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Divisibility

Common sets

N = {1,2,3, . . .} (Natural numbers)

N0 = {0,1,2,3, . . .} (Non-negative integers)

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} (Integers)

P = {2,3,5,7,11,13, . . .} (Primes)

Divisibility: a | b if b = ac for some c ∈ Z.

Corollary: If a | b, then |a| 6 |b|.
Theorem: There are infinitely many primes.

Euclidean division: Let a,b ∈ Z with b > 0. There exist
unique q, r ∈ Z with a = qb + r and 0 6 r < b.

Notations: q = a quot b, r = a rem b.
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Greatest Common Divisor (GCD)

Let a,b ∈ Z, not both zero. Then d ∈ N is called the gcd of
a and b, if:
(1) d | a and d | b.
(2) If d ′ | a and d ′ | b, then d ′ | d .
We denote d = gcd(a,b).

Euclidean gcd: gcd(a,b) = gcd(b,a rem b) (for b > 0).

Extended gcd: Let a,b ∈ Z, not both zero. There exist
u, v ∈ Z such that

gcd(a,b) = ua + vb.
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GCD: Example

899 = 2 × 319 + 261,

319 = 1 × 261 + 58,

261 = 4 × 58 + 29,

58 = 2 × 29.

Therefore, gcd(899,319) = gcd(319,261) = gcd(261,58) =
gcd(58,29) = gcd(29,0) = 29

Extended gcd computation

29 = 261 − 4 × 58

= 261 − 4 × (319 − 1 × 261) = (−4) × 319 + 5 × 261

= (−4) × 319 + 5 × (899 − 2 × 319)

= 5 × 899 + (−14) × 319.
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Congruence

Let n ∈ N. Two integers a,b are called congruent modulo
n, denoted a ≡ b (mod n), if n | (a − b) or equivalently if
a rem n = b rem n.
Properties of congruence

Congruence is an equivalence relation on Z.
If a ≡ b (mod n) and c ≡ d (mod n), then
a + c ≡ b + d (mod n) and ac ≡ bd (mod n).
If a ≡ b (mod n) and d | n, then a ≡ b (mod d).
Cancellation
ab ≡ ac (mod n) if and only if b ≡ c (mod n/ gcd(a, n)).
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Congruence (contd.)

Zn = The set of equivalence classes of the relation
“congruence modulo n”.

Complete residue system: A collection of n integers, with
exactly one from each equivalence class.

Most common representation: Zn = {0,1,2, . . . ,n − 1}.

Arithmetic of Zn: Integer arithmetic modulo n.

Modular inverse: a ∈ Zn is called invertible modulo n if
ua ≡ 1 (mod n) for some u ∈ Zn.

Theorem: a ∈ Zn is invertible modulo n if and only if
gcd(a,n) = 1. In this case, extended gcd gives
ua + vn = 1. Then, u ≡ a−1 (mod n).
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Euler Totient Function

Let n ∈ N. Define

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

Thus, Z∗
n is the set of all elements of Zn that are invertible

modulo n.

Call φ(n) = |Z∗
n|.

Example: If p is a prime, then φ(p) = p − 1.

Example: Z6 = {0,1,2,3,4,5}. We have gcd(0,6) = 6,
gcd(1,6) = 1, gcd(2,6) = 2, gcd(3,6) = 3, gcd(4,6) = 2,
and gcd(5,6) = 1. So Z∗

6 = {1,5}, that is, φ(6) = 2.
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Euler Totient Function (contd.)

Theorem: Let n = pe1
1 · · · per

r with distinct primes pi ∈ P

and with ei ∈ N. Then

φ(n) = n
(

1 − 1
p1

)

· · ·
(

1 − 1
pr

)

= n
∏

p | n

(

1 − 1
p

)

.

Fermat’s little theorem: Let p ∈ P and a ∈ Z with p 6 | a.
Then ap−1 ≡ 1 (mod p).

Euler’s theorem: Let n ∈ N and a ∈ Z with gcd(a,n) = 1.
Then aφ(n) ≡ 1 (mod n).
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Linear Congruences

Let d = gcd(a,n). The congruence ax ≡ b (mod n) is
solvable if and only if d | b. In that case, there are exactly
d solutions modulo n.

