Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Appendix A: Symmetric Techniques

ES ES

Miscellaneous Topics

Block Ciphers

A block cipher f of block-size n and key-size r is a function

$$f:\mathbb{Z}_2^n\times\mathbb{Z}_2^r\to\mathbb{Z}_2^n$$

that maps (M, K) to C = f(M, K).

A block cipher f of block-size n and key-size r is a function

$$f: \mathbb{Z}_2^n \times \mathbb{Z}_2^r \to \mathbb{Z}_2^n$$

that maps (M, K) to C = f(M, K).

For each key K, the map

$$f_K: \mathbb{Z}_2^n \to \mathbb{Z}_2^n$$

taking a plaintext message M to the ciphertext message $C = f_K(M) = f(M, K)$ should be bijective (invertible).

A block cipher f of block-size n and key-size r is a function

$$f: \mathbb{Z}_2^n \times \mathbb{Z}_2^r \to \mathbb{Z}_2^n$$

that maps (M, K) to C = f(M, K).

For each key K, the map

$$f_K: \mathbb{Z}_2^n \to \mathbb{Z}_2^n$$

taking a plaintext message M to the ciphertext message $C = f_K(M) = f(M, K)$ should be bijective (invertible).

 n and r should be large enough to preclude successful exhaustive search.

A block cipher f of block-size n and key-size r is a function

$$f: \mathbb{Z}_2^n \times \mathbb{Z}_2^r \to \mathbb{Z}_2^n$$

that maps (M, K) to C = f(M, K).

For each key K, the map

$$\mathit{f}_K:\mathbb{Z}_2^n\to\mathbb{Z}_2^n$$

taking a plaintext message M to the ciphertext message $C = f_K(M) = f(M, K)$ should be bijective (invertible).

- n and r should be large enough to preclude successful exhaustive search.
- Each f_K should be a sufficiently random permutation.

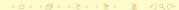
Block Ciphers: Examples

Name	n, r	
DES (Data Encryption Standard)	64, 56	
FEAL (Fast Data Encipherment Algorithm)	64, 64	
SAFER (Secure And Fast Encryption Routine)	64, 64	
IDEA (International Data Encryption Algorithm)	64, 128	
Blowfish	64, ≤ 448	
The AES Finalists		
Rijndael (Rijmen and Daemen)	128, 128/192/256	
Serpent (Anderson, Biham and Knudsen)	128, 128/192/256	
Twofish (Schneier and others)	128, ≤ 256	
RC6 (Rivest and others)	128, 128/192/256	
MARS (Coppersmith and others)	128, 128–448 (multiple of 32)	

Block Ciphers: Examples

Name	n, r	
DES (Data Encryption Standard)	64, 56	
FEAL (Fast Data Encipherment Algorithm)	64, 64	
SAFER (Secure And Fast Encryption Routine)	64, 64	
IDEA (International Data Encryption Algorithm)	64, 128	
Blowfish	64, ≤ 448	
The AES Finalists		
Rijndael (Rijmen and Daemen)	128, 128/192/256	
Serpent (Anderson, Biham and Knudsen)	128, 128/192/256	
Twofish (Schneier and others)	128, ≤ 256	
RC6 (Rivest and others)	128, 128/192/256	
MARS (Coppersmith and others)	128, 128–448 (multiple of 32)	

Old standard: DES

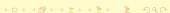


Block Ciphers: Examples

Name	n, r	
DES (Data Encryption Standard)	64, 56	
FEAL (Fast Data Encipherment Algorithm)	64, 64	
SAFER (Secure And Fast Encryption Routine)	64, 64	
IDEA (International Data Encryption Algorithm)	64, 128	
Blowfish	64, ≤ 448	
The AES Finalists		
Rijndael (Rijmen and Daemen)	128, 128/192/256	
Serpent (Anderson, Biham and Knudsen)	128, 128/192/256	
Twofish (Schneier and others)	128, ≤ 256	
RC6 (Rivest and others)	128, 128/192/256	
MARS (Coppersmith and others)	128, 128–448 (multiple of 32)	

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)



Introduced by Shannon in 1949.

- Introduced by Shannon in 1949.
- Confusion

- Introduced by Shannon in 1949.
- Confusion
 - The relation between key and ciphertext must be very complex.

- Introduced by Shannon in 1949.
- Confusion
 - The relation between key and ciphertext must be very complex.
 - Changing a single key bit should affect every ciphertext bit pseudorandomly.

- Introduced by Shannon in 1949.
- Confusion
 - The relation between key and ciphertext must be very complex.
 - Changing a single key bit should affect every ciphertext bit pseudorandomly.
 - Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.

- Introduced by Shannon in 1949.
- Confusion
 - The relation between key and ciphertext must be very complex.
 - Changing a single key bit should affect every ciphertext bit pseudorandomly.
 - Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
 - Confusion is meant to make the guess of the key difficult.

- Introduced by Shannon in 1949.
- Confusion
 - The relation between key and ciphertext must be very complex.
 - Changing a single key bit should affect every ciphertext bit pseudorandomly.
 - Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
 - Confusion is meant to make the guess of the key difficult.
- Diffusion

Introduced by Shannon in 1949.

Confusion

- The relation between key and ciphertext must be very complex.
- Changing a single key bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
- Confusion is meant to make the guess of the key difficult.

Diffusion

 The relation between plaintext and ciphertext must be very complex.

Introduced by Shannon in 1949.

Confusion

- The relation between key and ciphertext must be very complex.
- Changing a single key bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
- Confusion is meant to make the guess of the key difficult.

Diffusion

- The relation between plaintext and ciphertext must be very complex.
- Changing a single plaintext bit should affect every ciphertext bit pseudorandomly.

Introduced by Shannon in 1949.

Confusion

- The relation between key and ciphertext must be very complex.
- Changing a single key bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
- Confusion is meant to make the guess of the key difficult.

Diffusion

- The relation between plaintext and ciphertext must be very complex.
- Changing a single plaintext bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each plaintext bit, each ciphertext bit should change with probability 1/2.

Introduced by Shannon in 1949.

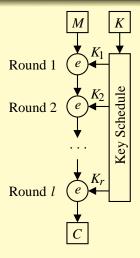
Confusion

- The relation between key and ciphertext must be very complex.
- Changing a single key bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
- Confusion is meant to make the guess of the key difficult.

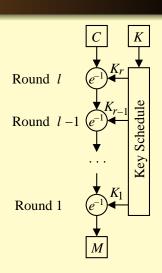
Diffusion

- The relation between plaintext and ciphertext must be very complex.
- Changing a single plaintext bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each plaintext bit, each ciphertext bit should change with probability 1/2.
- Diffusion is meant to dissipate plaintext redundancy.

Iterated Block Cipher

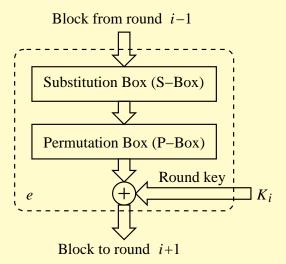


(a) Encryption

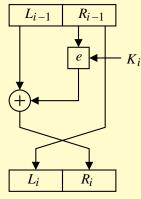


(b) Decryption

Substitution-Permutation Network (SPN)



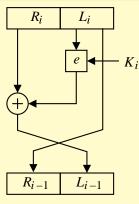
Feistel Cipher



(a) Encryption

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus e(R_{i-1}, K_i)$



(b) Decryption

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus e(L_i, K_i)$$

Proposed as a US standard in 1975.

- Proposed as a US standard in 1975.
- DES supports blocks of length n = 64 bits.

- Proposed as a US standard in 1975.
- DES supports blocks of length n = 64 bits.
- DES supports keys $K = k_1 k_2 \dots k_{64}$ of length r = 64 bits, but the bits $k_8, k_{16}, \dots, k_{64}$ are used as parity-check bits. So the effective key size is 56 bits.

