• For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of f(x). Since f(x) is irreducible, $\theta \notin \mathbb{F}_p$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of f(x). Since f(x) is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent

$$\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1} \mid a_i \in \mathbb{F}_p\}.$$

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of f(x). Since f(x) is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1} \mid a_i \in \mathbb{F}_p\}.$
- This is called the **polynomial basis representation** of \mathbb{F}_{p^n} , because the elements of \mathbb{F}_{p^n} are \mathbb{F}_p -linear combinations of the basis elements $1, \theta, \theta^2, \dots, \theta^{n-1}$.

- For every $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists (at least) one irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.
- Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree n.
- Let θ be a root of f(x). Since f(x) is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1} \mid a_i \in \mathbb{F}_p\}.$
- This is called the **polynomial basis representation** of \mathbb{F}_{p^n} , because the elements of \mathbb{F}_{p^n} are \mathbb{F}_p -linear combinations of the basis elements $1, \theta, \theta^2, \dots, \theta^{n-1}$.
- The irreducible polynomial f(x) is called the **defining** polynomial for this representation.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \cdots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \cdots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

• Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \cdots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

- Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).
- Subtraction: Similar to addition.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \cdots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \cdots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

- Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).
- Subtraction: Similar to addition.
- **Multiplication:** Multiply $\alpha(x)$ and $\beta(x)$ as polynomials over \mathbb{F}_p . Compute remainder $\rho(x)$ of Euclidean division of this product by f(x). The coefficient arithmetic is that of \mathbb{F}_p . Take $\rho = \rho(\alpha) = \alpha\beta$.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1}$ and $\beta = b_0 + b_1\theta + b_2\theta^2 + \dots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

- Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).
- Subtraction: Similar to addition.
- **Multiplication:** Multiply $\alpha(x)$ and $\beta(x)$ as polynomials over \mathbb{F}_p . Compute remainder $\rho(x)$ of Euclidean division of this product by f(x). The coefficient arithmetic is that of \mathbb{F}_p . Take $\rho = \rho(\alpha) = \alpha\beta$.
- Inverse: If $\alpha \neq 0$, then $\gcd(\alpha(x), f(x)) = 1 = u(x)\alpha(x) + v(x)f(x)$ (extended gcd). So $u(\theta)\alpha(\theta) = 1$, that is, $\alpha^{-1} = u(\theta)$.

Define
$$\mathbb{F}_8 = \mathbb{F}_2(\theta)$$
, where $\theta^3 + \theta + 1 = 0$.

Arithmetic in F₈

Define
$$\mathbb{F}_8 = \mathbb{F}_2(\theta)$$
, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_8 = \{\mathbf{0}, \mathbf{1}, \theta, \theta + \mathbf{1}, \theta^2, \theta^2 + \mathbf{1}, \theta^2 + \theta, \theta^2 + \theta + \mathbf{1}\}.$$

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_{8} = \{0, 1, \theta, \theta + 1, \theta^{2}, \theta^{2} + 1, \theta^{2} + \theta, \theta^{2} + \theta + 1\}.$$

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}.$$

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}.$$

- In a field of characteristic 2, we have -1 = 1, that is, subtraction is the same as addition.

Arithmetic in F₈

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}.$$

- $\bullet \ \alpha + \beta = \theta^2 + 1.$
- In a field of characteristic 2, we have -1 = 1, that is, subtraction is the same as addition.
- $\alpha\beta = (\theta + 1)(\theta^2 + \theta) = \theta^3 + \theta = (\theta^3 + \theta + 1) + 1 = 1.$

Arithmetic in F₈

Define $\mathbb{F}_8 = \mathbb{F}_2(\theta)$, where $\theta^3 + \theta + 1 = 0$.

$$\mathbb{F}_{8} = \{0, 1, \theta, \theta + 1, \theta^{2}, \theta^{2} + 1, \theta^{2} + \theta, \theta^{2} + \theta + 1\}.$$

- $\bullet \ \alpha + \beta = \theta^2 + 1.$
- In a field of characteristic 2, we have -1 = 1, that is, subtraction is the same as addition.
- $\alpha\beta = (\theta + 1)(\theta^2 + \theta) = \theta^3 + \theta = (\theta^3 + \theta + 1) + 1 = 1.$
- $(\theta + 1)(\theta^2 + \theta) + (\theta^3 + \theta + 1) = 1$, that is, $\alpha^{-1} = \theta^2 + \theta = \beta$.

