Public-key Cryptography Theory and Practice

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Appendix A: Symmetric Techniques

Stream Ciphers Hash Functions

Block Ciphers

• A block cipher *f* of **block-size** *n* and **key-size** *r* is a function

$$f: \mathbb{Z}_2^n \times \mathbb{Z}_2^r \to \mathbb{Z}_2^n$$

that maps (M, K) to C = f(M, K).

• For each key K, the map

$$f_{K}:\mathbb{Z}_{2}^{n}\rightarrow\mathbb{Z}_{2}^{n}$$

taking a plaintext message *M* to the ciphertext message $C = f_K(M) = f(M, K)$ should be bijective (invertible).

- *n* and *r* should be large enough to preclude successful exhaustive search.
- Each $f_{\mathcal{K}}$ should be a sufficiently random permutation.

DES AES Miscellaneous Topics

Block Ciphers: Examples

Name	<i>n</i> , <i>r</i>
DES (Data Encryption Standard)	64, 56
FEAL (Fast Data Encipherment Algorithm)	64, 64
SAFER (Secure And Fast Encryption Routine)	64, 64
IDEA (International Data Encryption Algorithm)	64, 128
Blowfish	64,
The AES Finalists	3
Rijndael (Rijmen and Daemen)	128, 128/192/256
Serpent (Anderson, Biham and Knudsen)	128, 128/192/256
Twofish (Schneier and others)	128, \leqslant 256
RC6 (Rivest and others)	128, 128/192/256
MARS (Coppersmith and others)	128, 128–448 (multiple of 32)

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)

Block Ciphers: Security Requirements

• Introduced by Shannon in 1949.

Confusion

- The relation between key and ciphertext must be very complex.
- Changing a single key bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each key bit, each ciphertext bit should change with probability 1/2.
- Confusion is meant to make the guess of the key difficult.

Diffusion

- The relation between plaintext and ciphertext must be very complex.
- Changing a single plaintext bit should affect every ciphertext bit pseudorandomly.
- Ideally, for a change in each plaintext bit, each ciphertext bit should change with probability 1/2.
- Diffusion is meant to dissipate plaintext redundancy.

Iterated Block Cipher

Public-key Cryptography: Theory and Practice Abhijit Das

Substitution-Permutation Network (SPN)

Block CiphersDESStream CiphersAESHash FunctionsMiscellaneous Topic

Feistel Cipher

DES AES Miscellaneous Topics

DES (Data Encryption Standard)

- Proposed as a US standard in 1975.
- DES supports blocks of length n = 64 bits.
- DES supports keys $K = k_1 k_2 \dots k_{64}$ of length r = 64 bits, but the bits $k_8, k_{16}, \dots, k_{64}$ are used as parity-check bits. So the effective key size is 56 bits.
- DES is a Feistel cipher.
- The number of rounds in DES is *I* = 16.

DES Key Schedule

Input: A DES key $K = k_1 k_2 \dots k_{64}$. **Output:** Sixteen 48-bit round keys K_1, K_2, \dots, K_{16} .

- Generate 56-bit permuted key $U_0 = PC1(K) = k_{57}k_{49}k_{41} \dots k_{12}k_4$.
- Break U_0 in two 28-bit parts: $U_0 = C_0 || D_0$.
- for i = 1, 2, ..., 16, repeat the following steps:

• Take
$$s := \begin{cases} 1 & \text{if } i = 1, 2, 9, 16, \\ 2 & \text{otherwise.} \end{cases}$$

- Cyclically left shift C_{i-1} by s bits to get C_i .
- Cyclically left shift D_{i-1} by s bits to get D_i.
- Let $U_i := C_i || D_i = u_1 u_2 \dots u_{56}$.
- Compute 48-bit round key $K_i = PC2(U_i) = u_{14}u_{17}u_{11} \dots u_{29}u_{32}$.