- Proposed as a US standard in 1975.
- DES supports blocks of length n = 64 bits.
- DES supports keys $K = k_1 k_2 \dots k_{64}$ of length r = 64 bits, but the bits $k_8, k_{16}, \dots, k_{64}$ are used as parity-check bits. So the effective key size is 56 bits.
- DES is a Feistel cipher.

- Proposed as a US standard in 1975.
- DES supports blocks of length n = 64 bits.
- DES supports keys $K = k_1 k_2 \dots k_{64}$ of length r = 64 bits, but the bits $k_8, k_{16}, \dots, k_{64}$ are used as parity-check bits. So the effective key size is 56 bits.
- DES is a Feistel cipher.
- The number of rounds in DES is I = 16.

Input: A DES key $K = k_1 k_2 ... k_{64}$.

Output: Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

Input: A DES key $K = k_1 k_2 \dots k_{64}$. Output: Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

• Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41} \dots k_{12}k_4$.

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41} \dots k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41} \dots k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41}...k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:

• Take
$$s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$$

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41}...k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:
 - Take $s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$
 - Cyclically left shift C_{i-1} by s bits to get C_i .

DES Key Schedule

Input: A DES key $K = k_1 k_2 \dots k_{64}$. **Output:** Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41}...k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:
 - Take $s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$
 - Cyclically left shift C_{i-1} by s bits to get C_i .
 - Cyclically left shift D_{i-1} by s bits to get D_i .

DES Key Schedule

Input: A DES key $K = k_1 k_2 \dots k_{64}$. **Output:** Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41}...k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:
 - Take $s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$
 - Cyclically left shift C_{i-1} by s bits to get C_i .
 - Cyclically left shift D_{i-1} by s bits to get D_i .
 - Let $U_i := C_i \mid\mid D_i = u_1 u_2 \dots u_{56}$.

DES Key Schedule

Input: A DES key $K = k_1 k_2 \dots k_{64}$. Output: Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41} \dots k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 \mid\mid D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:
 - Take $s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$
 - Cyclically left shift C_{i-1} by s bits to get C_i .
 - Cyclically left shift D_{i-1} by s bits to get D_i .
 - Let $U_i := C_i \mid\mid D_i = u_1 u_2 \dots u_{56}$.
 - Compute 48-bit round key $K_i = PC2(U_i) = u_{14}u_{17}u_{11} \dots u_{29}u_{32}$.

DES Key Schedule (contd)

			PC1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

	PC2													
Ī	14	17	11	24	1	5								
	3	28	15	6	21	10								
	23	19	12	4	26	8								
	16	7	27	20	13	2								
	41	52	31	37	47	55								
	30	40	51	45	33	48								
	44	49	39	56	34	53								
	46	42	50	36	29	32								

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys

 $K_1, K_2, \ldots, K_{16}.$

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys

 K_1, K_2, \ldots, K_{16} .

Output: The ciphertext block C.

• Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: $V = L_0 \mid\mid R_0$.

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: $V = L_0 \mid\mid R_0$.
- For i = 1, 2, ..., 16, repeat the following steps:

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42} \dots m_{15}m_7$.
- Break V in two 32-bit parts: V = L₀ || R₀.
- For i = 1, 2, ..., 16, repeat the following steps:
 - \bullet $L_i := R_{i-1}$.

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: V = L₀ || R₀.
- For i = 1, 2, ..., 16, repeat the following steps:
 - \bullet $L_i := R_{i-1}$.
 - $R_i := L_{i-1} \oplus e(R_{i-1}, K_i).$

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: $V = L_0 \mid\mid R_0$.
- For i = 1, 2, ..., 16, repeat the following steps:
 - $L_i := R_{i-1}$.
 - $R_i := L_{i-1} \oplus e(R_{i-1}, K_i).$
- Let $W = R_{16} \mid\mid L_{16} = w_1 w_2 \dots w_{64}$.

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: $V = L_0 \mid\mid R_0$.
- For i = 1, 2, ..., 16, repeat the following steps:
 - $L_i := R_{i-1}$.
 - $R_i := L_{i-1} \oplus e(R_{i-1}, K_i).$
- Let $W = R_{16} \mid\mid L_{16} = w_1 w_2 \dots w_{64}$.
- Apply inverse of IP: $C = IP^{-1}(W) = w_{40}w_8w_{48}...w_{57}w_{25}$.

			IF)				
58	50	42	34	26	18	10	2	
60	52	44	36	28	20	12	4	
62	54	46	38	30	22	14	6	
64	56	48	40	32	24	16	8	
57	49	41	33	25	17	9	1	
59	51	43	35	27	19	11	3	
61	53	45	37	29	21	13	5	
63	55	47	39	31	23	15	7	

	IP ⁻¹													
40	8	48	16	56	24	64	32							
39	7	47	15	55	23	63	31							
38	6	46	14	54	22	62	30							
37	5	45	13	53	21	61	29							
36	4	44	12	52	20	60	28							
35	3	43	11	51	19	59	27							
34	2	42	10	50	18	58	26							
33	1	41	9	49	17	57	25							

Encryption primitive

$$e(X, J) = P(S(E(X) \oplus J)),$$

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

where X is a 32-bit message block, and J is a 48-bit round key.

• Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid\mid Y_2 \mid\mid \cdots \mid\mid Y_8$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid\mid Y_2 \mid\mid \cdots \mid\mid Y_8$.
- For j = 1, 2, ..., 8, do the following:

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid \mid Y_2 \mid \mid \cdots \mid \mid Y_8$.
- For j = 1, 2, ..., 8, do the following:
 - Write $Y_j = y_1 y_2 y_3 y_4 y_5 y_6$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid \mid Y_2 \mid \mid \cdots \mid \mid Y_8$.
- For j = 1, 2, ..., 8, do the following:
 - Write $Y_i = y_1 y_2 y_3 y_4 y_5 y_6$.
 - Consider the integers $\mu = (y_1y_6)_2$ and $\nu = (y_2y_3y_4y_5)_2$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid \mid Y_2 \mid \mid \cdots \mid \mid Y_8$.
- For j = 1, 2, ..., 8, do the following:
 - Write $Y_i = y_1 y_2 y_3 y_4 y_5 y_6$.
 - Consider the integers $\mu = (y_1y_6)_2$ and $\nu = (y_2y_3y_4y_5)_2$.
 - Let $Z_j = (z_1 z_2 z_3 z_4)_2 = S_j(\mu, \nu)$.

Encryption primitive

$$e(X,J) = P(S(E(X) \oplus J)),$$

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid \mid Y_2 \mid \mid \cdots \mid \mid Y_8$.
- For j = 1, 2, ..., 8, do the following:
 - Write $Y_j = y_1 y_2 y_3 y_4 y_5 y_6$.
 - Consider the integers $\mu = (y_1y_6)_2$ and $\nu = (y_2y_3y_4y_5)_2$.
 - Let $Z_j = (z_1 z_2 z_3 z_4)_2 = S_j(\mu, \nu)$.
- Concatenate the Z_i 's to the 32-bit value:

$$Z = Z_1 \mid \mid Z_2 \mid \mid \cdots \mid \mid Z_8 = z_1 z_2 \dots z_{32}.$$

Encryption primitive

$$e(X,J)=\mathsf{P}(\mathsf{S}(\mathsf{E}(X)\oplus J)),$$

where *X* is a 32-bit message block, and *J* is a 48-bit round key.

