Number Theory Algebra Elliptic Curves

Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Chapter 2: Mathematical Concepts

 Number Theory
 Divisibility

 Algebra
 Congruence

 Elliptic Curves
 Quadratic Residues

Part 1: Number Theory

 Number Theory
 Divisibility

 Algebra
 Congruence

 Elliptic Curves
 Quadratic Residue

Divisibility

Common sets

- $\mathbb{N} = \{1, 2, 3, ...\} \text{ (Natural numbers)}$ $\mathbb{N}_0 = \{0, 1, 2, 3, ...\} \text{ (Non-negative integers)}$ $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\} \text{ (Integers)}$ $\mathbb{P} = \{2, 3, 5, 7, 11, 13, ...\} \text{ (Primes)}$
- **Divisibility:** $a \mid b$ if b = ac for some $c \in \mathbb{Z}$.
- **Corollary:** If $a \mid b$, then $|a| \leq |b|$.
- Theorem: There are infinitely many primes.
- Euclidean division: Let $a, b \in \mathbb{Z}$ with b > 0. There exist unique $q, r \in \mathbb{Z}$ with a = qb + r and $0 \leq r < b$.
- Notations: q = a quot b, r = a rem b.

Number Theory Di Algebra Co Elliptic Curves Qu

Divisibility Congruence Quadratic Residues

Greatest Common Divisor (GCD)

- Let a, b ∈ Z, not both zero. Then d ∈ N is called the gcd of a and b, if:
 - (1) *d* | *a* and *d* | *b*.
 - (2) If $d' \mid a$ and $d' \mid b$, then $d' \mid d$.

We denote $d = \gcd(a, b)$.

- Euclidean gcd: $gcd(a, b) = gcd(b, a \operatorname{rem} b)$ (for b > 0).
- **Extended gcd:** Let $a, b \in \mathbb{Z}$, not both zero. There exist $u, v \in \mathbb{Z}$ such that

gcd(a, b) = ua + vb.

Number Theory Algebra Elliptic Curves Divisibility Congruence Quadratic Residues GCD: Example

$899 = 2 \times 319 + 261,$

- $319 = 1 \times 261 + 58,$
- $261 = 4 \times 58 + 29,$
 - $58 = 2 \times 29.$

Therefore, gcd(899, 319) = gcd(319, 261) = gcd(261, 58) = gcd(58, 29) = gcd(29, 0) = 29

Extended gcd computation

$$\begin{array}{rcl} 29 &=& 261-4\times58\\ &=& 261-4\times(319-1\times261)=(-4)\times319+5\times261\\ &=& (-4)\times319+5\times(899-2\times319)\\ &=& 5\times899+(-14)\times319. \end{array}$$

Number TheoryDivisibilityAlgebraCongruenceElliptic CurvesQuadratic Re

Congruence

Let n ∈ N. Two integers a, b are called congruent modulo n, denoted a ≡ b (mod n), if n | (a − b) or equivalently if a rem n = b rem n.

Properties of congruence

- Congruence is an equivalence relation on \mathbb{Z} .
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
- If $a \equiv b \pmod{n}$ and $d \mid n$, then $a \equiv b \pmod{d}$.

Cancellation

 $ab \equiv ac \pmod{n}$ if and only if $b \equiv c \pmod{n/\gcd(a, n)}$.

Number Theory Algebra Elliptic Curves

Divisibility Congruence Quadratic Residues

Congruence (contd.)

- ■ Z_n = The set of equivalence classes of the relation "congruence modulo n".
- **Complete residue system:** A collection of *n* integers, with exactly one from each equivalence class.
- Most common representation: $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$
- Arithmetic of \mathbb{Z}_n : Integer arithmetic modulo *n*.
- Modular inverse: a ∈ Z_n is called invertible modulo n if ua ≡ 1 (mod n) for some u ∈ Z_n.
- Theorem: a ∈ Z_n is invertible modulo n if and only if gcd(a, n) = 1. In this case, extended gcd gives ua + vn = 1. Then, u ≡ a⁻¹ (mod n).

Number Theory Algebra Elliptic Curves Divisibility Congruence Quadratic Residues

Euler Totient Function

• Let $n \in \mathbb{N}$. Define

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}.$$

Thus, \mathbb{Z}_n^* is the set of all elements of \mathbb{Z}_n that are invertible modulo *n*.

• Call
$$\phi(n) = |\mathbb{Z}_n^*|$$
.

- **Example:** If p is a prime, then $\phi(p) = p 1$.
- **Example:** $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. We have gcd(0, 6) = 6, gcd(1, 6) = 1, gcd(2, 6) = 2, gcd(3, 6) = 3, gcd(4, 6) = 2, and gcd(5, 6) = 1. So $\mathbb{Z}_6^* = \{1, 5\}$, that is, $\phi(6) = 2$.

 Number Theory
 Divisibility

 Algebra
 Congruence

 Elliptic Curves
 Quadratic Res

Euler Totient Function (contd.)