DES AES Miscellaneous Topics

DES Key Schedule (contd)

			PC1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

PC2												
14	17	11	24	1	5							
3	28	15	6	21	10							
23	19	12	4	26	8							
16	7	27	20	13	2							
41	52	31	37	47	55							
30	40	51	45	33	48							
44	49	39	56	34	53							
46	42	50	36	29	32							

DES Encryption

Input: Plaintext block $M = m_1 m_2 \dots m_{64}$ and round keys K_1, K_2, \dots, K_{16} . **Output:** The ciphertext block *C*.

- Apply initial permutation: $V = IP(M) = m_{58}m_{50}m_{42}\dots m_{15}m_7$.
- Break V in two 32-bit parts: $V = L_0 || R_0$.
- For i = 1, 2, ..., 16, repeat the following steps:

•
$$L_i := R_{i-1}$$
.
• $R_i := L_{i-1} \oplus e(R_{i-1}, K_i)$.

- Let $W = R_{16} || L_{16} = w_1 w_2 \dots w_{64}$.
- Apply inverse of IP: $C = IP^{-1}(W) = w_{40}w_8w_{48}...w_{57}w_{25}$.

DES AES Miscellaneous Topics

DES Encryption (contd)

1	D	
	г	

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

 IP^{-1}

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES Encryption (contd)

Encryption primitive

 $e(X, J) = P(S(E(X) \oplus J)),$

where X is a 32-bit message block, and J is a 48-bit round key.

- Apply 32-to-48 bit expansion: $X' = E(X) = x_{32}x_1x_2...x_{32}x_1$.
- XOR with the round key: $Y = X' \oplus J$.
- Break Y in eight 6-bit parts: $Y = Y_1 || Y_2 || \cdots || Y_8$.
- For $i = 1, 2, \dots, 8$, do the following:
 - Write $Y_i = y_1 y_2 y_3 y_4 y_5 y_6$.
 - Consider the integers $\mu = (y_1y_6)_2$ and $\nu = (y_2y_3y_4y_5)_2$.
 - Let $Z_i = (z_1 z_2 z_3 z_4)_2 = S_i(\mu, \nu)$.
- Concatenate the Z_i 's to the 32-bit value:
 - $Z = Z_1 || Z_2 || \cdots || Z_8 = Z_1 Z_2 \dots Z_{32}$
- Apply permutation function: $e(X, J) = P(Z) = z_{16}z_7z_{20} \dots z_4z_{25}$.

DES AES Miscellaneous Topics

DES Encryption (contd)

		E	Ξ				F	5
32	1	2	3	4	5	16	7	20
4	5	6	7	8	9	29	12	28
8	9	10	11	12	13	1	15	23
12	13	14	15	16	17	5	18	31
16	17	18	19	20	21	2	8	24
20	21	22	23	24	25	32	27	3
24	25	26	27	28	29	19	13	30
28	29	30	31	32	1	22	11	4

Block Ciphers
Stream Ciphers
Hash Functions

DES AES Miscellaneous Topics

DES Encryption: S-Boxes

							5	S ₁							
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

							5	S ₂							
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

\sim	
S	1
<u> </u>	

								3							
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

Public-key Cryptography: Theory and Practice Abhijit Da

Block Ciphers
Stream Ciphers
Hash Functions

AES Miscellaneous Topics

DES Encryption: S-Boxes (contd)

							S	64							
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

S_5															
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

S_6
0

							-	0							
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

DES AES Miscellaneous Topics

DES Encryption: S-Boxes (contd)

							S	7							
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
							S	8							
13	2	~	-												
10	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	∠ 15	8 13	4 8	6 10	15 3	11 7	1 4	10 12	9 5	3 6	14 11	5 0	0 14	12 9	7 2
1 7	2 15 11	8 13 4	4 8 1	6 10 9	15 3 12	11 7 14	1 4 2	10 12 0	9 5 6	3 6 10	14 11 13	5 0 15	0 14 3	12 9 5	7 2 8

Block CiphersDESStream CiphersAESHash FunctionsMiscellaneous Topic

DES Decryption

Input: Ciphertext block $C = c_1 c_2 \dots c_{64}$ and round keys K_1, K_2, \dots, K_{16} . **Output:** The plaintext block *M*.