Define
$$\mathbb{F}_9 = \mathbb{F}_3(\psi)$$
, where $\psi^2 + 1 = 0$.

Define
$$\mathbb{F}_9 = \mathbb{F}_3(\psi)$$
, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

Arithmetic in F₉

Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

Arithmetic in \mathbb{F}_9

Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

•
$$\alpha + \beta = 3\psi + 2 = 2$$
.

Arithmetic in \mathbb{F}_9

Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\bullet \ \alpha \beta = -\psi = 2\psi.$

Arithmetic in F₉

Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\bullet \ \alpha \beta = -\psi = 2\psi.$
- $\alpha\beta = (\psi + 1)(2\psi + 1) = 2\psi^2 + 1 = 2(\psi^2 + 1) + 2 = 2.$

Arithmetic in F₉

Define $\mathbb{F}_9 = \mathbb{F}_3(\psi)$, where $\psi^2 + 1 = 0$.

$$\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}.$$

- $\alpha + \beta = 3\psi + 2 = 2$.
- $\bullet \ \alpha \beta = -\psi = 2\psi.$
- $\alpha\beta = (\psi + 1)(2\psi + 1) = 2\psi^2 + 1 = 2(\psi^2 + 1) + 2 = 2.$
- $(\psi + 1)(\psi + 2) + 2(\psi^2 + 1) = 1$, so $\alpha^{-1} = \psi + 2$.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

•
$$f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}}).$$

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

- $f(x) = (x \theta)(x \theta^p)(x \theta^{p^2}) \cdots (x \theta^{p^{n-1}}).$
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q .

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

- $f(x) = (x \theta)(x \theta^p)(x \theta^{p^2}) \cdots (x \theta^{p^{n-1}}).$
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q .
- Suppose that $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p , Then, θ is called a **normal element** and f(x) is called a **normal polynomial**.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

- $f(x) = (x \theta)(x \theta^p)(x \theta^{p^2}) \cdots (x \theta^{p^{n-1}}).$
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q .
- Suppose that $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p , Then, θ is called a **normal element** and f(x) is called a **normal polynomial**.
- The elements θ , θ^p , θ^{p^2} , ..., $\theta^{p^{n-1}}$ constitute a **normal** basis of \mathbb{F}_q over \mathbb{F}_p .

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

- $f(x) = (x \theta)(x \theta^p)(x \theta^{p^2}) \cdots (x \theta^{p^{n-1}}).$
- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_q .
- Suppose that $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p , Then, θ is called a **normal element** and f(x) is called a **normal polynomial**.
- The elements θ , θ^p , θ^{p^2} , ..., $\theta^{p^{n-1}}$ constitute a **normal** basis of \mathbb{F}_q over \mathbb{F}_p .
- Every element in \mathbb{F}_q can be represented uniquely as $a_0\theta + a_1\theta^p + a_2\theta^2 + \cdots + a_{n-1}\theta^{p^{n-1}}$ with each $a_i \in \mathbb{F}_p$.

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

- The conjugates of θ are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$. They are all in \mathbb{F}_{a} .
- Suppose that $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$ are linearly independent over \mathbb{F}_p , Then, θ is called a **normal element** and f(x) is called a normal polynomial.
- The elements $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$ constitute a **normal basis** of \mathbb{F}_q over \mathbb{F}_p .
- Every element in \mathbb{F}_q can be represented uniquely as $a_0\theta + a_1\theta^p + a_2\theta^2 + \cdots + a_{n-1}\theta^{p^{n-1}}$ with each $a_i \in \mathbb{F}_p$.
- Normal basis representation often speeds up exponentiation in \mathbb{F}_a . 4日 8 4周 8 4 3 8 4 3 8 8 3

Number Theory Algebra Elliptic Curves Γhe Weierstrass Equation
Γhe Elliptic Curve Group
Elliptic Curves Over Finite Fields

Part 3: Elliptic Curves

Let K be a field.