Chinese remainder theorem (CRT)
For pairwise coprime moduli n1,n2, . . . ,nr with product
N = n1n2 · · · nr , the congruences

x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ar (mod nr ),

have a simultaneous solution unique modulo N.

Let Ni = N/ni and vi ≡ N−1
i (mod ni). The simultaneous

solution is given by

x ≡ aiviNi (mod N).

Public-key Cryptography: Theory and Practice Abhijit Das



Number Theory
Algebra

Elliptic Curves

Divisibility
Congruence
Quadratic Residues

CRT: Example

Solve the following congruences simultaneously:

x ≡ 1 (mod 5), x ≡ 5 (mod 6), x ≡ 3 (mod 7).

n1 = 5, n2 = 6 and n3 = 7, so N = n1n2n3 = 210.
a1 = 1, a2 = 5 and a3 = 3.
N1 = n2n3 = 42, N2 = n1n3 = 35, and N3 = n1n2 = 30.

v1 ≡ N−1
1 ≡ 42−1 ≡ 2−1 ≡ 3 (mod 5).

v2 ≡ N−1
2 ≡ 35−1 ≡ 5−1 ≡ 5 (mod 6).

v3 ≡ N−1
3 ≡ 30−1 ≡ 2−1 ≡ 4 (mod 7).

The simultaneous solution is

x ≡ a1v1N1 + a2v2N2 + a3v3N3

≡ 126 + 875 + 360 ≡ 1361 ≡ 101 (mod 210).
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Polynomial Congruences

Let f (x) ∈ Z[x ] be a polynomial of degree d > 2.
To solve: f (x) ≡ 0 (mod n).
Let n = pe1

1 pe2
2 · · · pet

t be the prime factorization of n.

Solve f (x) ≡ 0 (mod pei
i ) for all i .

Combine the solutions by CRT.

How to solve f (x) ≡ 0 (mod pe) for p ∈ P, e ∈ N?

Solve f (x) ≡ 0 (mod p).

Hensel lifting
Let x ≡ ξ (mod pr ) be a solution of f (x) ≡ 0 (mod pr ).
All solutions of f (x) ≡ 0 (mod pr+1) are given by

x ≡ ξ + kpr (mod pr+1),
where

f ′(ξ)k ≡ − f (ξ)
pr (mod p).
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Multiplicative Order

Let n ∈ N and a ∈ Z∗
n. Define ordn a to be the smallest of

the positive integers h for which ah ≡ 1 (mod n).

Example: n = 17, a = 2. a1 ≡ 2 (mod n), a2 ≡ 4 (mod n),
a3 ≡ 8 (mod n), a4 ≡ 16 (mod n), a5 ≡ 15 (mod n),
a6 ≡ 13 (mod n), a7 ≡ 9 (mod n), and a8 ≡ 1 (mod n). So
ord17 2 = 8.

Theorem: ak ≡ 1 (mod n) if and only if ordn a | k .

Theorem: Let h = ordn a. Then, ordn ak = h/ gcd(h, k).

Theorem: ordn a | φ(n).
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Primitive Root

If ordn a = φ(n), then a is called a primitive root modulo n.

Theorem (Gauss): An integer n > 1 has a primitive root if
and only if n = 2,4,pe,2pe, where p is an odd prime and
e ∈ N.

Example: 3 is a primitive root modulo the prime n = 17:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
3k (mod 17) 1 3 9 10 13 5 15 11 16 14 8 7 4 12

14 15 16
2 6 1
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Primitive Root (contd.)

Example: n = 2 × 32 = 18 has a primitive root 5 with order
φ(18) = 6:

k 0 1 2 3 4 5 6
5k (mod 18) 1 5 7 17 13 11 1

Example: n = 20 = 22 × 5 does not have a primitive root.
We have φ(20) = 8, and the orders of the elements of Z∗

20
are ord20 1 = 1, ord20 3 = ord20 7 = ord20 13 = ord20 17 = 4,
and ord20 9 = ord20 19 = 2.
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Quadratic Residues

Quadratic congruence: ux2 + vx + w ≡ 0 (mod n).