- Apply initial permutation: $V = IP(C) = c_{58}c_{50}c_{42} \dots c_{15}c_{7}$.
- Break V in two 32-bit parts: $V = R_{16} \mid \mid L_{16}$.
- For i = 16, 15, ..., 1, repeat the following steps:

•
$$R_{i-1} = L_i$$
.

•
$$L_{i-1} = R_i \oplus e(L_i, K_i).$$

- Let $W = L_0 || R_0 = w_1 w_2 \dots w_{64}$.
- Apply inverse of IP: $M = IP^{-1}(W) = w_{40}w_8w_{48}\dots w_{57}w_{25}$.

Note: DES decryption is the same as DES encryption, with the key schedule reversed.

AES (Advanced Encryption Standard)

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Since DES supports short keys (56 bits) vulnerable even to brute-force search, the new standard AES is adopted in 2000.
- AES is a substitution-permutation cipher.
- AES is not a Feistel cipher.
- The block size for AES is n = 128 bits.
- Number of rounds for AES is *I* = 10, 12, or 14 for key sizes *r* = 128, 192, or 256 bits.
- AES key schedule: From *K*, generate 32-bit round keys K₀, K₁,..., K_{4/+3}. Four round keys are used in a round.

• State: AES represents a 128-bit message block as a 4 × 4 array of octets:

- Each octet $A = a_7 a_6 \dots a_1 a_0$ in the state is identified with the element $a_7 \alpha^7 + a_6 \alpha^6 + \dots + a_1 \alpha + a_0$ of $\mathbb{F}_{2^8} = \mathbb{F}_2(\alpha)$, where $\alpha^8 + \alpha^4 + \alpha^3 + \alpha + 1 = 0$.
- Each column $A_3A_2A_1A_0$ in the state is identified with the element $A_3y^3 + A_2y^2 + A_1y + A_0$ of $\mathbb{F}_{2^8}[y]$ modulo the (reducible polynomial) $y^4 + 1$.

AES (contd)

AES Encryption

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the plaintext block *M* to a state *S*.
- $S = AddKey(S, K_0, K_1, K_2, K_3)$. [bitwise XOR]
- for i = 1, 2, ..., I do the following: S = SubState(S). [non-linear, involves inverses in \mathbb{F}_{2^8}] S = ShiftRows(S). [cyclic shift of octets in each row] If $i \neq I$, S = MixCols(S). [operation in $\mathbb{F}_{2^8}[y] \mod y^4 + 1$] $S = \text{AddKey}(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3})$. [bitwise XOR]
- Convert the state S to the ciphertext block C.

Block CiphersDESStream CiphersAESHash FunctionsMiscellaneous Top

AES Decryption

- Generate key schedule $K_0, K_1, \ldots, K_{4l+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S = AddKey(S, K_{4l}, K_{4l+1}, K_{4l+2}, K_{4l+3}).$
- for i = l 1, l 2, ..., 1, 0 do the following: $S = \text{ShiftRows}^{-1}(S)$. $S = \text{SubState}^{-1}(S)$. $S = \text{AddKey}(S, K_{4i}, K_{4i+1}, K_{4i+2}, K_{4i+3})$. If $i \neq 0, S = \text{MixCols}^{-1}(S)$.
- Convert the state S to the plaintext block M.

AES Miscellaneous Topics

AES: The AddKey Primitive

• Let
$$S = (\sigma_{uv}) =$$
$$\begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
be a state of AES.

- Let the four 32-bit round keys be L_0, L_1, L_2, L_3 with the octet representation $L_u = \lambda_{u0}\lambda_{u1}\lambda_{u2}\lambda_{u3}$.
- The *u*-th key L_u is XORed with the *u*-th column of the state *S*.
- S maps to AddKey(S, L₀, L₁, L₂, L₃) =