• **Theorem:** Let $n = p_1^{e_1} \cdots p_r^{e_r}$ with distinct primes $p_i \in \mathbb{P}$ and with $e_i \in \mathbb{N}$. Then

$$\phi(n) = n\left(1-\frac{1}{p_1}\right)\cdots\left(1-\frac{1}{p_r}\right) = n\prod_{p\mid n}\left(1-\frac{1}{p}\right).$$

- Fermat's little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \not\mid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.
- Euler's theorem: Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with gcd(a, n) = 1. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

 Number Theory
 Divisibility

 Algebra
 Congruence

 Elliptic Curves
 Quadratic Re

Linear Congruences

- Let d = gcd(a, n). The congruence ax ≡ b (mod n) is solvable if and only if d | b. In that case, there are exactly d solutions modulo n.
- Chinese remainder theorem (CRT) For pairwise coprime moduli $n_1, n_2, ..., n_r$ with product $N = n_1 n_2 \cdots n_r$, the congruences

 $x \equiv a_1 \pmod{n_1}, x \equiv a_2 \pmod{n_2}, \ldots, x \equiv a_r \pmod{n_r},$

have a simultaneous solution unique modulo N.

Let $N_i = N/n_i$ and $v_i \equiv N_i^{-1} \pmod{n_i}$. The simultaneous solution is given by

$$x \equiv a_i v_i N_i \pmod{N}.$$

CRT: Example

• Solve the following congruences simultaneously:

$$x \equiv 1 \pmod{5}, x \equiv 5 \pmod{6}, x \equiv 3 \pmod{7}.$$

•
$$n_1 = 5$$
, $n_2 = 6$ and $n_3 = 7$, so $N = n_1 n_2 n_3 = 210$.
 $a_1 = 1$, $a_2 = 5$ and $a_3 = 3$.

•
$$N_1 = n_2 n_3 = 42, N_2 = n_1 n_3 = 35$$
, and $N_3 = n_1 n_2 = 30$.
• $v_1 \equiv N_1^{-1} \equiv 42^{-1} \equiv 2^{-1} \equiv 3 \pmod{5}$.
 $v_2 \equiv N_2^{-1} \equiv 35^{-1} \equiv 5^{-1} \equiv 5 \pmod{6}$.

$$V_3 \equiv N_3^{-1} \equiv 30^{-1} \equiv 2^{-1} \equiv 4 \pmod{7}.$$

The simultaneous solution is

$$\begin{array}{rcl} x &\equiv& a_1 v_1 N_1 + a_2 v_2 N_2 + a_3 v_3 N_3 \\ &\equiv& 126 + 875 + 360 \ \equiv& 1361 \ \equiv& 101 \ (\bmod \ 210). \end{array}$$

Number Theory Algebra Elliptic Curves Divisibility Congruence Quadratic Residues

Polynomial Congruences

- Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $d \ge 2$. To solve: $f(x) \equiv 0 \pmod{n}$. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ be the prime factorization of n.
- Solve $f(x) \equiv 0 \pmod{p_i^{e_i}}$ for all *i*. Combine the solutions by CRT.
- How to solve $f(x) \equiv 0 \pmod{p^e}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}$?
- Solve $f(x) \equiv 0 \pmod{p}$.
- Hensel lifting

Let $x \equiv \xi \pmod{p^r}$ be a solution of $f(x) \equiv 0 \pmod{p^r}$. All solutions of $f(x) \equiv 0 \pmod{p^{r+1}}$ are given by

$$x \equiv \xi + kp^r \pmod{p^{r+1}},$$

where

$$f'(\xi)\mathbf{k} \equiv -\frac{f(\xi)}{p'} \pmod{p}.$$

Number Theory Algebra Elliptic Curves

Congruence Quadratic Residues

Multiplicative Order

- Let n ∈ N and a ∈ Z_n^{*}. Define ord_n a to be the smallest of the *positive* integers h for which a^h ≡ 1 (mod n).
- Example: n = 17, a = 2. a¹ ≡ 2 (mod n), a² ≡ 4 (mod n), a³ ≡ 8 (mod n), a⁴ ≡ 16 (mod n), a⁵ ≡ 15 (mod n), a⁶ ≡ 13 (mod n), a⁷ ≡ 9 (mod n), and a⁸ ≡ 1 (mod n). So ord₁₇ 2 = 8.
- **Theorem:** $a^k \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n a \mid k$.
- **Theorem:** Let $h = \operatorname{ord}_n a$. Then, $\operatorname{ord}_n a^k = h/\operatorname{gcd}(h, k)$.
- Theorem: $\operatorname{ord}_n a \mid \phi(n)$.

Primitive Root

- If $\operatorname{ord}_n a = \phi(n)$, then *a* is called a primitive root modulo *n*.
- Theorem (Gauss): An integer n > 1 has a primitive root if and only if n = 2, 4, p^e, 2p^e, where p is an odd prime and e ∈ N.
- **Example:** 3 is a primitive root modulo the prime n = 17:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$3^{k} \pmod{17}$	1	3	9	10	13	5	15	11	16	14	8	7	4	12

Number Theory Algebra Elliptic Curves

Divisibility Congruence Quadratic Residues

Primitive Root (contd.)