Let K be a field.

An **elliptic curve** *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Let K be a field.

An **elliptic curve** *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

Let K be a field.

An **elliptic curve** *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

• char
$$K \neq 2, 3$$
: $y^2 = x^3 + ax + b$, $a, b \in K$.

Let K be a field.

An **elliptic curve** *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

- char $K \neq 2, 3$: $y^2 = x^3 + ax + b$, $a, b \in K$.
- char $K \neq 2$: $y^2 = x^3 + b_2x^2 + b_4x + b_6$, $b_i \in K$.

Let K be a field.

An **elliptic curve** *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

- char $K \neq 2, 3$: $y^2 = x^3 + ax + b$, $a, b \in K$.
- char $K \neq 2$: $y^2 = x^3 + b_2 x^2 + b_4 x + b_6$, $b_i \in K$.
- char K = 2:

Non-supersingular curve: $y^2 + xy = x^3 + ax^2 + b$, $a, b \in K$. Supersingular curve: $y^2 + ay = x^3 + bx + c$, $a, b, c \in K$.

Elliptic Curves Over ℝ: Example

(a)
$$y^2 = x^3 - x + 1$$

(b)
$$y^2 = x^3 - x$$

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

• There is a single point at infinity on E, denoted by \mathcal{O} .

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

- There is a single point at infinity on E, denoted by \mathcal{O} .
- This point cannot be visualized in the two-dimensional (x, y) plane.

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

- There is a single point at infinity on E, denoted by \mathcal{O} .
- This point cannot be visualized in the two-dimensional (x, y) plane.
- The point exists in the projective plane.

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

- There is a single point at infinity on E, denoted by \mathcal{O} .
- This point cannot be visualized in the two-dimensional (x, y) plane.
- The point exists in the projective plane.

E(K) is the set of all finite K-rational points on E and the point at infinity.

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

- There is a single point at infinity on E, denoted by \mathcal{O} .
- This point cannot be visualized in the two-dimensional (x, y) plane.
- The point exists in the projective plane.

E(K) is the set of all finite K-rational points on E and the point at infinity.

An additive group structure can be defined on E(K).

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve E is called a K-rational point on E.

Point at infinity:

- There is a single point at infinity on E, denoted by \mathcal{O} .
- This point cannot be visualized in the two-dimensional (x, y) plane.
- The point exists in the projective plane.

E(K) is the set of all finite K-rational points on E and the point at infinity.

An additive group structure can be defined on E(K).

 \mathcal{O} acts as the identity of the group.

The Opposite of a Point

• Ordinary Points

Special Points

Addition of Two Points

Chord and tangent rule

Doubling of a Point

Chord and tangent rule

Addition and Doubling Formulas

Let $P=(h_1,k_1)$ and $Q=(h_2,k_2)$ be finite points. Assume that $P+Q\neq \mathcal{O}$ and $2P\neq \mathcal{O}$. Let $P+Q=(h_3,k_3)$ (Note that P+Q=2P if P=Q).

$$E: y^{2} = x^{3} + ax + b$$

$$-P = (h_{1}, -k_{1})$$

$$h_{3} = \lambda^{2} - h_{1} - h_{2}$$

$$k_{3} = \lambda(h_{1} - h_{3}) - k_{1}, \text{ where}$$

$$\lambda = \begin{cases} \frac{k_{2} - k_{1}}{h_{2} - h_{1}}, & \text{if } P \neq Q, \\ \frac{3h_{1}^{2} + a}{2k_{1}}, & \text{if } P = Q. \end{cases}$$

Addition and Doubling in Non-supersingular Curves

$$E: y^2 + xy = x^3 + ax^2 + b$$
 (with char $K = 2$).