By CRT and Hensel lifting, it suffices to take n = p ∈ P.

Assume that p 6= 2, that is, p is odd.

Reduce the congruence to x2 ≡ a (mod p).

Let a ∈ Z∗
p (that is, a 6≡ 0 (mod p)).

a is called a quadratic residue modulo p
if x2 ≡ a (mod p) is solvable.

a is called a quadratic non-residue modulo p
if x2 ≡ a (mod p) is not solvable.

There are (p − 1)/2 quadratic residues and (p − 1)/2
quadratic non-residues modulo p.

Example: Take p = 11. The quadratic residues are
1,3,4,5,9 and the non-residues are 2,6,7,8,10.
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Legendre Symbol

Let p be an odd prime. Define

(

a
p

)

=







0 if p | a,
1 if a is a quadratic residue modulo p,

−1 if a is a quadratic non-residue modulo p.

Properties
(

ab
p

)

=
(

a
p

) (

b
p

)

.
(

1
p

)

= 1,
(

−1
p

)

= (−1)(p−1)/2,
(

2
p

)

= (−1)(p
2
−1)/8.

Euler’s criterion:
(

a
p

)

≡ a(p−1)/2 (mod p).

Law of quadratic reciprocity: For two odd primes p, q, we

have
(

p
q

)

= (−1)(p−1)(q−1)/4
(

q
p

)

.
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Jacobi Symbol

Let n = p1p2 · · · pt be an odd positive integer.
Here, pi are prime (not necessarily all distinct).

Define
(a

n

)

=

(

a
p1

) (

a
p2

)

· · ·
(

a
pt

)

.

The Jacobi symbol is an extension of the Legendre symbol.

The Jacobi symbol loses direct relationship with quadratic
residues. For example,

(2
9

)

=
(2

3

)2
= (−1)2 = 1, but the

congruence x2 ≡ 2 (mod 9) has no solutions.

The Jacobi symbol satisfies the law of quadratic reciprocity:
(a

b

)

= (−1)(a−1)(b−1)/4
(

b
a

)

for two odd integers a,b.

The Jacobi symbol leads to an efficient algorithm for the
computation of the Legendre symbol.
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Topics From Analytic Number Theory

The prime number theorem (PNT)

Let x be a positive real number, and π(x) the number of
primes 6 x . Then, π(x) → x/ ln x as x → ∞.

Density of smooth integers

Let x , y be positive real numbers with x > y , u = ln x/ ln y ,
and ψ(x , y) the fraction of positive integers 6 x with all
prime factors 6 y . For u → ∞ and y > ln2 x , we have
ψ(x , y) → u−u+o(u) = e−[(1+o(1))u ln u].
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Groups

A group (G, ⋄) is a set G with a binary operation ⋄, having the
following properties.

⋄ is associative:
a ⋄ (b ⋄ c) = (a ⋄ b) ⋄ c for all a,b, c ∈ G.

Existence of an identity element:
There exists e ∈ G such that a ⋄ e = e ⋄ a = a for all a ∈ G.

Existence of inverse:
For all a ∈ G, there exists b ∈ G with a ⋄ b = b ⋄ a = e.

A group G = (G, ⋄) is called Abelian or commutative , if ⋄ is
commutative, that is, a ⋄ b = b ⋄ a for all a,b ∈ G.
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Examples

Z under integer addition

Q,R,C under addition

Q∗,R∗,C∗ under multiplication

Zn under addition modulo n

Z∗
n under multiplication modulo n

The set of all m × n real matrices under matrix addition

The set of all n × n invertible real matrices under matrix
multiplication. This group is called the general linear
group GLn and is not Abelian.

The set of all bijective function f : S → S (for any set S)
under composition of functions. This group is not Abelian,
in general.
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Subgroups

Let (G, ⋄) be a group and H ⊆ G.

H is called a subgroup of G if (H, ⋄) is a group.

Theorem: H is a subgroup of G if and only if H is closed
under the group operation and the inverse.