• **Example:** $n = 2 \times 3^2 = 18$ has a primitive root 5 with order $\phi(18) = 6$:

k	0	1	2	3	4	5	6
5 ^k (mod 18)	1	5	7	17	13	11	1

• **Example:** $n = 20 = 2^2 \times 5$ does not have a primitive root. We have $\phi(20) = 8$, and the orders of the elements of \mathbb{Z}_{20}^* are $\operatorname{ord}_{20} 1 = 1$, $\operatorname{ord}_{20} 3 = \operatorname{ord}_{20} 7 = \operatorname{ord}_{20} 13 = \operatorname{ord}_{20} 17 = 4$, and $\operatorname{ord}_{20} 9 = \operatorname{ord}_{20} 19 = 2$.

Quadratic Residues

- Quadratic congruence: $ux^2 + vx + w \equiv 0 \pmod{n}$.
- By CRT and Hensel lifting, it suffices to take $n = p \in \mathbb{P}$.
- Assume that $p \neq 2$, that is, p is odd.
- Reduce the congruence to $x^2 \equiv a \pmod{p}$.
- Let $a \in \mathbb{Z}_p^*$ (that is, $a \not\equiv 0 \pmod{p}$).
- a is called a quadratic residue modulo p

if $x^2 \equiv a \pmod{p}$ is solvable.

a is called a quadratic non-residue modulo p

if $x^2 \equiv a \pmod{p}$ is not solvable.

- There are (p 1)/2 quadratic residues and (p 1)/2 quadratic non-residues modulo p.
- **Example:** Take p = 11. The quadratic residues are 1, 3, 4, 5, 9 and the non-residues are 2, 6, 7, 8, 10.

 Number Theory
 Divisibility

 Algebra
 Congruence

 Elliptic Curves
 Quadratic Residues

Legendre Symbol

• Let p be an odd prime. Define

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{cases}$$

Properties

•
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

• $\left(\frac{1}{p}\right) = 1, \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}, \left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}.$

• Euler's criterion: $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.

• Law of quadratic reciprocity: For two odd primes p, q, we have $\left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p}\right)$.

Jacobi Symbol

Let $n = p_1 p_2 \cdots p_t$ be an odd positive integer. Here, p_i are prime (not necessarily all distinct).

Define
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_t}\right)$$

- The Jacobi symbol is an extension of the Legendre symbol.
- The Jacobi symbol loses direct relationship with quadratic residues. For example, (²/₉) = (²/₃)² = (-1)² = 1, but the congruence x² ≡ 2 (mod 9) has no solutions.
- The Jacobi symbol satisfies the law of quadratic reciprocity: $\left(\frac{a}{b}\right) = (-1)^{(a-1)(b-1)/4} \left(\frac{b}{a}\right)$ for two odd integers *a*, *b*.
- The Jacobi symbol leads to an efficient algorithm for the computation of the Legendre symbol.

Topics From Analytic Number Theory

• The prime number theorem (PNT)

Let *x* be a positive real number, and $\pi(x)$ the number of primes $\leq x$. Then, $\pi(x) \rightarrow x/\ln x$ as $x \rightarrow \infty$.

Density of smooth integers

Let *x*, *y* be positive real numbers with x > y, $u = \ln x / \ln y$, and $\psi(x, y)$ the fraction of positive integers $\leq x$ with all prime factors $\leq y$. For $u \to \infty$ and $y \ge \ln^2 x$, we have $\psi(x, y) \to u^{-u+o(u)} = e^{-[(1+o(1))u \ln u]}$.

Number Theory	
Algebra	
Elliptic Curves	

Part 2: Algebra

A **group** (G, \diamond) is a set *G* with a binary operation \diamond , having the following properties.

 $a \diamond (b \diamond c) = (a \diamond b) \diamond c$ for all $a, b, c \in G$.

- Existence of an identity element: There exists e ∈ G such that a ◊ e = e ◊ a = a for all a ∈ G.
- Existence of <u>inverse</u>:
 For all *a* ∈ *G*, there exists *b* ∈ *G* with *a* ◊ *b* = *b* ◊ *a* = *e*.

A group $G = (G, \diamond)$ is called **Abelian** or **commutative**, if \diamond is <u>commutative</u>, that is, $a \diamond b = b \diamond a$ for all $a, b \in G$.

Examples

- \mathbb{Z} under integer addition
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition
- $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication
- \mathbb{Z}_n under addition modulo n
- \mathbb{Z}_n^* under multiplication modulo *n*
- The set of all $m \times n$ real matrices under matrix addition
- The set of all n × n invertible real matrices under matrix multiplication. This group is called the general linear group GL_n and is not Abelian.
- The set of all bijective function *f* : *S* → *S* (for any set *S*) under composition of functions. This group is not Abelian, in general.

Subgroups

Let (G, \diamond) be a group and $H \subseteq G$.

- *H* is called a **subgroup** of *G* if (H, \diamond) is a group.
- **Theorem:** *H* is a subgroup of *G* if and only if *H* is closed under the group operation and the inverse.
- **Theorem:** If *G* is finite, then *H* is a subgroup of *G* if and only if *H* is closed under the group operation.
- Lagrange's Theorem: If G is a finite group and H a subgroup of G, then |H| divides |G|.
- Examples
 - $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.
 - (\mathbb{Q}^*, \times) is a subgroup of (\mathbb{C}^*, \times) .
 - The set of all *n* × *n* real matrices of determinant 1 is a subgroup of *GL_n*.