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 \mid\mid Y_2 \mid\mid \cdots \mid\mid Y_8$.
- For j = 1, 2, ..., 8, do the following:
 - Write $Y_i = y_1 y_2 y_3 y_4 y_5 y_6$.
 - Consider the integers $\mu = (y_1y_6)_2$ and $\nu = (y_2y_3y_4y_5)_2$.
 - Let $Z_i = (z_1 z_2 z_3 z_4)_2 = S_i(\mu, \nu)$.
- Concatenate the Z_j 's to the 32-bit value:

$$Z = Z_1 \mid\mid Z_2 \mid\mid \cdots \mid\mid Z_8 = z_1 z_2 \dots z_{32}.$$

• Apply permutation function: $e(X, J) = P(Z) = z_{16}z_7z_{20}...z_4z_{25}$.

	E													
32	1	2	3	4	5									
4	5	6	7	8	9									
8	9	10	11	12	13									
12	13	14	15	16	17									
16	17	18	19	20	21									
20	21	22	23	24	25									
24	25	26	27	28	29									
28	29	30	31	32	1									

	P													
16	7	20	21											
29	12	28	17											
1	15	23	26											
5	18	31	10											
2	8	24	14											
32	27	3	9											
19	13	30	6											
22	11	4	25											

DES Encryption: S-Boxes

							S	S ₁							
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

	\mathcal{S}_2														
15															
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

	S_3														
10															
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

DES Encryption: S-Boxes (contd)

 S_4

ĺ	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13															
	10															
	3															

 S_5

2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

 S_6

12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

DES Encryption: S-Boxes (contd)

S_7															
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

	S_8														
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys

 $K_1, K_2, \ldots, K_{16}.$

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

Output: The plaintext block M.

• Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}...c_{15}c_{7}$.

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break V in two 32-bit parts: V = R₁₆ || L₁₆.

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} \mid \mid L_{16}$.
- For $i = 16, 15, \dots, 1$, repeat the following steps:

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} || L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:

•
$$R_{i-1} = L_i$$
.

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} || L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:
 - $R_{i-1} = L_i$.
 - $\bullet \ L_{i-1} = R_i \oplus e(L_i, K_i).$

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} \mid \mid L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:
 - $R_{i-1} = L_i$.
 - $\bullet L_{i-1} = R_i \oplus e(L_i, K_i).$
- Let $W = L_0 \mid\mid R_0 = w_1 w_2 \dots w_{64}$.

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} || L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:
 - $R_{i-1} = L_i$.
 - $\bullet L_{i-1} = R_i \oplus e(L_i, K_i).$
- Let $W = L_0 \mid\mid R_0 = w_1 w_2 \dots w_{64}$.
- Apply inverse of IP: $M = IP^{-1}(W) = w_{40}w_8w_{48}...w_{57}w_{25}$.

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} .

Output: The plaintext block *M*.

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42}\dots c_{15}c_7$.
- Break *V* in two 32-bit parts: $V = R_{16} || L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:
 - $R_{i-1} = L_i$.
 - $\bullet L_{i-1} = R_i \oplus e(L_i, K_i).$
- Let $W = L_0 \mid\mid R_0 = w_1 w_2 \dots w_{64}$.
- Apply inverse of IP: $M = IP^{-1}(W) = w_{40}w_8w_{48}...w_{57}w_{25}$.

Note: DES decryption is the same as DES encryption, with the key schedule reversed.

 AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.
- AES is not a Feistel cipher.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.
- AES is not a Feistel cipher.
- The block size for AES is n = 128 bits.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.
- AES is not a Feistel cipher.
- The block size for AES is n = 128 bits.
- Number of **rounds** for AES is *I* = 10, 12, or 14 for key sizes *r* = 128, 192, or 256 bits.

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.
- AES is not a Feistel cipher.
- The block size for AES is n = 128 bits.
- Number of **rounds** for AES is *I* = 10, 12, or 14 for key sizes *r* = 128, 192, or 256 bits.
- AES **key schedule**: From K, generate 32-bit round keys $K_0, K_1, \ldots, K_{4l+3}$. Four round keys are used in a round.

 State: AES represents a 128-bit message block as a 4 x 4 array of octets:

$$\mu_0 \mu_1 \dots \mu_{15} \equiv \begin{array}{c|cccc} \mu_0 & \mu_4 & \mu_8 & \mu_{12} \\ \mu_1 & \mu_5 & \mu_9 & \mu_{13} \\ \mu_2 & \mu_6 & \mu_{10} & \mu_{14} \\ \mu_3 & \mu_7 & \mu_{11} & \mu_{15} \end{array}$$

 State: AES represents a 128-bit message block as a 4 x 4 array of octets:

$$\mu_0 \mu_1 \dots \mu_{15} \equiv \begin{vmatrix} \mu_0 & \mu_4 & \mu_8 & \mu_{12} \\ \mu_1 & \mu_5 & \mu_9 & \mu_{13} \\ \mu_2 & \mu_6 & \mu_{10} & \mu_{14} \\ \mu_3 & \mu_7 & \mu_{11} & \mu_{15} \end{vmatrix}$$

• Each octet $A=a_7a_6\ldots a_1a_0$ in the state is identified with the element $a_7\alpha^7+a_6\alpha^6+\cdots+a_1\alpha+a_0$ of $\mathbb{F}_{2^8}=\mathbb{F}_2(\alpha)$, where $\alpha^8+\alpha^4+\alpha^3+\alpha+1=0$.

 State: AES represents a 128-bit message block as a 4 x 4 array of octets:

$$\mu_0\mu_1\dots\mu_{15} \equiv \begin{array}{c|cccc} \mu_0 & \mu_4 & \mu_8 & \mu_{12} \\ \mu_1 & \mu_5 & \mu_9 & \mu_{13} \\ \mu_2 & \mu_6 & \mu_{10} & \mu_{14} \\ \mu_3 & \mu_7 & \mu_{11} & \mu_{15} \end{array}$$

- Each octet $A=a_7a_6\ldots a_1a_0$ in the state is identified with the element $a_7\alpha^7+a_6\alpha^6+\cdots+a_1\alpha+a_0$ of $\mathbb{F}_{2^8}=\mathbb{F}_2(\alpha)$, where $\alpha^8+\alpha^4+\alpha^3+\alpha+1=0$.
- Each column $A_3A_2A_1A_0$ in the state is identified with the element $A_3y^3 + A_2y^2 + A_1y + A_0$ of $\mathbb{F}_{2^8}[y]$ modulo the (reducible polynomial) $y^4 + 1$.

• Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the plaintext block M to a state S.

- Generate key schedule $K_0, K_1, \dots, K_{4l+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S = AddKey(S, K_0, K_1, K_2, K_3).$

[bitwise XOR]

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S = AddKey(S, K_0, K_1, K_2, K_3)$. [bitwise XOR]
- for i = 1, 2, ..., I do the following:
 - S = SubState(S). [non-linear, involves inverses in \mathbb{F}_{2^8}]
 - S = ShiftRows(S). [cyclic shift of octets in each row]
 - If $i \neq I$, S = MixCols(S). [operation in $\mathbb{F}_{2^8}[y] \mod y^4 + 1$]
 - $S = AddKey(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3}).$ [bitwise XOR]

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S = AddKey(S, K_0, K_1, K_2, K_3)$. [bitwise XOR]
- for $i=1,2,\ldots,I$ do the following: S=SubState(S). [non-linear, involves inverses in \mathbb{F}_{2^8}] S=ShiftRows(S). [cyclic shift of octets in each row]
 - If $i \neq I$, S = MixCols(S). [operation in $\mathbb{F}_{2^8}[y] \mod y^4 + 1$]
 - $S = AddKey(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3}).$ [bitwise XOR]
- Convert the state S to the ciphertext block C.

• Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the ciphertext block C to a state S.

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S = AddKey(S, K_{4l}, K_{4l+1}, K_{4l+2}, K_{4l+3}).$

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S = AddKey(S, K_{4l}, K_{4l+1}, K_{4l+2}, K_{4l+3}).$
- for i = I 1, I 2, ..., 1, 0 do the following:
 - $S = ShiftRows^{-1}(S)$.
 - $S = SubState^{-1}(S)$.
 - $S = AddKey(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3}).$
 - If $i \neq 0$, $S = \text{MixCols}^{-1}(S)$.