	- /		
$\sigma_{00} \oplus \lambda_{00}$	$\sigma_{01} \oplus \lambda_{10}$	$\sigma_{02} \oplus \lambda_{20}$	$\sigma_{03}\oplus\lambda_{30}$
$\sigma_{10} \oplus \lambda_{01}$	$\sigma_{11} \oplus \lambda_{11}$	$\sigma_{12} \oplus \lambda_{21}$	$\sigma_{13} \oplus \lambda_{31}$
$\sigma_{20} \oplus \lambda_{02}$	$\sigma_{21} \oplus \lambda_{12}$	$\sigma_{22} \oplus \lambda_{22}$	$\sigma_{23}\oplus\lambda_{32}$
$\sigma_{30} \oplus \lambda_{03}$	$\sigma_{31} \oplus \lambda_{13}$	$\sigma_{32} \oplus \lambda_{23}$	$\sigma_{33}\oplus\lambda_{33}$

Block Ciphers	
Stream Ciphers	AES
Hash Functions	

AES: The SubState Primitive

- Let $A = a_0 a_1 \dots a_6 a_7$ be an octet (an element of \mathbb{F}_{2^8}).
- Let $B = b_0 b_1 \dots b_6 b_7 = A^{-1}$ in \mathbb{F}_{2^8} (with $0^{-1} = 0$).
- Let $D = d_0 d_1 \dots d_6 d_7 = 63 = 01100011$.
- SubOctet(A) = $C = c_0 c_1 \dots c_6 c_7$, where

$$c_i = b_i \oplus b_{(i+1)\text{rem8}} \oplus b_{(i+2)\text{rem8}} \oplus b_{(i+3)\text{rem8}} \oplus b_{(i+4)\text{rem8}} \oplus d_i$$

• Let
$$S = \begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 be a state.
• SubState $(S) = \begin{bmatrix} \sigma_{00}' & \sigma_{01}' & \sigma_{02}' & \sigma_{03}' \\ \sigma_{10}' & \sigma_{11}' & \sigma_{12}' & \sigma_{13}' \\ \sigma_{20}' & \sigma_{21}' & \sigma_{22}' & \sigma_{23}' \\ \sigma_{30}' & \sigma_{31}' & \sigma_{32}' & \sigma_{33}' \end{bmatrix}$, where $\sigma_{uv}' = \text{SubOctet}(\sigma_{uv})$.

DES AES Miscellaneous Topics

AES: The ShiftRows Primitive

Cyclically left rotate the *r*-th row by *r* bytes:

σ_{00}	σ_{01}	σ_{02}	σ_{03}		σ_{00}	σ_{01}	σ_{02}	σ_{03}
σ_{10}	σ_{11}	σ_{12}	σ_{13}	mans to	σ_{11}	σ_{12}	σ_{13}	σ_{10}
σ_{20}	σ_{21}	σ_{22}	σ_{23}	maps to	σ_{22}	σ_{23}	$\sigma_{\rm 20}$	σ_{21}
$\sigma_{\rm 30}$	σ_{31}	σ_{32}	σ_{33}		σ_{33}	σ_{30}	σ_{31}	σ_{32}

Block Ciphers	
stream Ciphers	AES
lash Functions	

AES: The MixCols Primitive

• Let
$$S = \begin{bmatrix} \sigma_{00} & \sigma_{01} & \sigma_{02} & \sigma_{03} \\ \sigma_{10} & \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{20} & \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
 be a state.

- Each column of S is identified with an element of F₂₈[y], and is multiplied by the constant polynomial [03]y³ + [01]y² + [01]y + [02] modulo y⁴ + 1.
- The v-th column

$$\begin{pmatrix} \sigma_{0\nu} \\ \sigma_{1\nu} \\ \sigma_{2\nu} \\ \sigma_{3\nu} \end{pmatrix} \text{ maps to } \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \odot \begin{pmatrix} \sigma_{0\nu} \\ \sigma_{1\nu} \\ \sigma_{2\nu} \\ \sigma_{3\nu} \end{pmatrix},$$

where \odot is the multiplication of \mathbb{F}_{2^8} .

Inverses of AES Encryption Primitives

- AddKey is the inverse of itself.
- SubState⁻¹ is the octet-by-octet inverse of SubOctet.
- SubOctet⁻¹ involves an affine transformation followed by taking inverse in $\mathbb{F}_{2^8}.$
- ShiftRows⁻¹ cyclically right rotates the *r*-th row by *r* bytes.
- MixCols⁻¹ multiplies each column by the polynomial [0b]y³ + [0d]y² + [09]y + [0e] modulo y⁴ + 1, with the coefficient arithmetic being that of F₂₈.