Homomorphisms of Groups

Let (G,\diamond) and (G',\diamond') be groups and $f:G \to G'$ a function.

- *f* is a called a homomorphism if *f*(*a* ◊ *b*) = *f*(*a*) ◊' *f*(*b*) for all *a*, *b* ∈ *G*.
- A bijective homomorphism *f* is called an **isomorphism**, denoted G ≅ G'. In this case, f⁻¹ : G' → G is again a homomorphism.
- An isomorphism $G \rightarrow G$ is called an **automorphism**.
- Examples
 - The map z → z̄ (complex conjugation) is an automorphism of both (C, +) and (C*, ×).
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.
 - Let gcd(a, n) = 1. The map Z^{*}_n → Z^{*}_n taking x → ax rem n is an automorphism of Z^{*}_n.

Cyclic Groups

Let $G = (G, \cdot)$ be a multiplicative group.

- If there exists g ∈ G such that every a ∈ G can be written as a = g^r for some r ∈ Z, then G is called a cyclic group, and g is called a generator of G.
- If G is a finite cyclic group of size n, then every element of G can be written as g^r for a unique r ∈ {0, 1, 2, ..., r − 1}.
- Theorem: Every infinite cyclic group is isomorphic to (ℤ, +). Every finite cyclic group is isomorphic to (ℤ_n, +) for some *n*.
- **Theorem:** Every subgroup of a cyclic group is again cyclic.
- Theorem: Let G be a finite cyclic group, and H a subgroup of size m. An element a ∈ G belongs to H if and only if a^m = e.

Cyclic Groups (contd.)

Let (G, \cdot) be a finite cyclic group of size *n*. Let $a \in G$.

- The **subgroup generated by** *a* is the set $\{a^r \mid r = 0, 1, 2, ..., m 1\}$, where *m* is the smallest positive integer with the property that $a^m = e$.
- *m* is called the **order** of *a*, denoted ord(*a*).
- By Lagrange's theorem, $m \mid n$.
- *a* is a generator of *G* if m = n.
- G contains exactly $\phi(n)$ generators.

Examples

- \mathbb{Z}_n^* (under modular multiplication) is cyclic if and only if *n* is 2, 4, p^e or $2p^e$ for an odd prime *p* and for $e \in \mathbb{N}$.
- In particular, \mathbb{Z}_p^* is cyclic for every $p \in \mathbb{P}$.
- The number of generators of \mathbb{Z}_p^* is $\phi(p-1)$.

Rings

A **ring** $(R, +, \cdot)$ (commutative with identity) is a set *R* with two binary operations + and \cdot , having the properties:

- (R, +) is an <u>Abelian group</u>.
- is <u>associative</u>:

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$.

• is <u>commutative</u>:

 $a \cdot b = b \cdot a$ for all $a, b \in R$.

- Existence of <u>multiplicative identity</u>: There exists an element 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R.
- · is <u>distributive</u> over +:

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$ for all $a, b, c \in R$.

Integral Domains and Fields

Let $(R, +, \cdot)$ be a ring.

- If 0 = 1 in R, then $R = \{0\}$ (the **zero ring**).
- Let a ∈ R. If there exists a non-zero b ∈ R with ab = 0, then a is called a zero divisor.
- *R* is called an **integral domain** if *R* is not the zero ring and *R* contains no non-zero zero divisors.
- An element a ∈ R is called a unit, if there exists b ∈ R with ab = ba = 1. The set of all units of R is a multiplicative group denoted R*.
- *R* Is called a **field**, if *R* is not the zero ring, and every non-zero element of *R* is a unit (*R*^{*} = *R* \ {0}).
- **Theorem:** Every field is an integral domain.
- **Theorem:** Every finite integral domain is a field.

Rings: Examples

- $\bullet \ \mathbb{Z}$ is an integral domain, but not a field.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- \mathbb{Z}_n is a ring.
- Z_n is an integral domain (equivalently a field) if and only if n is prime.
- Let R be a ring. The set R[x] of all polynomials in one variable x and with coefficients from R is a ring. Likewise, the set R[x₁, x₂,..., x_n] of all *n*-variable polynomials with coefficients from R is a ring.
- If *R* is an integral domain, then so also are R[x] and $R[x_1, x_2, ..., x_n]$.
- *R*[*x*] is not a field (even if *R* is a field).

Number Theory Algebra Elliptic Curves Groups Rings and Fields Finite Fields

Characteristics of Rings

Let $R = (R, +, \cdot)$ be a ring.

- The characteristic of R, denoted char R, is the smallest positive integer m such that 1 + 1 + · · · + 1 (m times) = 0.
- If no such integer exists, we say char R = 0.
- Examples
 - The characteristic of \mathbb{Z} , \mathbb{R} , \mathbb{Q} or \mathbb{C} is 0.
 - The characteristic of \mathbb{Z}_n is *n*.
 - Let a field *F* have positive characteristic *p*. Then, *p* is prime.

Homomorphisms of Rings

Let *R* and *S* be rings, and $f : R \rightarrow S$ a function.

• *f* is called a **homomorphism** if the following conditions are satisfied:

$$f(a + b) = f(a) + f(b)$$
 for every $a, b \in R$,
 $f(ab) = f(a)f(b)$ for every $a, b \in R$, and
 $f(1_R) = 1_S$.