$$\begin{array}{lll}
-P & = & (h_1, k_1 + h_1), \\
h_3 & = & \begin{cases} & \left(\frac{k_1 + k_2}{h_1 + h_2}\right)^2 + \frac{k_1 + k_2}{h_1 + h_2} + h_1 + h_2 + a, & \text{if } P \neq Q, \\
& h_1^2 + \frac{b}{h_1^2}, & \text{if } P = Q, \end{cases} \\
k_3 & = & \begin{cases} & \left(\frac{k_1 + k_2}{h_1 + h_2}\right)(h_1 + h_3) + h_3 + k_1, & \text{if } P \neq Q, \\
& h_1^2 + \left(h_1 + \frac{k_1}{h_1} + 1\right)h_3, & \text{if } P = Q. \end{cases}
\end{array}$$

Addition and Doubling in Supersingular Curves

$$E: y^2 + ay = x^3 + bx + c$$
 (with char $K = 2$).

$$-P = (h_1, k_1 + a),
h_3 = \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)^2 + h_1 + h_2, & \text{if } P \neq Q, \\ \frac{h_1^4 + b^2}{a^2}, & \text{if } P = Q, \end{cases}
k_3 = \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)(h_1 + h_3) + k_1 + a, & \text{if } P \neq Q, \\ \left(\frac{h_1^2 + b}{a}\right)(h_1 + h_3) + k_1 + a, & \text{if } P = Q. \end{cases}$$

Elliptic Curves Over Finite Fields

Example 1

Take
$$K = \mathbb{F}_7$$
 and $E_1 : y^2 = x^3 + x + 3$.

There are six points in
$$E_1(\mathbb{F}_7)$$
: $P_0 = \mathcal{O}$, $P_1 = (4,1)$, $P_2 = (4,6)$, $P_3 = (5,0)$, $P_4 = (6,1)$ and $P_5 = (6,6)$.

Multiples of these points

Р	2 <i>P</i>	3 <i>P</i>	4 <i>P</i>	5 <i>P</i>	6 <i>P</i>	ord P
$P_0 = \mathcal{O}$						1
$P_1 = (4,1)$	(6, 6)	(5,0)	(6,1)	(4, 6)	\mathcal{O}	6
$P_2 = (4,6)$	(6,1)	(5,0)	(6,6)	(4,1)	\mathcal{O}	6
$P_3 = (5,0)$	0					2
$P_4 = (6,1)$	(6, 6)	\mathcal{O}				3
$P_5 = (6,6)$	(6,1)	\mathcal{O}				3

Elliptic Curves Over Finite Fields

Example 2

Represent $\mathbb{F}_8 = \mathbb{F}_2(\xi)$, where $\xi^3 + \xi + 1 = 0$.

Consider the non-supersingular curve

$$E_2: y^2 + xy = x^3 + x^2 + \xi \text{ over } \mathbb{F}_8.$$

There are ten points in $E_2(\mathbb{F}_8)$:

$$\begin{array}{llll} P_0 & = & \mathcal{O}, & P_5 & = & (\xi, \xi^2 + \xi), \\ P_1 & = & (0, \xi^2 + \xi), & P_6 & = & (\xi + 1, \xi^2 + 1), \\ P_2 & = & (1, \xi^2), & P_7 & = & (\xi + 1, \xi^2 + \xi), \\ P_3 & = & (1, \xi^2 + 1), & P_8 & = & (\xi^2 + \xi, 1), \\ P_4 & = & (\xi, \xi^2), & P_9 & = & (\xi^2 + \xi, \xi^2 + \xi + 1). \end{array}$$

Elliptic Curves Over Finite Fields

Example 2 (contd.)

Р	2P	3 <i>P</i>	4 <i>P</i>	5 <i>P</i>	6 <i>P</i>	7 <i>P</i>	8 <i>P</i>	9 <i>P</i>	10 <i>P</i>	ord P
P_0										1
P_1	\mathcal{O}									2
P_2	P_7	P_6	P_3	\mathcal{O}						5
P_3	P_6	P_7	P_2	\mathcal{O}						5
P_4	P_3	P_9	P_6	P_1	P_7	P_8	P_2	P_5	\mathcal{O}	10
P_5	P_2	P_8	P_7	P_1	P_6	P_9	P_3	P_4	\mathcal{O}	10
P_6	P_2	P_3	P_7	\mathcal{O}						5
P_7	P_3	P_2	P_6	\mathcal{O}						5
P_8	P_6	P_4	P_2	P_1	P_3	P_5	P_7	P_9	\mathcal{O}	10
P_9	P_7	P_5	P_3	P_1	P_2	P_4	P_6	P_8	0	10