Block CiphersDESStream CiphersAESHash FunctionsMiscellaneous To

AES Key Schedule

- Let *t* be the key size in words (t = 4, 6, 8 for r = 128, 192, 256).
- The respective numbers of rounds are I = 10, 12, 14.
- AES key schedule generates 4(*I* + 1) 32-bit keys *K*₀, *K*₁,..., *K*_{4N_r+3} from the secret key *K*.
- Initially, $K = K_0 K_1 \dots K_{t-1}$.
- For $i = t, t + 1, \dots, 4l + 3$, generate K_i as follows:
 - Let $K_{i-1} = \tau_0 \tau_1 \tau_2 \tau_3$ (each τ_j an octet).
 - Let $\tau'_i = \text{SubOctet}(\tau_i)$.

• If $(i \equiv 0 \pmod{t})$, then set $T = (\tau'_1 \tau'_2 \tau'_3 \tau'_0) \oplus [\alpha^{(i/t)-1} \mid | \ 000000]$, else if (t > 6) and $(i \equiv 4 \pmod{t})$, then set $T = \tau'_0 \tau'_1 \tau'_2 \tau'_3$.

• Generate the 32-bit key $K_i = K_{i-t} \oplus T$.

Multiple Encryption

Modes of Operation: Encryption

- Break the message $M = M_1 M_2 \dots M_l$ into blocks of bit length $n' \leq n$.
- To generate the ciphertext $C = C_1 C_2 \dots C_l$.
- ECB (Electronic Code-Book) mode: Here n' = n. $C_i = f_K(M_i)$.
- CBC (Cipher-Block Chaining) mode: Here n' = n. Set $C_0 = IV$. $C_i = f_K(M_i \oplus C_{i-1})$.
- CFB (Cipher FeedBack) Mode: Here $n' \leq n$. Set $k_0 = IV$. $C_i = M_i \oplus \operatorname{msb}_{n'}(f_{\mathcal{K}}(k_{i-1}))$. [Mask key and plaintext] $k_i = \operatorname{lsb}_{n-n'}(k_{i-1}) || C_i$. [Generate next key]
- OFB (Output FeedBack) Mode: Here $n' \le n$. Set $k_0 = IV$. $k_i = f_K(k_{i-1})$. [Generate next key] $C_i = M_i \oplus msb_{n'}(k_i)$. [Mask plaintext block]
- CFB and OFB modes act like stream ciphers

Block Ciphers DES Stream Ciphers AES Hash Functions Miscellaneous Topics

Modes of Operation: Decryption

- ECB (Electronic Code-Book) mode: $M_i = f_{\mathcal{K}}^{-1}(C_i).$
- CBC (Cipher-Block Chaining) mode: Set $C_0 = IV$. $M_i = f_K^{-1}(C_i) \oplus C_{i-1}$.
- CFB (Cipher FeedBack) Mode: Set $k_0 = IV$.

 $M_i = C_i \oplus \operatorname{msb}_{n'}(f_{\mathcal{K}}(k_{i-1})).$ [Remove mask from ciphertext] $k_i = \operatorname{lsb}_{n-n'}(k_{i-1}) \mid\mid C_i.$ [Generate next key]

• OFB (Output FeedBack) Mode: Set $k_0 = IV$.

 $k_i = f_K(k_{i-1}).$ [Generate next key] $M_i = C_i \oplus msb_{n'}(k_i).$ [Remove mask from ciphertext]

DES AES Miscellaneous Topics

Attacks on Block Ciphers

Exhaustive key search

- If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs.
- Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits).
- Only two plaintext-ciphertext pairs usually suffice to determine a DES key uniquely.
- Exhaustive key search on block ciphers (like AES) with key sizes ≥ 128 is infeasible.

Linear and differential cryptanalysis

- By far the most sophisticated attacks on block ciphers.
- Impractical if sufficiently many rounds are used.
- AES is robust against these attacks.