- A bijective homomorphism *f* : *R* → *S* is called an isomorphism. In that case, *f*⁻¹ : *S* → *R* is again a homomorphism.
- An **automorphism** of *R* is an isomorphism $f : R \rightarrow R$.
- Examples
 - Complex conjugation $(z \mapsto \overline{z})$ is an automorphism of \mathbb{C} .
 - The map $\mathbb{Z} \to \mathbb{Z}_n$ taking $a \mapsto a \operatorname{rem} n$ is a homomorphism.
 - A homomorphism $\mathbb{Z}_m \to \mathbb{Z}_n$ exists if and only if $n \mid m$.

Polynomials

Let K be a field, and K[x] the polynomial ring over K.

- Euclidean division: Let $f(x), g(x) \in K[x]$ with $g(x) \neq 0$. There exist polynomials $q(x), r(x) \in K[x]$ such that f(x) = q(x)g(x) + r(x), and r(x) = 0 or deg $r(x) < \deg g(x)$.
- We denote q(x) = f(x) quot g(x) and r(x) = f(x) rem g(x).
- For f(x), g(x) ∈ K[x], not both zero, the monic polynomial d(x) of the largest degree with d(x) | f(x) and d(x) | g(x) is called the gcd of f(x) and g(x).
- Euclidean gcd: $gcd(f(x), g(x)) = gcd(g(x), f(x) \operatorname{rem} g(x))$.
- Extended gcd: There exist $u(x), v(x) \in K[x]$ such that gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x). We can choose u(x), v(x) to satisfy deg $u(x) < \deg g(x)$ and $\deg v(x) < \deg f(x)$.

Algebraic Elements

Let $K \subseteq L$ be an extension of fields.

- An element α ∈ L is called algebraic over K if f(α) = 0 for some non-constant f(x) ∈ K[x].
- A non-algebraic element is called transcendental.
- L is called an algebraic extension of K if every element of L is algebraic over K.
- Examples
 - The element $\alpha = \sqrt[5]{3 + \sqrt{-2}} \in \mathbb{C}$ is algebraic over \mathbb{Q} , since $(\alpha^5 3)^2 + 2 = 0$.
 - e and π are transcendental over \mathbb{Q} .
 - \mathbb{C} is an algebraic extension of \mathbb{R} .
 - \mathbb{C} is not an algebraic extension of \mathbb{Q} .

Minimal Polynomials

Let $K \subseteq L$ be a field extension, and $\alpha \in L$ algebraic over K.

- The non-constant polynomial f(x) ∈ K[x] with the smallest degree, such that f(α) = 0, is called the minimal polynomial of α over K, denoted minpoly_{α,K}(x).
- minpoly_{α, K}(*x*) is an irreducible polynomial of *K*[*x*].
- Let f(x) ∈ K[x]. Then, f(α) = 0 if and only if minpoly_{α,K}(x) | f(x).
- The roots of minpoly_{α,K}(x) are called **conjugates** of α (over K).

Field Extensions

Let K be a field, and $f(x) \in K[x]$ be irreducible.

- Let α be a root of f(x).
- Define the set

$$\begin{aligned} \mathsf{K}(\alpha) &= \{ g(\alpha) \mid g(x) \in \mathsf{K}[x] \} \\ &= \{ g(\alpha) \mid g(x) \in \mathsf{K}[x], \ \deg g(x) < \deg f(x) \}. \end{aligned}$$

- K(α) is a field.
- $K(\alpha)$ is the smallest field that contains K and α .
- Examples
 - $\mathbb{C} = \mathbb{R}(i)$ with minpoly_{i, \mathbb{R}} $(x) = x^2 + 1 \in \mathbb{R}[x]$.
 - Q(i) = {a + ib | a, b ∈ Q} is a proper subfield of C, obtained by adjoining a root of x² + 1 to Q.
 - Q(α) = {a + bα + cα² | a, b, c ∈ Q} is an extension of Q, obtained by adjoining a root of x³ − 2 ∈ Q[x].

Finite Fields

- A finite field K is a field with |K| finite.
- Simplest examples: \mathbb{Z}_p for $p \in \mathbb{P}$.
- There are other finite fields.
- Let *K* be a finite field with |K| = q.
- *K* contains a subfield \mathbb{Z}_p for some $p \in \mathbb{P}$.
- $q = p^n$ for some $n \in \mathbb{N}$.
- Any two finite fields of the same size are isomorphic.
- \mathbb{F}_q = The finite field of size q.
- Prime fields: $\mathbb{F}_{\rho} = \mathbb{Z}_{\rho}$ for $\rho \in \mathbb{P}$.
- Extension fields: $\mathbb{F}_{p^n} \neq \mathbb{Z}_{p^n}$ (as rings) for $p \in \mathbb{P}$ and $n \ge 2$.

Number Theory Algebra Elliptic Curves Groups Rings and Fields Finite Fields

Properties of Finite Fields

• Fermat's little theorem:

 $\alpha^{q-1} = 1$ for every $\alpha \in \mathbb{F}_q^*$. $\beta^q = \beta$ for every $\beta \in \mathbb{F}_q$.