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

Hasse's Theorem:

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

t is called the trace of Frobenius at q.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

- t is called the trace of Frobenius at q.
- If t = 1, then E is called **anomalous**.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

- t is called the trace of Frobenius at q.
- If t = 1, then E is called **anomalous**.
- If $p \mid t$, then E is called **supersingular**.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

- t is called the trace of Frobenius at q.
- If t = 1, then E is called **anomalous**.
- If $p \mid t$, then E is called **supersingular**.
- If $p \nmid t$, then E is called **non-supersingular**.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

- t is called the trace of Frobenius at q.
- If t = 1, then E is called **anomalous**.
- If $p \mid t$, then E is called **supersingular**.
- If $p \nmid t$, then E is called **non-supersingular**.
- Let $\alpha, \beta \in \mathbb{C}$ satisfy $1 tx + qx^2 = (1 \alpha x)(1 \beta x)$. Then, $|E(\mathbb{F}_{q^m})| = q^m + 1 (\alpha^m + \beta^m)$.

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

Hasse's Theorem:

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, where $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.

- t is called the trace of Frobenius at q.
- If t = 1, then E is called **anomalous**.
- If $p \mid t$, then E is called **supersingular**.
- If $p \nmid t$, then E is called **non-supersingular**.
- Let $\alpha, \beta \in \mathbb{C}$ satisfy $1 tx + qx^2 = (1 \alpha x)(1 \beta x)$. Then, $|E(\mathbb{F}_{q^m})| = q^m + 1 (\alpha^m + \beta^m)$.

Note: $E(\mathbb{F}_q)$ is not necessarily cyclic.

A **hyperelliptic curve** of **genus** $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2+u(x)y=v(x),$$

where $u(x), v(x) \in K[x]$, v(x) is monic, deg $u(x) \leq g$, and deg v(x) = 2g + 1.

A **hyperelliptic curve** of **genus** $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2 + u(x)y = v(x),$$

where $u(x), v(x) \in K[x]$, v(x) is monic, deg $u(x) \leq g$, and deg v(x) = 2g + 1.

Elliptic curves are hyperelliptic curves of of genus 1.

A **hyperelliptic curve** of **genus** $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2 + u(x)y = v(x),$$

where $u(x), v(x) \in K[x]$, v(x) is monic, deg $u(x) \leq g$, and deg v(x) = 2g + 1.

- Elliptic curves are hyperelliptic curves of of genus 1.
- The curve must be smooth (no points of singularity).

A **hyperelliptic curve** of **genus** $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2+u(x)y=v(x),$$

where $u(x), v(x) \in K[x]$, v(x) is monic, deg $u(x) \leq g$, and deg v(x) = 2g + 1.

- Elliptic curves are hyperelliptic curves of of genus 1.
- The curve must be smooth (no points of singularity).
- If char $K \neq 2$, then the equation can be simplified to

$$y^2 = v(x)$$

with $v(x) \in K[x]$ monic of degree 2g + 1.

Hyperelliptic Curves: Example

A hyperelliptic curve over \mathbb{R} : $y^2 = x(x^2 - 1)(x^2 - 2)$

 A group can be defined on the rational points of a hyperelliptic curve.

- A group can be defined on the rational points of a hyperelliptic curve.
- The theory of divisors should be used in order to understand the construction of this group.

- A group can be defined on the rational points of a hyperelliptic curve.
- The theory of divisors should be used in order to understand the construction of this group.
- For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.

- A group can be defined on the rational points of a hyperelliptic curve.
- The theory of divisors should be used in order to understand the construction of this group.
- For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.
- For hyperelliptic curves of genus ≥ 2, the chord-and-tangent rule holds no longer.

- A group can be defined on the rational points of a hyperelliptic curve.
- The theory of divisors should be used in order to understand the construction of this group.
- For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.
- For hyperelliptic curves of genus ≥ 2, the chord-and-tangent rule holds no longer.
- The hyperelliptic curve group is also used in cryptography.