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S = AddKey(S, K_{4l}, K_{4l+1}, K_{4l+2}, K_{4l+3}).$
- for i = l 1, l 2, ..., 1, 0 do the following:
 - $S = ShiftRows^{-1}(S)$.
 - $S = SubState^{-1}(S).$
 - $S = AddKey(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3}).$
 - If $i \neq 0$, $S = \text{MixCols}^{-1}(S)$.
- Convert the state S to the plaintext block M.

$$\bullet \text{ Let } S = (\sigma_{uv}) = \begin{vmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$$

be a state of AES.

$$\bullet \text{ Let } S = (\sigma_{uv}) = \begin{vmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$$

be a state of AES.

• Let the four 32-bit round keys be L_0, L_1, L_2, L_3 with the octet representation $L_u = \lambda_{u0}\lambda_{u1}\lambda_{u2}\lambda_{u3}$.

$$\bullet \text{ Let } S = (\sigma_{uv}) = \begin{vmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$$

be a state of AES.

- Let the four 32-bit round keys be L_0, L_1, L_2, L_3 with the octet representation $L_u = \lambda_{u0}\lambda_{u1}\lambda_{u2}\lambda_{u3}$.
- The u-th key L_u is XORed with the u-th column of the state S.

• Let
$$S = (\sigma_{uv}) = \begin{vmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$$

be a state of AES.

- Let the four 32-bit round keys be L_0, L_1, L_2, L_3 with the octet representation $L_u = \lambda_{u0}\lambda_{u1}\lambda_{u2}\lambda_{u3}$.
- The u-th key L_u is XORed with the u-th column of the state S.
- S maps to AddKey(S, L_0, L_1, L_2, L_3) =

	$\sigma_{01} \oplus \lambda_{10}$			
	$\sigma_{11} \oplus \lambda_{11}$			
			$\sigma_{23} \oplus \lambda_{32}$	
$\sigma_{30} \oplus \lambda_{03}$	$\sigma_{31} \oplus \lambda_{13}$	$\sigma_{32} \oplus \lambda_{23}$	$\sigma_{33} \oplus \lambda_{33}$	

• Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).
- Let $D = d_0 d_1 \dots d_6 d_7 = 63 = 01100011$.

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).
- Let $D = d_0 d_1 \dots d_6 d_7 = 63 = 01100011$.
- SubOctet(A) = C = $c_0c_1 \dots c_6c_7$, where $c_i = b_i \oplus b_{(i+1)\text{rem8}} \oplus b_{(i+2)\text{rem8}} \oplus b_{(i+3)\text{rem8}} \oplus b_{(i+4)\text{rem8}} \oplus d_i$.

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).
- Let $D = d_0 d_1 \dots d_6 d_7 = 63 = 01100011$.
- SubOctet(A) = C = $c_0c_1 \dots c_6c_7$, where $c_i = b_i \oplus b_{(i+1)\text{rem8}} \oplus b_{(i+2)\text{rem8}} \oplus b_{(i+3)\text{rem8}} \oplus b_{(i+4)\text{rem8}} \oplus d_i$.

• Let
$$S = \begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 be a state.

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).
- Let $D = d_0 d_1 \dots d_6 d_7 = 63 = 01100011$.
- SubOctet(A) = C = $c_0c_1 \dots c_6c_7$, where $c_i = b_i \oplus b_{(i+1)\text{rem8}} \oplus b_{(i+2)\text{rem8}} \oplus b_{(i+3)\text{rem8}} \oplus b_{(i+4)\text{rem8}} \oplus d_i$.

• Let
$$S = egin{array}{c|cccc} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \hline \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \hline \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \hline \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \\ \hline \end{array}$$
 be a state.

AES: The ShiftRows Primitive

Cyclically left rotate the *r*-th row by *r* bytes:

σ_{00}	$\sigma_{\sf O1}$	σ_{02}	σ_{03}
$\sigma_{ extsf{10}}$	σ_{11}	σ_{12}	σ_{13}
σ_{20}	σ_{21}	σ_{22}	σ_{23}
σ_{30}	σ_{31}	σ_{32}	σ_{33}

maps to

)	σ_{00}	$\sigma_{\sf O1}$	σ_{02}	σ_{03}
	σ_{11}	σ_{12}	σ_{13}	σ_{10}
	σ_{22}	σ_{23}	σ_{20}	σ_{21}
	σ_{33}	σ_{30}	σ_{31}	σ_{32}

• Let
$$S = \begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 be a state.

• Each column of S is identified with an element of $\mathbb{F}_{2^8}[y]$, and is multiplied by the constant polynomial $[03]y^3 + [01]y^2 + [01]y + [02] \mod y^4 + 1$.

• Let
$$S = \begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 be a state.

- Each column of S is identified with an element of $\mathbb{F}_{2^8}[y]$, and is multiplied by the constant polynomial $[03]y^3 + [01]y^2 + [01]y + [02] \mod y^4 + 1$.
- The v-th column

$$\begin{pmatrix} \sigma_{0\nu} \\ \sigma_{1\nu} \\ \sigma_{2\nu} \\ \sigma_{3\nu} \end{pmatrix} \text{ maps to } \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \odot \begin{pmatrix} \sigma_{0\nu} \\ \sigma_{1\nu} \\ \sigma_{2\nu} \\ \sigma_{3\nu} \end{pmatrix},$$

where \odot is the multiplication of \mathbb{F}_{2^8} .

AddKey is the inverse of itself.

- AddKey is the inverse of itself.
- SubState⁻¹ is the octet-by-octet inverse of SubOctet.

- AddKey is the inverse of itself.
- SubState⁻¹ is the octet-by-octet inverse of SubOctet.
- SubOctet⁻¹ involves an affine transformation followed by taking inverse in \mathbb{F}_{28} .

- AddKey is the inverse of itself.
- SubState⁻¹ is the octet-by-octet inverse of SubOctet.
- SubOctet⁻¹ involves an affine transformation followed by taking inverse in \mathbb{F}_{2^8} .
- ShiftRows⁻¹ cyclically right rotates the *r*-th row by *r* bytes.

- AddKey is the inverse of itself.
- SubState⁻¹ is the octet-by-octet inverse of SubOctet.
- SubOctet⁻¹ involves an affine transformation followed by taking inverse in \mathbb{F}_{2^8} .
- ShiftRows⁻¹ cyclically right rotates the r-th row by r bytes.
- MixCols⁻¹ multiplies each column by the polynomial $[0b]y^3 + [0d]y^2 + [09]y + [0e]$ modulo $y^4 + 1$, with the coefficient arithmetic being that of \mathbb{F}_{2^8} .

• Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).

- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.

- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N,+3} from the secret key K.

- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N_r+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.

- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N,+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:

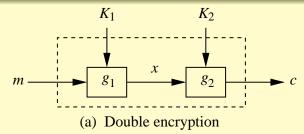
- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N_r+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:
 - Let $K_{i-1} = \tau_0 \tau_1 \tau_2 \tau_3$ (each τ_j an octet).

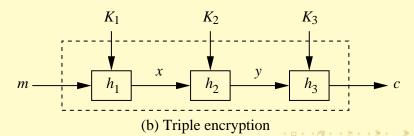
- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N,+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:
 - Let $K_{i-1} = \tau_0 \tau_1 \tau_2 \tau_3$ (each τ_i an octet).
 - Let $\tau'_j = \mathsf{SubOctet}(\tau_j)$.