• The multiplicative group $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ is cyclic.

• There are $\phi(q-1)$ generators of \mathbb{F}_q^* .

- Let $\mathbb{F}_q \subseteq \mathbb{F}_{q^m}$ be an extension of finite fields, and d a positive integral divisor of m. Then, there exists a unique intermediate field \mathbb{F}_{q^d} ($\mathbb{F}_q \subseteq \mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^m}$).
- The polynomial X^{q^r} − X is the product of all monic irreducible polynomials of F_q[x] of degrees dividing r.

Representation of Extension Fields

To represent the finite field \mathbb{F}_{p^n} , $n \ge 2$.

- For every p ∈ P and n ∈ N, there exists (at least) one irreducible polynomial in F_p[x] of degree n.
- Let $f(x) \in \mathbb{F}_{p}[x]$ be irreducible of degree *n*.
- Let θ be a root of f(x). Since f(x) is irreducible, $\theta \notin \mathbb{F}_p$.
- One can represent $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta) = \{a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1} \mid a_i \in \mathbb{F}_p\}.$
- This is called the polynomial basis representation of *F*_{pⁿ}, because the elements of *F*_{pⁿ} are *F*_p-linear combinations of the basis elements 1, θ, θ²,..., θⁿ⁻¹.
- The irreducible polynomial *f*(*x*) Is called the **defining polynomial** for this representation.

Number Theory	
Algebra	
Elliptic Curves	Finite Fields

Arithmetic in Extension Fields

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.
Let $\alpha = a_0 + a_1\theta + a_2\theta^2 + \dots + a_{n-1}\theta^{n-1}$ and
 $\beta = b_0 + b_1\theta + b_2\theta^2 + \dots + b_{n-1}\theta^{n-1}$ be two elements of \mathbb{F}_q .

- Addition: $\alpha + \beta = (a_0 + b_0) + (a_1 + b_1)\theta + (a_2 + b_2)\theta^2 + \cdots + (a_{n-1} + b_{n-1})\theta^{n-1}$, where each $a_i + b_i$ is the addition of \mathbb{F}_p (arithmetic modulo p).
- Subtraction: Similar to addition.
- Multiplication: Multiply α(x) and β(x) as polynomials over *F_p*. Compute remainder ρ(x) of Euclidean division of this product by *f*(x). The coefficient arithmetic is that of *F_p*. Take ρ = ρ(α) = αβ.
- Inverse: If $\alpha \neq 0$, then $gcd(\alpha(x), f(x)) = 1 = u(x)\alpha(x) + v(x)f(x)$ (extended gcd). So $u(\theta)\alpha(\theta) = 1$, that is, $\alpha^{-1} = u(\theta)$.

Arithmetic in \mathbb{F}_8

Define
$$\mathbb{F}_8 = \mathbb{F}_2(\theta)$$
, where $\theta^3 + \theta + 1 = 0$.
 $\mathbb{F}_8 = \{0, 1, \theta, \theta + 1, \theta^2, \theta^2 + 1, \theta^2 + \theta, \theta^2 + \theta + 1\}.$
Take $\alpha = \theta + 1$ and $\beta = \theta^2 + \theta$.

•
$$\alpha + \beta = \theta^2 + 1$$
.

• In a field of characteristic 2, we have -1 = 1, that is, subtraction is the same as addition.

•
$$\alpha\beta = (\theta + 1)(\theta^2 + \theta) = \theta^3 + \theta = (\theta^3 + \theta + 1) + 1 = 1.$$

•
$$(\theta + 1)(\theta^2 + \theta) + (\theta^3 + \theta + 1) = 1$$
, that is, $\alpha^{-1} = \theta^2 + \theta = \beta$.

Arithmetic in \mathbb{F}_9

Define
$$\mathbb{F}_9 = \mathbb{F}_3(\psi)$$
, where $\psi^2 + 1 = 0$.
 $\mathbb{F}_9 = \{0, 1, 2, \psi, \psi + 1, \psi + 2, 2\psi, 2\psi + 1, 2\psi + 2\}$.
Take $\alpha = \psi + 1$ and $\beta = 2\psi + 1$.
• $\alpha + \beta = 3\psi + 2 = 2$.
• $\alpha - \beta = -\psi = 2\psi$.
• $\alpha\beta = (\psi + 1)(2\psi + 1) = 2\psi^2 + 1 = 2(\psi^2 + 1) + 2 = 2$.
• $(\psi + 1)(\psi + 2) + 2(\psi^2 + 1) = 1$, so $\alpha^{-1} = \psi + 2$.

Number Theory	
Algebra	
Elliptic Curves	Finite Fields

Normal basis representation

Let
$$\mathbb{F}_q = \mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$$
 with $f(\theta) = 0$.

•
$$f(x) = (x - \theta)(x - \theta^p)(x - \theta^{p^2}) \cdots (x - \theta^{p^{n-1}}).$$

- The conjugates of θ are θ , θ^p , θ^{p^2} , ..., $\theta^{p^{n-1}}$. They are all in \mathbb{F}_q .
- Suppose that θ, θ^p, θ^{p²},..., θ^{pⁿ⁻¹} are linearly independent over F_p, Then, θ is called a normal element and f(x) is called a normal polynomial.
- The elements θ, θ^p, θ^{p²},..., θ^{pⁿ⁻¹} constitute a normal basis of F_q over F_p.
- Every element in \mathbb{F}_q can be represented uniquely as $a_0\theta + a_1\theta^p + a_2\theta^2 + \cdots + a_{n-1}\theta^{p^{n-1}}$ with each $a_i \in \mathbb{F}_p$.
- Normal basis representation often speeds up exponentiation in F_q.