AES Miscellaneous Topics

Attacks on Block Ciphers (contd)

Specific attacks on AES

Square attack Collision attack Algebraic attacks (like XSL)

Meet-in-the-middle attack

- Applies to multiple encryption schemes.
- For *m* stages, we get security of $\lceil m/2 \rceil$ keys only.

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

Stream Ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M = m_1 m_2 \dots m_l$. Key stream: $K = k_1 k_2 \dots k_l$. Ciphertext stream: $C = c_1 c_2 \dots c_l$.
- Encryption: $c_i = m_i \oplus k_i$.
- **Decryption:** $m_i = c_i \oplus k_i$.
- Source of security: unpredictability in the key-stream.
- Vernam's one-time pad: For a truly random key stream,

$$Pr(c_i = 0) = Pr(c_i = 1) = \frac{1}{2}$$

for each *i*, irrespective of the probabilities of the values assumed by m_i . This leads to **unconditional security**, that is, the knowledge of any number of plaintext-ciphertext bit pairs, does not help in decrypting a new ciphertext bit.

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

Stream Ciphers: Drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.
- Pseudorandom bit generators are vulnerable to compromise of seeds.
- Repeated use of the same key stream degrades security.

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

Linear Feedback Shift Register (LFSR)

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

LFSR: Example

	Time	D_3	D_2	D_1	D_0
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow D_3 \mid D_2 \mid D_1 \mid D_0 \mid \rightarrow \text{output}$	5	0	0	0	1
	6	1	0	0	0
	7	0	1	0	0
(+)	8	0	0	1	0
\bigcirc	9	1	0	0	1
	10	1	1	0	0
	11	0	1	1	0
	12	1	0	1	1
	13	0	1	0	1
	14	1	0	1	0
	15	1	1	0	1

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

LFSR: State Transition

- Control bits: $a_0, a_1, \ldots, a_{d-1}$.
- State: $s = (s_0, s_1, \dots, s_{d-1})$.
- Each clock pulse changes the state as follows:

$$t_{0} = s_{1}$$

$$t_{1} = s_{2}$$

$$\vdots$$

$$t_{d-2} = s_{d-1}$$

$$t_{d-1} \equiv a_{0}s_{0} + a_{1}s_{1} + a_{2}s_{2} + \dots + a_{d-1}s_{d-1} \pmod{2}.$$

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

.

LFSR: State Transition (contd)

In the matrix notation t ≡ Δ_Ls (mod 2), where the transition matrix is

$$\Delta_L = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{d-2} & a_{d-1} \end{pmatrix}$$

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream = $2^d 1$.
- Maximum-length LFSR has the maximum period.
- Connection polynomial

$$C_L(x) = 1 + a_{d-1}x + a_{d-2}x^2 + \cdots + a_1x^{d-1} + a_0x^d \in \mathbb{F}_2[X].$$

• *L* is a maximum-length LFSR if and only if $C_L(x)$ is a primitive polynomial of $\mathbb{F}_2[x]$.

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

An Attack on LFSR

• The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.

Berlekamp-Massey attack

Suppose that the bits m_i and c_i for 2*d* consecutive values of *i* (say, 1, 2, ..., 2*d*) are known to an attacker. Then $k_i = m_i \oplus c_i$ are also known for these values of *i*. Define the states $S_i = (k_i, k_{i+1}, ..., k_{i+d-1})$ of the LFSR. Then,

$$\mathsf{S}_{i+1} \equiv \Delta_L \mathsf{S}_i \; (\text{mod } 2)$$

for i = 1, 2, ..., d. Treat each S_i as a column vector. Then,

$$\begin{pmatrix} \mathsf{S}_2 & \mathsf{S}_3 & \cdots & \mathsf{S}_{d+1} \end{pmatrix} \equiv \Delta_L \begin{pmatrix} \mathsf{S}_1 & \mathsf{S}_2 & \cdots & \mathsf{S}_d \end{pmatrix} \pmod{2}$$

This reveals Δ_L , that is, the secret $a_0, a_1, \ldots, a_{d-1}$.

• Remedy: Introduce non-linearity to the LFSR output.