- Let t be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N,+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:
 - Let $K_{i-1} = \tau_0 \tau_1 \tau_2 \tau_3$ (each τ_i an octet).
 - Let $\tau'_j = \text{SubOctet}(\tau_j)$.
 - If $(i \equiv 0 \pmod{t})$, then set $T = (\tau'_1 \tau'_2 \tau'_3 \tau'_0) \oplus [\alpha^{(i/t)-1} \mid\mid 000000]$, else if (t > 6) and $(i \equiv 4 \pmod{t})$, then set $T = \tau'_0 \tau'_1 \tau'_2 \tau'_2$.

- Let t be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(I+1) 32-bit keys
 K₀, K₁,..., K_{4N,+3} from the secret key K.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:
 - Let $K_{i-1} = \tau_0 \tau_1 \tau_2 \tau_3$ (each τ_i an octet).
 - Let $\tau'_j = \text{SubOctet}(\tau_j)$.
 - If $(i \equiv 0 \pmod{t})$, then set $T = (\tau'_1 \tau'_2 \tau'_3 \tau'_0) \oplus [\alpha^{(i/t)-1} \mid\mid 000000]$, else if (t > 6) and $(i \equiv 4 \pmod{t})$, then set $T = \tau'_0 \tau'_1 \tau'_2 \tau'_3$.
 - Generate the 32-bit key $K_i = K_{i-t} \oplus T$.

Multiple Encryption





• Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.
- CBC (Cipher-Block Chaining) mode: Here n' = n. Set $C_0 = IV$. $C_i = f_K(M_i \oplus C_{i-1})$.

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.
- CBC (Cipher-Block Chaining) mode: Here n' = n. Set $C_0 = IV$. $C_i = f_K(M_i \oplus C_{i-1})$.
- **CFB (Cipher FeedBack) Mode:** Here $n' \le n$. Set $k_0 = IV$. $C_i = M_i \oplus \mathsf{msb}_{n'}(f_K(k_{i-1}))$. [Mask key and plaintext] $k_i = \mathsf{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i$. [Generate next key]

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.
- CBC (Cipher-Block Chaining) mode: Here n' = n. Set $C_0 = IV$. $C_i = f_K(M_i \oplus C_{i-1})$.
- CFB (Cipher FeedBack) Mode: Here $n' \le n$. Set $k_0 = IV$. $C_i = M_i \oplus \mathsf{msb}_{n'}(f_K(k_{i-1}))$. [Mask key and plaintext] $k_i = \mathsf{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i$. [Generate next key]
- **OFB (Output FeedBack) Mode:** Here $n' \le n$. Set $k_0 = IV$. $k_i = f_K(k_{i-1})$. [Generate next key] $C_i = M_i \oplus \mathsf{msb}_{n'}(k_i)$. [Mask plaintext block]

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.
- CBC (Cipher-Block Chaining) mode: Here n' = n. Set $C_0 = IV$. $C_i = f_K(M_i \oplus C_{i-1})$.
- CFB (Cipher FeedBack) Mode: Here $n' \le n$. Set $k_0 = IV$. $C_i = M_i \oplus \mathsf{msb}_{n'}(f_K(k_{i-1}))$. [Mask key and plaintext] $k_i = \mathsf{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i$. [Generate next key]
- **OFB (Output FeedBack) Mode:** Here $n' \le n$. Set $k_0 = IV$. $k_i = f_K(k_{i-1})$. [Generate next key] $C_i = M_i \oplus \mathsf{msb}_{n'}(k_i)$. [Mask plaintext block]
- CFB and OFB modes act like stream ciphers

ECB (Electronic Code-Book) mode:

$$M_i = f_K^{-1}(C_i).$$

ECB (Electronic Code-Book) mode:

$$\dot{M}_i = f_K^{-1}(C_i).$$

• CBC (Cipher-Block Chaining) mode: Set $C_0 = IV$.

$$M_i = f_K^{-1}(C_i) \oplus C_{i-1}.$$

ECB (Electronic Code-Book) mode:

$$\dot{M}_i = f_K^{-1}(C_i).$$

• CBC (Cipher-Block Chaining) mode: Set $C_0 = IV$.

$$M_i = f_K^{-1}(C_i) \oplus C_{i-1}.$$

• CFB (Cipher FeedBack) Mode: Set $k_0 = IV$.

$$M_i = C_i \oplus \mathsf{msb}_{n'}(f_{\mathsf{K}}(k_{i-1})).$$
 [Remove mask from ciphertext] $k_i = \mathsf{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i.$ [Generate next key]

ECB (Electronic Code-Book) mode:

$$\dot{M}_i = f_K^{-1}(C_i).$$

• CBC (Cipher-Block Chaining) mode: Set $C_0 = IV$.

$$M_i = f_K^{-1}(C_i) \oplus C_{i-1}.$$

• CFB (Cipher FeedBack) Mode: Set $k_0 = IV$.

$$M_i = C_i \oplus \mathsf{msb}_{n'}(f_K(k_{i-1})).$$
 [Remove mask from ciphertext] $k_i = \mathsf{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i.$ [Generate next key]

• OFB (Output FeedBack) Mode: Set $k_0 = IV$.

$$k_i = f_K(k_{i-1}).$$
 [Generate next key] $M_i = C_i \oplus \mathsf{msb}_{n'}(k_i).$ [Remove mask from ciphertext]

Attacks on Block Ciphers

Exhaustive key search

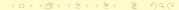
 If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.
- Linear and differential cryptanalysis



Exhaustive key search

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.

Linear and differential cryptanalysis

By far the most sophisticated attacks on block ciphers.

Exhaustive key search

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.

Linear and differential cryptanalysis

- By far the most sophisticated attacks on block ciphers.
- Impractical if sufficiently many rounds are used.

Exhaustive key search

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.

Linear and differential cryptanalysis

- By far the most sophisticated attacks on block ciphers.
- Impractical if sufficiently many rounds are used.
- AES is robust against these attacks.

AES
Miscellaneous Topics

Attacks on Block Ciphers (contd)

Specific attacks on AES

Square attack Collision attack Algebraic attacks (like XSL)

Specific attacks on AES

Square attack
Collision attack
Algebraic attacks (like XSL)

Meet-in-the-middle attack

Specific attacks on AES

Square attack
Collision attack
Algebraic attacks (like XSL)

Meet-in-the-middle attack

Applies to multiple encryption schemes.

Specific attacks on AES

Square attack Collision attack Algebraic attacks (like XSL)

Meet-in-the-middle attack

- Applies to multiple encryption schemes.
- For m stages, we get security of $\lceil m/2 \rceil$ keys only.

Stream ciphers encrypt bit-by-bit.

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.
- Encryption: $c_i = m_i \oplus k_i$.

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.
- Encryption: $c_i = m_i \oplus k_i$.
- Decryption: $m_i = c_i \oplus k_i$.

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.
- Encryption: $c_i = m_i \oplus k_i$.
- Decryption: $m_i = c_i \oplus k_i$.
- Source of security: unpredictability in the key-stream.

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.
- Encryption: $c_i = m_i \oplus k_i$.
- Decryption: $m_i = c_i \oplus k_i$.
- Source of security: unpredictability in the key-stream.
- Vernam's one-time pad: For a truly random key stream,

$$Pr(c_i = 0) = Pr(c_i = 1) = \frac{1}{2}$$

for each i, irrespective of the probabilities of the values assumed by m_i . This leads to **unconditional security**, that is, the knowledge of any number of plaintext-ciphertext bit pairs, does not help in decrypting a new ciphertext bit.

Key stream should be as long as the message stream.
 Management of long key streams is difficult.

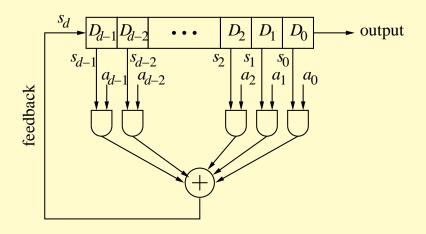
- Key stream should be as long as the message stream.
 Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.