Theorem: If G is finite, then H is a subgroup of G if and
only if H is closed under the group operation.

Lagrange’s Theorem: If G is a finite group and H a
subgroup of G, then |H| divides |G|.
Examples

(Z,+) is a subgroup of (R,+).
(Q∗,×) is a subgroup of (C∗,×).
The set of all n × n real matrices of determinant 1 is a
subgroup of GLn.
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Homomorphisms of Groups

Let (G, ⋄) and (G′, ⋄′) be groups and f : G → G′ a function.

f is a called a homomorphism if f (a ⋄ b) = f (a) ⋄′ f (b) for
all a,b ∈ G.

A bijective homomorphism f is called an isomorphism ,
denoted G ∼= G′. In this case, f−1 : G′ → G is again a
homomorphism.

An isomorphism G → G is called an automorphism .
Examples

The map z 7→ z̄ (complex conjugation) is an automorphism
of both (C,+) and (C∗,×).
The map Z → Zn taking a 7→ a rem n is a homomorphism.
Let gcd(a, n) = 1. The map Z∗

n → Z∗

n taking x 7→ ax rem n is
an automorphism of Z∗

n.
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Cyclic Groups

Let G = (G, ·) be a multiplicative group.

If there exists g ∈ G such that every a ∈ G can be written
as a = gr for some r ∈ Z, then G is called a cyclic group ,
and g is called a generator of G.

If G is a finite cyclic group of size n, then every element of
G can be written as gr for a unique r ∈ {0,1,2, . . . , r − 1}.

Theorem: Every infinite cyclic group is isomorphic to
(Z,+). Every finite cyclic group is isomorphic to (Zn,+) for
some n.

Theorem: Every subgroup of a cyclic group is again cyclic.

Theorem: Let G be a finite cyclic group, and H a subgroup
of size m. An element a ∈ G belongs to H if and only if
am = e.
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Cyclic Groups (contd.)

Let (G, ·) be a finite cyclic group of size n. Let a ∈ G.

The subgroup generated by a is the set
{ar | r = 0,1,2, . . . ,m − 1}, where m is the smallest
positive integer with the property that am = e.

m is called the order of a, denoted ord(a).

By Lagrange’s theorem, m | n.

a is a generator of G if m = n.

G contains exactly φ(n) generators.

Examples
Z∗

n (under modular multiplication) is cyclic if and only if n is
2, 4, pe or 2pe for an odd prime p and for e ∈ N.

In particular, Z∗
p is cyclic for every p ∈ P.

The number of generators of Z∗
p is φ(p − 1).
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Rings

A ring (R,+, ·) (commutative with identity) is a set R with two
binary operations + and ·, having the properties:

(R,+) is an Abelian group.

· is associative:
a · (b · c) = (a · b) · c for all a,b, c ∈ R.

· is commutative:
a · b = b · a for all a,b ∈ R.

Existence of multiplicative identity:
There exists an element 1 ∈ R such that a · 1 = 1 · a = a
for all a ∈ R.

· is distributive over +:
a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c)
for all a,b, c ∈ R.
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Integral Domains and Fields

Let (R,+, ·) be a ring.

If 0 = 1 in R, then R = {0} (the zero ring ).

Let a ∈ R. If there exists a non-zero b ∈ R with ab = 0,
then a is called a zero divisor .

R is called an integral domain if R is not the zero ring and
R contains no non-zero zero divisors.

An element a ∈ R is called a unit , if there exists b ∈ R with
ab = ba = 1. The set of all units of R is a multiplicative
group denoted R∗.

R Is called a field , if R is not the zero ring, and every
non-zero element of R is a unit (R∗ = R \ {0}).

Theorem: Every field is an integral domain.

Theorem: Every finite integral domain is a field.
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Rings: Examples

Z is an integral domain, but not a field.

Q,R,C are fields.

Zn is a ring.

Zn is an integral domain (equivalently a field) if and only if
n is prime.

Let R be a ring. The set R[x ] of all polynomials in one
variable x and with coefficients from R is a ring. Likewise,
the set R[x1, x2, . . . , xn] of all n-variable polynomials with
coefficients from R is a ring.