Number Theory	The Weierstrass Equation
Algebra	The Elliptic Curve Group
Elliptic Curves	Elliptic Curves Over Finite Fields

Part 3: Elliptic Curves

Number Theory Algebra Elliptic Curves Elliptic Curves Over Finite

The Weierstrass Equation

Let K be a field.

An elliptic curve *E* over *K* is defined by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \ a_i \in K.$$

The curve should be **smooth** (no singularities).

Special forms

- char $K \neq 2, 3$: $y^2 = x^3 + ax + b, a, b \in K$.
- char $K \neq 2$: $y^2 = x^3 + b_2 x^2 + b_4 x + b_6$, $b_i \in K$.
- char K = 2:

Non-supersingular curve: $y^2 + xy = x^3 + ax^2 + b$, $a, b \in K$. Supersingular curve: $y^2 + ay = x^3 + bx + c$, $a, b, c \in K$.

Elliptic Curves Over \mathbb{R} : Example

Number Theory The Weie Algebra The Ellipt Elliptic Curves Elliptic Cu

The Elliptic Curve Group Elliptic Curves Over Finite Fields

The Elliptic Curve Group

Any $(x, y) \in K^2$ satisfying the equation of an elliptic curve *E* is called a *K*-rational point on *E*.

Point at infinity:

- There is a single point at infinity on E, denoted by O.
- This point cannot be visualized in the two-dimensional (x, y) plane.
- The point exists in the projective plane.

E(K) is the set of all finite K-rational points on E and the point at infinity.

An additive group structure can be defined on E(K).

 $\ensuremath{\mathcal{O}}$ acts as the identity of the group.

Number Theory Algebra Elliptic Curves

The Weierstrass Equation **The Elliptic Curve Group** Elliptic Curves Over Finite Fields

The Opposite of a Point

• Ordinary Points

Number Theory Algebra Elliptic Curves

The Weierstrass Equation **The Elliptic Curve Group** Elliptic Curves Over Finite Fields

Addition of Two Points

Chord and tangent rule

Doubling of a Point

Chord and tangent rule

Number Theory	
Algebra	The Elliptic Curve Group
Elliptic Curves	Elliptic Curves Over Finite Fields

Addition and Doubling Formulas

Let $P = (h_1, k_1)$ and $Q = (h_2, k_2)$ be finite points. Assume that $P + Q \neq O$ and $2P \neq O$. Let $P + Q = (h_3, k_3)$ (Note that P + Q = 2P if P = Q).

$$E: y^{2} = x^{3} + ax + b$$

$$-P = (h_{1}, -k_{1})$$

$$h_{3} = \lambda^{2} - h_{1} - h_{2}$$

$$k_{3} = \lambda(h_{1} - h_{3}) - k_{1}, \text{ where}$$

$$\lambda = \begin{cases} \frac{k_{2} - k_{1}}{h_{2} - h_{1}}, & \text{if } P \neq Q, \\ \frac{3h_{1}^{2} + a}{2k_{1}}, & \text{if } P = Q. \end{cases}$$

Number Theory The Weierstrass Equation Algebra The Elliptic Curve Group Elliptic Curves Over Finite Fields

Addition and Doubling in Non-supersingular Curves

 $E: y^2 + xy = x^3 + ax^2 + b$ (with char K = 2).

$$\begin{aligned} -P &= (h_1, k_1 + h_1), \\ h_3 &= \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)^2 + \frac{k_1 + k_2}{h_1 + h_2} + h_1 + h_2 + a, & \text{if } P \neq Q, \\ \\ h_1^2 + \frac{b}{h_1^2}, & \text{if } P = Q, \end{cases} \\ k_3 &= \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)(h_1 + h_3) + h_3 + k_1, & \text{if } P \neq Q, \\ \\ h_1^2 + \left(h_1 + \frac{k_1}{h_1} + 1\right)h_3, & \text{if } P = Q. \end{cases} \end{aligned}$$

Addition and Doubling in Supersingular Curves

$$E: y^2 + ay = x^3 + bx + c$$
 (with char $K = 2$).

$$-P = (h_1, k_1 + a),$$

$$h_3 = \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)^2 + h_1 + h_2, & \text{if } P \neq Q, \\ \\ \frac{h_1^4 + b^2}{a^2}, & \text{if } P = Q, \end{cases}$$

$$k_3 = \begin{cases} \left(\frac{k_1 + k_2}{h_1 + h_2}\right)(h_1 + h_3) + k_1 + a, & \text{if } P \neq Q, \\ \\ \left(\frac{h_1^2 + b}{a}\right)(h_1 + h_3) + k_1 + a, & \text{if } P = Q. \end{cases}$$

Number Theory	The Weierstrass Equation
Algebra	The Elliptic Curve Group
Elliptic Curves	Elliptic Curves Over Finite Field

Elliptic Curves Over Finite Fields

Example 1

Take $K = \mathbb{F}_7$ and $E_1 : y^2 = x^3 + x + 3$.