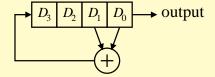
- Key stream should be as long as the message stream.
 Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.

- Key stream should be as long as the message stream.
 Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.
- Pseudorandom bit generators are vulnerable to compromise of seeds.

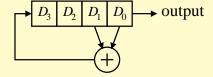
- Key stream should be as long as the message stream.
 Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.
- Pseudorandom bit generators are vulnerable to compromise of seeds.
- Repeated use of the same key stream degrades security.

Linear Feedback Shift Register (LFSR)

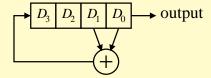




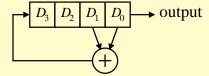
Time	D_3	D_2	D_1	D_0	
0	1	1	0	1	



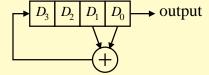
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0

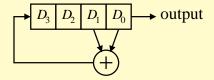


Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1

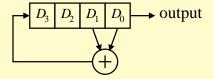


Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1

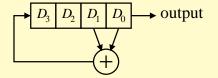




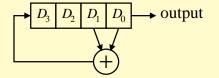
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1



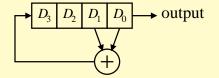
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1
5	0	0	0	1



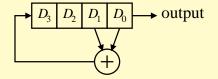
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1
5	0	0	0	1
6	1	0	0	0



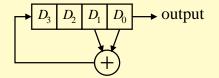
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1
5	0	0	0	1
6	1	0	0	0
7	0	1	0	0



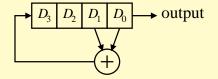
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
2 3	0	1	1	1
4	0	0	1	1
5	0	0	0	1
6	1	0	0	0
7	0	1	0	0
8	0	0	1	0



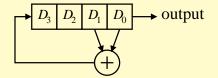
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
2 3 4	0	1	1	1
	0	0	1	1
5	0	0	0	1
6	1	0	0	0
7	0	1	0	0
8	0	0	1	0
9	1	0	0	1



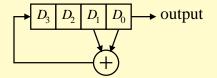
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1
2 3 4 5 6 7	0	0	0	1
6	1	0	0	0
7	0	1	0	0
8 9	0	0	1	0
9	1	0	0	1
10	1	1	0	0



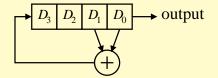
7	Time	D_3	D_2	D_1	D_0
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
	5	0	0	0	1
	1 2 3 4 5 6 7	1	0	0	0
	7	0	1	0	0
		0	0	1	0
	8 9	1	0	0	1
	10	1	1	0	0
	11	0	1	1	0



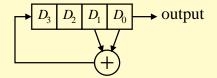
Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1
4	0	0	1	1
5	0	0	0	1
6	1 0 0 0 1 0 0	1 0 0 0 1		
7	0	1	0	0
8	0		1	0
9	1	0	0	1
10	1	1	0	0
1 2 3 4 5 6 7 8 9 10 11 12	0	1	1	0 0 0 1 0 0
12	1	0	1	1



Time	D_3	D_2	D_1	D_0
0	1	1	0	
1	1	1	1	1 0
2		1	1	1
3	0	1	1	1
4	0		1	1
5	0	0	0	1
6	1	0	0	0
7	1 0 0 0 1 0 0	0 0 0 1 0 0	0 0	0 0 0 1 0 0
8	0	0	1	0
9	1	0		1
10	1	1	0	0
11	1 0	1	1	0
0 1 2 3 4 5 6 7 8 9 10 11 12 13	1	0	1	
13	1	1	0	1



Time	D_3	D_2	D_1	D_0
0	1	1	0	1
1	1	1	1	
2	1	1	1	0 1 1
3	0	1	1	1
4	0	0	1	1
5	0	0		1
6	1	1 0 0 0 1 0 0	0 0 0 1 0 0	0
7	0	1	0	0
8	0	0	1	0
9	1	0	0	1
10	1	1	0	0
11	0	1	1	0
12	1	1 0	1	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 1 0 0 0 1 0 0 1 1 0 1 0 1	1 0	1 0	1 0 0 0 1 0 0 1 1 0
14	1	0	1	0



Time	D_3	D_2	D_1	D_0
0		1	0	1
1	1 1	1	1	0
2	1	1 1	1	1
3	0	1	1	1
4	0	0	1	D ₀ 1 0 1 1 1 1
5	0	0		
6	1	0	0	0
7	0	1	0	0
8	0	0	1	0
9	1	0	0	1
10	1	1	0	0
11	0	1	1	0
12	1	0	1	1
13	0	1	0	1
14	1	0		0
15	1	1	0	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 0 0 0 1 0 0 1 1 0 1 0 1	1 0 0 0 1 0 0 1 1 0 1	0 0 0 1 0 0 1 1 0	1 0 0 0 1 0 0 1 1 0

• Control bits: $a_0, a_1, ..., a_{d-1}$.

- Control bits: $a_0, a_1, ..., a_{d-1}$.
- State: $\mathbf{s} = (s_0, s_1, \dots, s_{d-1}).$

- Control bits: $a_0, a_1, ..., a_{d-1}$.
- State: $s = (s_0, s_1, \dots, s_{d-1}).$
- Each clock pulse changes the state as follows:

$$t_0 = s_1$$
 $t_1 = s_2$
 \vdots
 $t_{d-2} = s_{d-1}$
 $t_{d-1} \equiv a_0 s_0 + a_1 s_1 + a_2 s_2 + \cdots + a_{d-1} s_{d-1} \pmod{2}$.

LFSR: State Transition (contd)

• In the matrix notation $\mathbf{t} \equiv \Delta_L \mathbf{s} \pmod{2}$, where the **transition matrix** is

$$\Delta_L = egin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \ 0 & 0 & 1 & \cdots & 0 & 0 \ dots & dots & dots & \ddots & dots & dots \ 0 & 0 & 0 & \cdots & 0 & 1 \ a_0 & a_1 & a_2 & \cdots & a_{d-2} & a_{d-1} \end{pmatrix}.$$

 The output bit-stream behaves like a pseudorandom sequence.

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream = $2^d 1$.

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream = $2^d 1$.
- Maximum-length LFSR has the maximum period.

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream = $2^d 1$.
- Maximum-length LFSR has the maximum period.
- Connection polynomial

$$C_L(x) = 1 + a_{d-1}x + a_{d-2}x^2 + \cdots + a_1x^{d-1} + a_0x^d \in \mathbb{F}_2[X].$$

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream = $2^d 1$.
- Maximum-length LFSR has the maximum period.
- Connection polynomial

$$C_L(x) = 1 + a_{d-1}x + a_{d-2}x^2 + \cdots + a_1x^{d-1} + a_0x^d \in \mathbb{F}_2[X].$$

• L is a maximum-length LFSR if and only if $C_L(x)$ is a primitive polynomial of $\mathbb{F}_2[x]$.

 The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.

- The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.
- Berlekamp-Massey attack

Suppose that the bits m_i and c_i for 2d consecutive values of i (say, $1, 2, \ldots, 2d$) are known to an attacker. Then $k_i = m_i \oplus c_i$ are also known for these values of i. Define the states $S_i = (k_i, k_{i+1}, \ldots, k_{i+d-1})$ of the LFSR. Then,

$$S_{i+1} \equiv \Delta_L S_i \pmod{2}$$

for i = 1, 2, ..., d. Treat each S_i as a column vector. Then,

$$(S_2 \quad S_3 \quad \cdots \quad S_{d+1}) \equiv \Delta_L (S_1 \quad S_2 \quad \cdots \quad S_d) \pmod{2}$$

This reveals Δ_L , that is, the secret $a_0, a_1, \ldots, a_{d-1}$.