If R is an integral domain, then so also are R[x ] and
R[x1, x2, . . . , xn].

R[x ] is not a field (even if R is a field).

Public-key Cryptography: Theory and Practice Abhijit Das



Number Theory
Algebra

Elliptic Curves

Groups
Rings and Fields
Finite Fields

Characteristics of Rings

Let R = (R,+, ·) be a ring.

The characteristic of R, denoted char R, is the smallest
positive integer m such that 1 + 1 + · · · + 1 (m times) = 0.

If no such integer exists, we say char R = 0.

Examples
The characteristic of Z, R, Q or C is 0.
The characteristic of Zn is n.
Let a field F have positive characteristic p. Then, p is prime.
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Homomorphisms of Rings

Let R and S be rings, and f : R → S a function.

f is called a homomorphism if the following conditions are
satisfied:

f (a + b) = f (a) + f (b) for every a,b ∈ R,
f (ab) = f (a)f (b) for every a,b ∈ R, and
f (1R) = 1S.

A bijective homomorphism f : R → S is called an
isomorphism . In that case, f−1 : S → R is again a
homomorphism.

An automorphism of R is an isomorphism f : R → R.
Examples

Complex conjugation (z 7→ z̄) is an automorphism of C.
The map Z → Zn taking a 7→ a rem n is a homomorphism.
A homomorphism Zm → Zn exists if and only if n | m.
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Polynomials

Let K be a field, and K [x ] the polynomial ring over K .

Euclidean division: Let f (x),g(x) ∈ K [x ] with g(x) 6= 0.
There exist polynomials q(x), r(x) ∈ K [x ] such that

f (x) = q(x)g(x) + r(x), and
r(x) = 0 or deg r(x) < deg g(x).

We denote q(x) = f (x) quot g(x) and r(x) = f (x) rem g(x).

For f (x),g(x) ∈ K [x ], not both zero, the monic polynomial
d(x) of the largest degree with d(x) | f (x) and d(x) | g(x)
is called the gcd of f (x) and g(x).

Euclidean gcd: gcd(f (x),g(x)) = gcd(g(x), f (x) rem g(x)).

Extended gcd: There exist u(x), v(x) ∈ K [x ] such that
gcd(f (x),g(x)) = u(x)f (x) + v(x)g(x). We can choose
u(x), v(x) to satisfy deg u(x) < deg g(x) and
deg v(x) < deg f (x).
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Algebraic Elements

Let K ⊆ L be an extension of fields.

An element α ∈ L is called algebraic over K if f (α) = 0 for
some non-constant f (x) ∈ K [x ].

A non-algebraic element is called transcendental .

L is called an algebraic extension of K if every element of
L is algebraic over K .
Examples

The element α =
5
√

3 +
√
−2 ∈ C is algebraic over Q, since

(α5 − 3)2 + 2 = 0.
e and π are transcendental over Q.
C is an algebraic extension of R.
C is not an algebraic extension of Q.
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Minimal Polynomials

Let K ⊆ L be a field extension, and α ∈ L algebraic over K .

The non-constant polynomial f (x) ∈ K [x ] with the smallest
degree, such that f (α) = 0, is called the minimal
polynomial of α over K , denoted minpolyα,K (x).

minpolyα,K (x) is an irreducible polynomial of K [x ].

Let f (x) ∈ K [x ]. Then, f (α) = 0 if and only if
minpolyα,K (x) | f (x).

The roots of minpolyα,K (x) are called conjugates of α
(over K ).
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Field Extensions

Let K be a field, and f (x) ∈ K [x ] be irreducible.

Let α be a root of f (x).

Define the set

K (α) = {g(α) | g(x) ∈ K [x ]}
= {g(α) | g(x) ∈ K [x ], deg g(x) < deg f (x)}.

K (α) is a field.

K (α) is the smallest field that contains K and α.
Examples

C = R(i) with minpolyi,R(x) = x2 + 1 ∈ R[x ].
Q(i) = {a + ib | a, b ∈ Q} is a proper subfield of C,
obtained by adjoining a root of x2 + 1 to Q.
Q(α) = {a + bα+ cα2 | a, b, c ∈ Q} is an extension of Q,
obtained by adjoining a root of x3 − 2 ∈ Q[x ].
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Finite Fields

A finite field K is a field with |K | finite.