There are six points in $E_1(\mathbb{F}_7)$: $P_0 = \mathcal{O}$, $P_1 = (4, 1)$, $P_2 = (4, 6)$, $P_3 = (5, 0)$, $P_4 = (6, 1)$ and $P_5 = (6, 6)$.

Multiples of these points

Р	2P	3 <i>P</i>	4 <i>P</i>	5P	6 <i>P</i>	ord P
$P_0 = \mathcal{O}$						1
$P_1 = (4, 1)$	(6,6)	(5,0)	(6,1)	(4,6)	\mathcal{O}	6
$P_2 = (4,6)$	(6, 1)	(5,0)	(6,6)	(4, 1)	\mathcal{O}	6
$P_3 = (5,0)$	\mathcal{O}					2
$P_4 = (6, 1)$	(6,6)	\mathcal{O}				3
$P_5 = (6,6)$	(6, 1)	\mathcal{O}				3

Elliptic Curves Over Finite Fields

Example 2

Represent $\mathbb{F}_8 = \mathbb{F}_2(\xi)$, where $\xi^3 + \xi + 1 = 0$.

Consider the non-supersingular curve $E_2: y^2 + xy = x^3 + x^2 + \xi$ over \mathbb{F}_8 .

There are ten points in $E_2(\mathbb{F}_8)$:

$$\begin{array}{rcl} P_0 &=& \mathcal{O}, & P_5 &=& (\xi, \xi^2 + \xi), \\ P_1 &=& (0, \xi^2 + \xi), & P_6 &=& (\xi + 1, \xi^2 + 1), \\ P_2 &=& (1, \xi^2), & P_7 &=& (\xi + 1, \xi^2 + \xi), \\ P_3 &=& (1, \xi^2 + 1), & P_8 &=& (\xi^2 + \xi, 1), \\ P_4 &=& (\xi, \xi^2), & P_9 &=& (\xi^2 + \xi, \xi^2 + \xi + 1). \end{array}$$

Elliptic Curves Over Finite Fields

Example 2 (contd.)

Р	2 <i>P</i>	3P	4 <i>P</i>	5P	6 <i>P</i>	7P	8P	9 <i>P</i>	10 <i>P</i>	ord P
P_0										1
P_1	\mathcal{O}									2
P_2	P_7	P_6	P_3	\mathcal{O}						5
P_3	P_6	P_7	P_2	\mathcal{O}						5
P_4	P_3	P_9	P_6	P_1	P_7	P_8	P_2	P_5	\mathcal{O}	10
P_5	P_2	P_8	P_7	P_1	P_6	P_9	P_3	P_4	\mathcal{O}	10
P_6	P_2	P_3	P_7	\mathcal{O}						5
P_7	P_3	P_2	P_6	\mathcal{O}						5
P_8	P_6	P_4	P_2	P_1	P_3	P_5	P_7	P_9	\mathcal{O}	10
P_9	P_7	P_5	P_3	P_1	P_2	P_4	P_6	P_8	\mathcal{O}	10

Size of the Elliptic Curve Group

Let *E* be an elliptic curve defined over $\mathbb{F}_q = \mathbb{F}_{p^n}$.

Hasse's Theorem:

 $|E(\mathbb{F}_q)| = q + 1 - t$, where $-2\sqrt{q} \leq t \leq 2\sqrt{q}$.

- *t* is called the **trace of Frobenius** at *q*.
- If t = 1, then *E* is called **anomalous**.
- If $p \mid t$, then *E* is called **supersingular**.
- If $p \not| t$, then *E* is called **non-supersingular**.
- Let $\alpha, \beta \in \mathbb{C}$ satisfy $1 tx + qx^2 = (1 \alpha x)(1 \beta x)$. Then, $|E(\mathbb{F}_{q^m})| = q^m + 1 - (\alpha^m + \beta^m)$.

Note: $E(\mathbb{F}_q)$ is not necessarily cyclic.

Hyperelliptic Curves

A hyperelliptic curve of genus $g \in \mathbb{N}$ over a field K is defined by the equation:

$$y^2+u(x)y=v(x),$$

where $u(x), v(x) \in K[x], v(x)$ is monic, deg $u(x) \leq g$, and deg v(x) = 2g + 1.

- Elliptic curves are hyperelliptic curves of of genus 1.
- The curve must be smooth (no points of singularity).
- If char $K \neq 2$, then the equation can be simplified to

$$y^2 = v(x)$$

with $v(x) \in K[x]$ monic of degree 2g + 1.

A hyperelliptic curve over
$$\mathbb{R}$$
: $y^2 = x(x^2 - 1)(x^2 - 2)$

The Hyperelliptic Curve Group

- A group can be defined on the rational points of a hyperelliptic curve.
- The theory of divisors should be used in order to understand the construction of this group.
- For the special case of elliptic curves, this divisor class group can be stated geometrically by the chord-and-tangent rule.
- For hyperelliptic curves of genus ≥ 2, the chord-and-tangent rule holds no longer.
- The hyperelliptic curve group is also used in cryptography.