- The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.
- Berlekamp-Massey attack

Suppose that the bits m_i and c_i for 2d consecutive values of i (say, $1, 2, \ldots, 2d$) are known to an attacker. Then $k_i = m_i \oplus c_i$ are also known for these values of i. Define the states $S_i = (k_i, k_{i+1}, \ldots, k_{i+d-1})$ of the LFSR. Then,

$$S_{i+1} \equiv \Delta_L S_i \pmod{2}$$

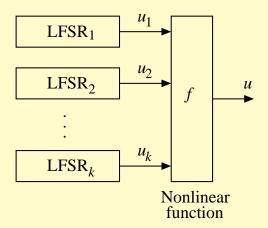
for i = 1, 2, ..., d. Treat each S_i as a column vector. Then,

$$(S_2 \quad S_3 \quad \cdots \quad S_{d+1}) \equiv \Delta_L (S_1 \quad S_2 \quad \cdots \quad S_d) \pmod{2}$$

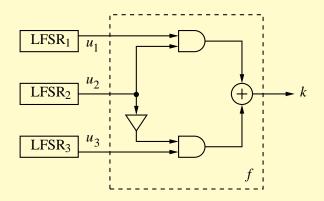
This reveals Δ_L , that is, the secret $a_0, a_1, \ldots, a_{d-1}$.

Remedy: Introduce non-linearity to the LFSR output.

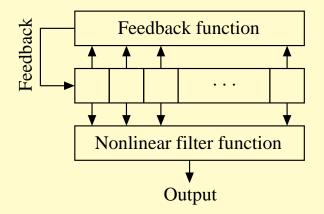
Nonlinear Combination Generator



The Geffe Generator



Nonlinear Filter Generator



 Used to convert strings of any length to strings of a fixed length.

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.
- Keyed hash functions authenticate source of messages.

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.
- Keyed hash functions authenticate source of messages.
- Symmetric techniques are typically used for designing hash functions.

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.
- Keyed hash functions authenticate source of messages.
- Symmetric techniques are typically used for designing hash functions.
- A **collision** for a hash function H is a pair of two distinct strings x, y with H(x) = H(y).

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.
- Keyed hash functions authenticate source of messages.
- Symmetric techniques are typically used for designing hash functions.
- A **collision** for a hash function H is a pair of two distinct strings x, y with H(x) = H(y).
- Since hash functions map an infinite domain to finite sets, collisions must exist for any hash function.

Easy to compute

- Easy to compute
- First pre-image resistance (Difficult to invert): For most hash values y, it should be difficult to find a string x with H(x) = y.

- Easy to compute
- First pre-image resistance (Difficult to invert): For most hash values y, it should be difficult to find a string x with H(x) = y.
- Second pre-image resistance: Given a string x, it should be difficult to find a different string x' with H(x') = H(x).

- Easy to compute
- First pre-image resistance (Difficult to invert): For most hash values y, it should be difficult to find a string x with H(x) = y.
- Second pre-image resistance: Given a string x, it should be difficult to find a different string x' with H(x') = H(x).
- Collision resistance: It should be difficult to find two distinct strings x, x' with H(x) = H(x').

Collision resistance implies second pre-image resistance.

- Collision resistance implies second pre-image resistance.
- Second pre-image resistance does not imply collision resistance: Let S be a finite set of size ≥ 2 and H a cryptographic hash function. Then

$$H'(x) = \begin{cases} 0^{n+1} & \text{if } x \in S, \\ 1 \mid\mid H(x) & \text{otherwise,} \end{cases}$$

is second pre-image resistant but not collision resistant.

 Collision resistance does not imply first pre-image resistance: Let H be an n-bit cryptographic hash function. Then

$$H''(x) = \begin{cases} 0 \mid\mid x & \text{if } |x| = n, \\ 1 \mid\mid H(x) & \text{otherwise.} \end{cases}$$

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

 Collision resistance does not imply first pre-image resistance: Let H be an n-bit cryptographic hash function. Then

$$H''(x) = \begin{cases} 0 \mid\mid x & \text{if } |x| = n, \\ 1 \mid\mid H(x) & \text{otherwise.} \end{cases}$$

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

• First pre-image resistance does not imply second pre-image resistance: Let m be a product of two unknown big primes. Define $H'''(x) = (1 || x)^2 \pmod{m}$. H''' is first pre-image resistant, but not second pre-image resistant.

• Compression function: A function $F : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.

- Compression function: A function $F: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method

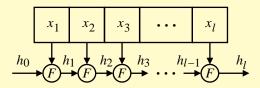
- Compression function: A function $F: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length r.

- Compression function: A function $F : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length r.
 - Initialize $h_0 = 0^r$.

- Compression function: A function $F: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length r.
 - Initialize $h_0 = 0^r$.
 - For i = 1, 2, ..., I use compression $h_i = F(h_{i-1} \mid\mid x_i)$.

- Compression function: A function $F : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length r.
 - Initialize $h_0 = 0^r$.
 - For i = 1, 2, ..., I use compression $h_i = F(h_{i-1} || x_i)$.
 - Output $H(x) = h_l$ as the hash value.

- Compression function: A function $F: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length r.
 - Initialize $h_0 = 0^r$.
 - For i = 1, 2, ..., I use compression $h_i = F(h_{i-1} \mid\mid x_i)$.
 - Output $H(x) = h_l$ as the hash value.



Properties

Properties

 If F is first pre-image resistant, then H is also first pre-image resistant.

Properties

- If F is first pre-image resistant, then H is also first pre-image resistant.
- If *F* is collision resistant, then *H* is also collision resistant.

Properties

- If F is first pre-image resistant, then H is also first pre-image resistant.
- If *F* is collision resistant, then *H* is also collision resistant.

A concrete realization

Let *f* is a block cipher of block-size *n* and key-size *r*. Take:

$$F(M \mid\mid K) = f_K(M).$$

Properties

- If F is first pre-image resistant, then H is also first pre-image resistant.
- If *F* is collision resistant, then *H* is also collision resistant.

A concrete realization

Let *f* is a block cipher of block-size *n* and key-size *r*. Take:

$$F(M \mid\mid K) = f_K(M).$$

Keyed hash function

 $\mathsf{HMAC}(M) = H(K || P || H(K || Q || M))$, where H is an unkeyed hash function, K is a key and P, Q are short padding strings.

The SHA (Secure Hash Algorithm) family:

SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

The SHA (Secure Hash Algorithm) family:

SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

The MD family:

MD2 (128-bit), MD5 (128-bit).

The SHA (Secure Hash Algorithm) family:

SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

The MD family:

MD2 (128-bit), MD5 (128-bit).

The RIPEMD family:

RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).

• To compute SHA-1(M) for a message M of bit-length λ .

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad M to generate $M' = M \mid\mid 1 \mid\mid 0^k \mid\mid \Lambda$, where

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad M to generate $M' = M \mid\mid 1 \mid\mid 0^k \mid\mid \Lambda$, where
 - Λ is the 64-bit representation of λ , and

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad M to generate $M' = M \mid\mid 1 \mid\mid 0^k \mid\mid \Lambda$, where
 - Λ is the 64-bit representation of λ , and
 - k is the smallest integer $\geqslant 0$ for which $|M'| = \lambda + 1 + k + 64$ is a multiple of 512.

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad M to generate $M' = M \mid\mid 1 \mid\mid 0^k \mid\mid \Lambda$, where
 - Λ is the 64-bit representation of λ , and
 - k is the smallest integer $\geqslant 0$ for which $|M'| = \lambda + 1 + k + 64$ is a multiple of 512.
- Break M' into 512-bit blocks $M^{(1)}, M^{(2)}, \dots, M^{(l)}$.