Simplest examples: Zp for p ∈ P.

There are other finite fields.

Let K be a finite field with |K | = q.

K contains a subfield Zp for some p ∈ P.

q = pn for some n ∈ N.

Any two finite fields of the same size are isomorphic.

Fq = The finite field of size q.

Prime fields: Fp = Zp for p ∈ P.

Extension fields: Fpn 6= Zpn (as rings) for p ∈ P and n > 2.
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Properties of Finite Fields

Fermat’s little theorem:
αq−1 = 1 for every α ∈ F∗

q.
βq = β for every β ∈ Fq.

The multiplicative group F∗
q = Fq \ {0} is cyclic.

There are φ(q − 1) generators of F∗
q.

Let Fq ⊆ Fqm be an extension of finite fields, and d a
positive integral divisor of m. Then, there exists a unique
intermediate field Fqd (Fq ⊆ Fqd ⊆ Fqm ).

The polynomial X qr − X is the product of all monic
irreducible polynomials of Fq[x ] of degrees dividing r .
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Representation of Extension Fields

To represent the finite field Fpn , n > 2.

For every p ∈ P and n ∈ N, there exists (at least) one
irreducible polynomial in Fp[x ] of degree n.

Let f (x) ∈ Fp[x ] be irreducible of degree n.

Let θ be a root of f (x). Since f (x) is irreducible, θ /∈ Fp.

One can represent
Fpn = Fp(θ) = {a0 + a1θ + a2θ

2 + · · ·+ an−1θ
n−1 | ai ∈ Fp}.

This is called the polynomial basis representation of
Fpn , because the elements of Fpn are Fp-linear
combinations of the basis elements 1, θ, θ2, . . . , θn−1.

The irreducible polynomial f (x) Is called the defining
polynomial for this representation.
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Arithmetic in Extension Fields

Let Fq = Fpn = Fp(θ) with f (θ) = 0.
Let α = a0 + a1θ + a2θ

2 + · · · + an−1θ
n−1 and

β = b0 + b1θ + b2θ
2 + · · · + bn−1θ

n−1 be two elements of Fq.

Addition: α+ β = (a0 + b0) + (a1 + b1)θ + (a2 + b2)θ
2+

· · · + (an−1 + bn−1)θ
n−1, where each ai + bi is the addition

of Fp (arithmetic modulo p).

Subtraction: Similar to addition.

Multiplication: Multiply α(x) and β(x) as polynomials over
Fp. Compute remainder ρ(x) of Euclidean division of this
product by f (x). The coefficient arithmetic is that of Fp.
Take ρ = ρ(α) = αβ.

Inverse: If α 6= 0, then gcd(α(x), f (x)) = 1 =
u(x)α(x) + v(x)f (x) (extended gcd). So u(θ)α(θ) = 1, that
is, α−1 = u(θ).
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Arithmetic in F8

Define F8 = F2(θ), where θ3 + θ + 1 = 0.

F8 = {0,1, θ, θ + 1, θ2, θ2 + 1, θ2 + θ, θ2 + θ + 1}.

Take α = θ + 1 and β = θ2 + θ.

α+ β = θ2 + 1.

In a field of characteristic 2, we have −1 = 1, that is,
subtraction is the same as addition.

αβ = (θ + 1)(θ2 + θ) = θ3 + θ = (θ3 + θ + 1) + 1 = 1.

(θ+ 1)(θ2 + θ) + (θ3 + θ+ 1) = 1, that is, α−1 = θ2 + θ = β.
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Arithmetic in F9

Define F9 = F3(ψ), where ψ2 + 1 = 0.

F9 = {0,1,2, ψ, ψ + 1, ψ + 2,2ψ,2ψ + 1,2ψ + 2}.

Take α = ψ + 1 and β = 2ψ + 1.

α+ β = 3ψ + 2 = 2.

α− β = −ψ = 2ψ.