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

Nonlinear Combination Generator

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

The Geffe Generator

Linear Feedback Shift Register (LFSR) Berlekamp-Massey Attack

Nonlinear Filter Generator

Block Ciphers	
Stream Ciphers	
Hash Functions	

Hash Functions

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Unkeyed hash functions ensure data integrity.
- Keyed hash functions authenticate source of messages.
- Symmetric techniques are typically used for designing hash functions.
- A collision for a hash function *H* is a pair of two distinct strings *x*, *y* with *H*(*x*) = *H*(*y*).
- Since hash functions map an infinite domain to finite sets, collisions must exist for any hash function.

Properties Merkle's Meta Method SHA-1

Hash Functions: Desirable Properties

Easy to compute

- First pre-image resistance (Difficult to invert): For most hash values y, it should be difficult to find a string x with H(x) = y.
- Second pre-image resistance: Given a string x, it should be difficult to find a different string x' with H(x') = H(x).
- Collision resistance: It should be difficult to find two distinct strings x, x' with H(x) = H(x').

Properties Merkle's Meta Method SHA-1

Hash Functions: Properties (contd)

- Collision resistance implies second pre-image resistance.
- Second pre-image resistance does not imply collision resistance: Let S be a finite set of size ≥ 2 and H a cryptographic hash function. Then

$$H'(x) = egin{cases} 0^{n+1} & ext{if } x \in \mathcal{S}, \ 1 \mid\mid H(x) & ext{otherwise}, \end{cases}$$

is second pre-image resistant but not collision resistant.

Properties Merkle's Meta Method SHA-1

Hash Functions: Properties (contd)

• Collision resistance does not imply first pre-image resistance: Let *H* be an *n*-bit cryptographic hash function. Then

$$H''(x) = egin{cases} 0 \mid\mid x & ext{if } \mid x \mid = n, \ 1 \mid\mid H(x) & ext{otherwise.} \end{cases}$$

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

 First pre-image resistance does not imply second pre-image resistance: Let *m* be a product of two unknown big primes. Define H^{'''}(x) = (1 || x)² (mod m). H^{'''} is first pre-image resistant, but not second pre-image resistant.
 Block Ciphers
 Properties

 Stream Ciphers
 Merkle's Meta Method

 Hash Functions
 SHA-1

Hash Functions: Construction

- **Compression function:** A function $F : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, where m = n + r.
- Merkle-Damgård's meta method
 - Break the input $x = x_1 x_2 \dots x_l$ to blocks each of bit-length *r*.
 - Initialize $h_0 = 0^r$.
 - For i = 1, 2, ..., I use compression $h_i = F(h_{i-1} || x_i)$.
 - Output $H(x) = h_l$ as the hash value.

Properties Merkle's Meta Method SHA-1

Hash Functions: Construction (contd)

Properties

- If *F* is first pre-image resistant, then *H* is also first pre-image resistant.
- If *F* is collision resistant, then *H* is also collision resistant.

A concrete realization

Let *f* is a block cipher of block-size *n* and key-size *r*. Take:

 $F(M \mid \mid K) = f_K(M).$

Keyed hash function

HMAC(M) = H(K || P || H(K || Q || M)), where *H* is an unkeyed hash function, *K* is a key and *P*, *Q* are short padding strings.

Properties Merkle's Meta Method SHA-1

Custom-Designed Hash Functions

• The SHA (Secure Hash Algorithm) family:

SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

• The MD family:

MD2 (128-bit), MD5 (128-bit).

The RIPEMD family:

RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).

Properties Merkle's Meta Method SHA-1

SHA-1: Message Padding

- To compute SHA-1(M) for a message M of bit-length λ .
- Pad *M* to generate $M' = M \parallel 1 \parallel 0^k \parallel \Lambda$, where
 - Λ is the 64-bit representation of λ , and
 - *k* is the smallest integer ≥ 0 for which |M'| = λ + 1 + k + 64 is a multiple of 512.
- Break M' into 512-bit blocks $M^{(1)}, M^{(2)}, \dots, M^{(l)}$.
- Break each $M^{(i)} = M_0^{(i)} || M_1^{(i)} || \cdots || M_{15}^{(i)}$ into sixteen 32-bit words $M_j^{(i)}$.