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad M to generate $M' = M \mid\mid 1 \mid\mid 0^k \mid\mid \Lambda$, where
 - Λ is the 64-bit representation of λ , and
 - k is the smallest integer $\geqslant 0$ for which $|M'| = \lambda + 1 + k + 64$ is a multiple of 512.
- Break M' into 512-bit blocks $M^{(1)}, M^{(2)}, \dots, M^{(l)}$.
- Break each $M_0^{(i)} = M_0^{(i)} || M_1^{(i)} || \cdots || M_{15}^{(i)}$ into sixteen 32-bit words $M_i^{(i)}$.

• The idea is similar to the Merkle-Damgård construction.

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value $H^{(0)} = 0$ x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value $H^{(0)} = 0$ x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.
- For i = 1, 2, ..., I, consume the message block $M^{(i)}$ to convert $H^{(i-1)}$ to $H^{(i)}$.

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value $H^{(0)} = 0$ x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.
- For i = 1, 2, ..., I, consume the message block $M^{(i)}$ to convert $H^{(i-1)}$ to $H^{(i)}$.
- Return $H^{(I)}$ as SHA-1(M).

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value $H^{(0)} = 0$ x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.
- For i = 1, 2, ..., I, consume the message block $M^{(i)}$ to convert $H^{(i-1)}$ to $H^{(i)}$.
- Return H^(I) as SHA-1(M).
- Each H⁽ⁱ⁾ is a 160-bit value.

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value $H^{(0)} = 0$ x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.
- For i = 1, 2, ..., I, consume the message block $M^{(i)}$ to convert $H^{(i-1)}$ to $H^{(i)}$.
- Return H^(I) as SHA-1(M).
- Each $H^{(i)}$ is a 160-bit value.
- Write $H^{(i)} = H_0^{(i)} \mid\mid H_1^{(i)} \mid\mid H_2^{(i)} \mid\mid H_3^{(i)} \mid\mid H_4^{(i)}$, where each $H_i^{(i)}$ is a 32-bit word.

• Compute the message schedule W_j , $0 \le j \le 79$:

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16})$.

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}).$
- For j = 0, 1, 2, 3, 4, store $H_j^{(i-1)}$ in t_j .

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16})$.
- For j = 0, 1, 2, 3, 4, store $H_j^{(i-1)}$ in t_j .
- For $j = 0, 1, \dots, 79$, do the following:

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}).$
- For j = 0, 1, 2, 3, 4, store $H_j^{(i-1)}$ in t_j .
- For $j = 0, 1, \dots, 79$, do the following:
 - Set $T = \left(\mathsf{LR}^5(t_0) + f_j(t_1, t_2, t_3) + t_4 + \mathcal{K}_j + \mathcal{W}_j\right) \mathrm{rem} \ 2^{32}.$

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}).$
- For j = 0, 1, 2, 3, 4, store $H_j^{(i-1)}$ in t_j .
- For $j = 0, 1, \dots, 79$, do the following:
 - Set $T = \left(\mathsf{LR}^5(t_0) + f_j(t_1, t_2, t_3) + t_4 + K_j + W_j\right) \mathrm{rem} \ 2^{32}.$
 - $t_4 = t_3$, $t_3 = t_2$, $t_2 = RR^2(t_1)$, $t_1 = t_0$, $t_0 = T$.

- Compute the message schedule W_j , $0 \le j \le 79$:
 - For j = 0, 1, ..., 15, set $W_j := M_j^{(i)}$.
 - For j = 16, 17, ..., 79, set $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}).$
- For j = 0, 1, 2, 3, 4, store $H_j^{(i-1)}$ in t_j .
- For $j = 0, 1, \dots, 79$, do the following:
 - Set $T = \left(\mathsf{LR}^5(t_0) + f_j(t_1, t_2, t_3) + t_4 + \mathcal{K}_j + \mathcal{W}_j\right) \mathrm{rem} \ 2^{32}.$
 - $t_4 = t_3$, $t_3 = t_2$, $t_2 = RR^2(t_1)$, $t_1 = t_0$, $t_0 = T$.
- For j = 0, 1, 2, 3, 4, update $H_j^{(i)} := (t_j + H_j^{(i-1)})$ rem 2^{32} .

$$\mathbf{K}_{j} = \begin{cases} 0 \times 5 = 827999 & \text{if } 0 \leqslant j \leqslant 19 \\ 0 \times 6 = 09 = \text{bal} & \text{if } 20 \leqslant j \leqslant 39 \\ 0 \times 8 = 100 = 100 & \text{if } 40 \leqslant j \leqslant 59 \\ 0 \times 2 = 100 & \text{if } 60 \leqslant j \leqslant 79 \end{cases}$$

$$\mathbf{K}_j = \begin{cases} 0 \times 5 \times 827999 & \text{if } 0 \leqslant j \leqslant 19 \\ 0 \times 6 \times 6 \times 9 \times 9 & \text{if } 20 \leqslant j \leqslant 39 \\ 0 \times 8 \times 1 \times 9 \times 9 & \text{if } 40 \leqslant j \leqslant 59 \\ 0 \times 2 \times 2 \times 9 & \text{if } 60 \leqslant j \leqslant 79 \end{cases}$$

LR^k and RR^k mean left and right rotate by k bits.

• The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.

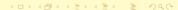
- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks
 - Chaining attacks

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks
 - Chaining attacks
 - Attacks on the underlying cipher

- The **birthday attack** is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n/2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks
 - Chaining attacks
 - Attacks on the underlying cipher
 - Exhaustive key search for keyed hash functions



- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average 2^{n/2} hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks
 - Chaining attacks
 - Attacks on the underlying cipher
 - Exhaustive key search for keyed hash functions
 - Long message attacks

Let S be a set finite size N.

• *k* elements are drawn at random from *S* (with replacement).

- k elements are drawn at random from S (with replacement).
- The probability that all these k elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- k elements are drawn at random from S (with replacement).
- The probability that all these *k* elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

•
$$p_k \le 1/2$$
 for $k \ge \frac{1}{2}\sqrt{1 + 8N \ln 2} \approx 1.18\sqrt{N}$.

- k elements are drawn at random from S (with replacement).
- The probability that all these k elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- $p_k \le 1/2$ for $k \ge \frac{1}{2}\sqrt{1 + 8N \ln 2} \approx 1.18\sqrt{N}$.
- $p_k \le 0.136$ for $k \ge 2\sqrt{N}$.

Let S be a set finite size N.

- k elements are drawn at random from S (with replacement).
- The probability that all these *k* elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- $p_k \le 1/2$ for $k \ge \frac{1}{2}\sqrt{1 + 8N \ln 2} \approx 1.18\sqrt{N}$.
- $p_k \le 0.136$ for $k \ge 2\sqrt{N}$.

Examples

Let S be a set finite size N.

- k elements are drawn at random from S (with replacement).
- The probability that all these *k* elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- $p_k \le 1/2$ for $k \ge \frac{1}{2}\sqrt{1 + 8N \ln 2} \approx 1.18\sqrt{N}$.
- $p_k \le 0.136$ for $k \ge 2\sqrt{N}$.

Examples

 There is a chance of ≥ 50% that at least two of ≥ 23 (randomly chosen) persons have the same birthday.

Let S be a set finite size N.

- k elements are drawn at random from S (with replacement).
- The probability that all these k elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- $p_k \le 1/2$ for $k \ge \frac{1}{2}\sqrt{1 + 8N \ln 2} \approx 1.18\sqrt{N}$.
- $p_k \leqslant 0.136$ for $k \geqslant 2\sqrt{N}$.

Examples

- There is a chance of ≥ 50% that at least two of ≥ 23 (randomly chosen) persons have the same birthday.
- A collision of an *n*-bit hash function can be found with high probability from $O(2^{n/2})$ random hash calculations.