αβ = (ψ + 1)(2ψ + 1) = 2ψ2 + 1 = 2(ψ2 + 1) + 2 = 2.

(ψ + 1)(ψ + 2) + 2(ψ2 + 1) = 1, so α−1 = ψ + 2.
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Normal basis representation

Let Fq = Fpn = Fp(θ) with f (θ) = 0.

f (x) = (x − θ)(x − θp)(x − θp2
) · · · (x − θpn−1

).

The conjugates of θ are θ, θp, θp2
, . . . , θpn−1

. They are all in
Fq.

Suppose that θ, θp, θp2
, . . . , θpn−1

are linearly independent
over Fp, Then, θ is called a normal element and f (x) is
called a normal polynomial .

The elements θ, θp, θp2
, . . . , θpn−1

constitute a normal
basis of Fq over Fp.

Every element in Fq can be represented uniquely as
a0θ + a1θ

p + a2θ
2 + · · · + an−1θ

pn−1
with each ai ∈ Fp.

Normal basis representation often speeds up
exponentiation in Fq.
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Part 3: Elliptic Curves
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The Weierstrass Equation

Let K be a field.

An elliptic curve E over K is defined by the equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ai ∈ K .

The curve should be smooth (no singularities).

Special forms

char K 6= 2,3: y2 = x3 + ax + b, a,b ∈ K .

char K 6= 2: y2 = x3 + b2x2 + b4x + b6, bi ∈ K .

char K = 2:
Non-supersingular curve: y2 + xy = x3 + ax2 + b, a,b ∈ K .
Supersingular curve: y2 + ay = x3 + bx + c, a,b, c ∈ K .
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Elliptic Curves Over R: Example

y y

x x

(a) y2 = x3 − x + 1 (b) y2 = x3 − x
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The Elliptic Curve Group

Any (x , y) ∈ K 2 satisfying the equation of an elliptic curve E is
called a K -rational point on E .

Point at infinity:

There is a single point at infinity on E , denoted by O.

This point cannot be visualized in the two-dimensional
(x , y) plane.

The point exists in the projective plane.

E(K ) is the set of all finite K -rational points on E and the point
at infinity.

An additive group structure can be defined on E(K ).

O acts as the identity of the group.
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The Opposite of a Point

(a) (b)

P

P

−P

−Q

Q

−P

Q

Ordinary Points Special Points

−Q
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Addition of Two Points

Chord and tangent rule

P

Q

R

P

P+Q

(a) (b)

R

Q

P+Q
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Doubling of a Point

Chord and tangent rule

2P

(a) (b)

R

P

P

R

P2
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Addition and Doubling Formulas

Let P = (h1, k1) and Q = (h2, k2) be finite points.
Assume that P + Q 6= O and 2P 6= O.
Let P + Q = (h3, k3) (Note that P + Q = 2P if P = Q).

E : y2 = x3 + ax + b

−P = (h1,−k1)

h3 = λ2 − h1 − h2

k3 = λ(h1 − h3) − k1, where

λ =



















k2 − k1
h2 − h1

, if P 6= Q,

3h2
1 + a
2k1

, if P = Q.
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Addition and Doubling in Non-supersingular Curves

E : y2 + xy = x3 + ax2 + b (with char K = 2).

−P = (h1, k1 + h1),

h3 =



















(

k1 + k2
h1 + h2

)2
+ k1 + k2

h1 + h2
+ h1 + h2 + a, if P 6= Q,

h2
1 + b

h2
1
, if P = Q,

k3 =















(

k1 + k2
h1 + h2

)

(h1 + h3) + h3 + k1, if P 6= Q,

h2
1 +

(

h1 + k1
h1

+ 1
)

h3, if P = Q.
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Addition and Doubling in Supersingular Curves

E : y2 + ay = x3 + bx + c (with char K = 2).

−P = (h1, k1 + a),

h3 =



















(

k1 + k2
h1 + h2

)2
+ h1 + h2, if P 6= Q,

h4
1 + b2

a2 , if P = Q,

k3 =



















(

k1 + k2
h1 + h2

)

(h1 + h3) + k1 + a, if P 6= Q,

(

h2
1 + b

a

)

(h1 + h3) + k1 + a, if P = Q.
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Elliptic Curves Over Finite Fields

Example 1

Take K = F7 and E1 : y2 = x3 + x + 3.