SHA-1: Iterated Hash Construction

- The idea is similar to the Merkle-Damgård construction.
- Start with the initial hash value H⁽⁰⁾ = 0x67452301 efcdab89 98badcfe 10325476 c3d2e1f0.
- For i = 1, 2, ..., I, consume the message block M⁽ⁱ⁾ to convert H⁽ⁱ⁻¹⁾ to H⁽ⁱ⁾.
- Return *H*^(*l*) as SHA-1(*M*).
- Each $H^{(i)}$ is a 160-bit value.
- Write $H^{(i)} = H_0^{(i)} || H_1^{(i)} || H_2^{(i)} || H_3^{(i)} || H_4^{(i)}$, where each $H_j^{(i)}$ is a 32-bit word.

ash Functions	SHA-1
Stream Ciphers	
Block Ciphers	

SHA-1: Compression Function

• Compute the message schedule W_j , $0 \le j \le 79$:

• For
$$j = 0, 1, ..., 15$$
, set $W_j := M_j^{(i)}$.
• For $j = 16, 17, ..., 79$, set
 $W_j := LR^1(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16})$.

• For $j = 0, 1, \ldots, 79$, do the following:

• Set
$$T = (LR^5(t_0) + f_j(t_1, t_2, t_3) + t_4 + K_j + W_j)$$
 rem 2³².
• $t_4 = t_3$, $t_3 = t_2$, $t_2 = RR^2(t_1)$, $t_1 = t_0$, $t_0 = T$.

• For
$$j = 0, 1, 2, 3, 4$$
, update $H_j^{(i)} := \left(t_j + H_j^{(i-1)}\right)$ rem 2³².

Block Ciphers	
Stream Ciphers	
Hash Functions	SHA-1

SHA-1: Compression Function (contd)

•
$$f_j(x, y, z) = \begin{cases} xy \oplus \overline{x}z & \text{if } 0 \leq j \leq 19 \\ x \oplus y \oplus z & \text{if } 20 \leq j \leq 39 \\ xy \oplus xz \oplus yz & \text{if } 40 \leq j \leq 59 \\ x \oplus y \oplus z & \text{if } 60 \leq j \leq 79 \end{cases}$$

•
$$K_j = \begin{cases} 0x5a827999 & \text{if } 0 \leqslant j \leqslant 19 \\ 0x6ed9eba1 & \text{if } 20 \leqslant j \leqslant 39 \\ 0x8f1bbcdc & \text{if } 40 \leqslant j \leqslant 59 \\ 0xca62c1d6 & \text{if } 60 \leqslant j \leqslant 79 \end{cases}$$

• LR^k and RR^k mean left and right rotate by k bits.

Properties Merkle's Meta Method SHA-1

Attacks on Hash Functions

- The birthday attack is based on the birthday paradox. For an *n*-bit hash function, one needs to compute on an average 2^{n/2} hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires n ≥ 128 (n ≥ 160 is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
 - Pseudo-collision attacks
 - Chaining attacks
 - Attacks on the underlying cipher
 - Exhaustive key search for keyed hash functions
 - Long message attacks

Block Ciphers	
tream Ciphers	
ash Functions	SHA-1

The Birthday Paradox

Let *S* be a set finite size *N*.

- k elements are drawn at random from S (with replacement).
- The probability that all these k elements are distinct is

$$p_k = \frac{N(N-1)\cdots(N-k+1)}{N^k} = \prod_{i=1}^{k-1} \left(1-\frac{i}{N}\right) \leqslant e^{\frac{-k(k-1)}{2N}}.$$

- $p_k \leq 1/2$ for $k \geq \frac{1}{2}\sqrt{1+8N\ln 2} \approx 1.18\sqrt{N}$.
- $p_k \leq 0.136$ for $k \geq 2\sqrt{N}$.

Examples

- There is a chance of ≥ 50% that at least two of ≥ 23 (randomly chosen) persons have the same birthday.
- A collision of an *n*-bit hash function can be found with high probability from O(2^{n/2}) random hash calculations.