There are six points in E1(F7): P0 = O, P1 = (4,1), P2 = (4,6),
P3 = (5,0), P4 = (6,1) and P5 = (6,6).

Multiples of these points

P 2P 3P 4P 5P 6P ord P
P0 = O 1
P1 = (4,1) (6,6) (5,0) (6,1) (4,6) O 6
P2 = (4,6) (6,1) (5,0) (6,6) (4,1) O 6
P3 = (5,0) O 2
P4 = (6,1) (6,6) O 3
P5 = (6,6) (6,1) O 3
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Elliptic Curves Over Finite Fields

Example 2

Represent F8 = F2(ξ), where ξ3 + ξ + 1 = 0.

Consider the non-supersingular curve
E2 : y2 + xy = x3 + x2 + ξ over F8.

There are ten points in E2(F8):

P0 = O,
P1 = (0, ξ2 + ξ),

P2 = (1, ξ2),
P3 = (1, ξ2 + 1),

P4 = (ξ, ξ2),

P5 = (ξ, ξ2 + ξ),
P6 = (ξ + 1, ξ2 + 1),

P7 = (ξ + 1, ξ2 + ξ),

P8 = (ξ2 + ξ,1),
P9 = (ξ2 + ξ, ξ2 + ξ + 1).

Public-key Cryptography: Theory and Practice Abhijit Das



Number Theory
Algebra

Elliptic Curves

The Weierstrass Equation
The Elliptic Curve Group
Elliptic Curves Over Finite Fields

Elliptic Curves Over Finite Fields

Example 2 (contd.)

P 2P 3P 4P 5P 6P 7P 8P 9P 10P ord P
P0 1
P1 O 2
P2 P7 P6 P3 O 5
P3 P6 P7 P2 O 5
P4 P3 P9 P6 P1 P7 P8 P2 P5 O 10
P5 P2 P8 P7 P1 P6 P9 P3 P4 O 10
P6 P2 P3 P7 O 5
P7 P3 P2 P6 O 5
P8 P6 P4 P2 P1 P3 P5 P7 P9 O 10
P9 P7 P5 P3 P1 P2 P4 P6 P8 O 10
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Size of the Elliptic Curve Group

Let E be an elliptic curve defined over Fq = Fpn .

Hasse’s Theorem:
|E(Fq)| = q + 1 − t , where −2

√
q 6 t 6 2

√
q.

t is called the trace of Frobenius at q.

If t = 1, then E is called anomalous .

If p | t , then E is called supersingular .

If p6 | t , then E is called non-supersingular .

Let α, β ∈ C satisfy 1 − tx + qx2 = (1 − αx)(1 − βx). Then,
|E(Fqm)| = qm + 1 − (αm + βm).

Note: E(Fq) is not necessarily cyclic.
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Hyperelliptic Curves

A hyperelliptic curve of genus g ∈ N over a field K is defined
by the equation:

y2 + u(x)y = v(x),

where u(x), v(x) ∈ K [x ], v(x) is monic, deg u(x) 6 g, and
deg v(x) = 2g + 1.

Elliptic curves are hyperelliptic curves of of genus 1.

The curve must be smooth (no points of singularity).

If char K 6= 2, then the equation can be simplified to

y2 = v(x)

with v(x) ∈ K [x ] monic of degree 2g + 1.
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Hyperelliptic Curves: Example

y

x

A hyperelliptic curve over R: y2 = x(x2 − 1)(x2 − 2)
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The Hyperelliptic Curve Group

A group can be defined on the rational points of a
hyperelliptic curve.

The theory of divisors should be used in order to
understand the construction of this group.

For the special case of elliptic curves, this divisor class
group can be stated geometrically by the
chord-and-tangent rule.

For hyperelliptic curves of genus > 2, the
chord-and-tangent rule holds no longer.

The hyperelliptic curve group is also used in cryptography.
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