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Chapter 5 : Units in number rings

There are just two units in
�

, namely ��� . In a general number ring there may be many more units. For
example, all the units in the ring

�����	�
of Gaussian integers are ����
�� � . There may even be an infinite number

of units in a number ring. It will be shown in due course that ��
������ ����� , ��� � , are all the units of
��� � � � .

For all ���� � the absolute values of ��
��!�"� �#� � are different from � . ��� � � � is a PID. So we can think
of factorizations in $ % � $'&)( * +�, as element-wise factorizations. To start with we fix a set of pairwise
non-associate prime elements of $ . Every non-zero element of $ admits a factorization -�.0/213546464 . /879 for
prime ‘representatives’ .;: and for a unit - of the form ��
��<�=� �>� � . Thus in order to complete the picture
of factorization we need machineries to handle the units in a number ring.

The biggest theorem in this chapter is Dirichlet’s unit theorem that explains the group structure of $�?@ for a
number field A . In the process I will introduce a branch of mathematics (now more or less dead) known as
the Geometry of numbers. The proof of Dirichlet’s unit theorem is not very illuminating, but its implications
are profound. Let’s go ahead!

5.1 Some basic properties of units

As done in the last few chapters, let us fix the letter A to denote an arbitrary number field of degree B and
signature 
DC 3 
EC + � . We have B � C 3 �F�GC + . Let us name the real embeddings of A as H 3 
6I6I6IJ
2H 9 1 and the
properly complex embeddings of A as H 9 1LK 3 
6I6I6IM
2H 9 1�K 98N 
POH 9 1�K 3 
6I6I6IM
POH 9 1�K 98N , where bar denotes complex
conjugate. We will assume that H 3 is the identity embedding of A . The set of units in $Q% � $ @ will be
denoted by RS% � R @ % � $ ? . We know that R is an (Abelian) group under (complex) multiplication. Our
basic aim in this chapter is to reveal the structure of the group R .

Every Abelian group is a
�

-module and, if finitely generated and not free, contains torsion elements, i.e.,
(non-identity) elements of finite order TU� .1 R always contains the element V�� of order � . The torsion
subgroup of R is denoted by WX% � W @ % � RZYD[E\^] . Thus R`_� Wbadc , where c is a torsion-free group. I will
show that W is a finite group and that c is finitely generated and hence free, i.e., ce_� �gf for some hi� � K .
From Dirichlet’s unit theorem (that I will prove in Section 5.3) it follows that h � C 3 �jC + V=� . Thus c
has a

�
-basis consisting of h elements, say k 3 
6I6I6IM
Ek f , and every unit of R can be uniquely expressed asl kP/213m46464 k /8nf , where l is a root of unity and op:q� � .

The following characterization of units of $ is very important.

5.1 Proposition Let rs�t$ . Then ru��R , if and only if vw
	r0� � ��� .
Proof [if] Let x�% �zyi{:}| + H~:E
	r�� . Then r�x � v 
	r0� � ��� . Now x , being a product of algebraic integers, is
in � and, being equal to ��r�� 3 , is in A , i.e., xs�t$ � �s��A . Therefore rs��R .

[only if] r���� in $ , so that vw
	r0���0v�
��J� � � in
�

. Thus we must have vw
	r0� � ��� . �
Note that this proposition does not prevent an element of A��!$ from having norm ��� (Exercise 5.1.1).
Also for r���R the condition v 
	r�� � ��� does not necessarily imply that the absolute value � r<� is � . I will
now prove that the number of units of $ all the conjugates of which have bounded absolute values is finite.
More generally:

5.2 Proposition Let � be a given positive integer (or real number). The number of elements r`��$ for
which � H�
	r0�6����� for every complex embedding H of A is finite.

1Every finitely generated torsion-free module over a PID is free.
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Proof For such an element r the minimal polynomial � �}�����#������� � 
D� �¡� ��� � � has degree dividing B and

has all coefficients with absolute values �j�m¢G£�
���
2B��'
¥¤ { +§¦ � + 
#¤ {¨ ¦ � ¨ 
6I6I6IJ
2� { � . Since there are only finitely
many such polynomials and each such polynomial has ��B roots, the result follows. �
5.3 Proposition The torsion subgroup W of R is finite. In particular, W is cyclic.

Proof Let rs��W and let © be the smallest positive integer for which r�ª � � , i.e., r is a primitive © -th root
of unity. Since «�
	rq� is a subfield of A , it follows that ¬­
D©®�¡�GB . This means that © can assume only finitely
many values. Since for each such © the number of primitive © -th roots of unity is finite (namely ¬­
D©®� ), W
is finite. The last statement of the proposition follows immediately from Theorem 1.77. �
Thus W¯_�z° ª for some ©±�³² with ¬�
D©®�´�>B , where ° ª denotes the (multiplicative) group of © -th roots
of unity. Since for each -³��W we have Vµ-³��W , it is evident that © � � W³� is even. Note that we may have¬�
D©®�g¶�B (Exercise 5.1.2).

Exercises for Section 5.1

1. (a) Give an example of a number field · and an element ¸º¹�·z»�$�¼ with ½¡¾^¸;¿�À�Á .
(b) Give an example of a number field · and an element ¸�¹�·z»�$t¼ with ½¡¾^¸;¿�À�ÂµÁ .
(c) Give an example of a number field · and an element ¸�¹´R ¼ with Ã ¸0Ã�Ä5Á .
(d) Give an example of a number field · and an element ¸�¹´R ¼ with Ã ¸0Ã�Å5Á .

2. (a) Find all the even integers Æ satisfying Ç;¾}Æ�¿�ÃMÈ .
(b) For each Æ of Part (a) give an example of a quadratic number field · for which W�¼sÉÀ�Ê~Ë .

3. (a) Let · be a real quadratic number field. Show that the only units of $�¼ of finite order are Ì!Á .
(b) Let · be a number field of odd degree Í . Show that the only units of $�¼ of finite order are Ì!Á .

4. Let · be a number field, $ÏÎÐÀd$t¼ , R�ÎÐÀ�Rµ¼ , WÑÎÐÀ W�¼ and ¸�¹w$ . Show that:

(a) ¸º¹ÒR , if and only if Ó´ÔÖÕ�×>ØpÙÖÚ>Û#Ü � ¾ÞÝG¿�ÀuÌ!Á .
(b) ¸ß¹àW , if and only if Ã á)¾Þ¸�¿§Ã�À�Á for every complex embedding á of · .

5. Let â be an odd prime, ã�ä a primitive â -th root of unity and ·ÏÎÐÀ�«å¾}ã�ä>¿ (so that $ ¼ À �åæ ã~äEç ). Show that the torsion
subgroup of R ¼ is W ¼ À�è6Ì�ã�éä Ãëê�À�Ý#ì�ÁJì§í�í§í2ì^âåÂ®ÁJî . In particular, W ¼ ÉÀ Ê~ï ä .

5.2 Lattices and Minkowski’s theorem

As mentioned earlier, the main goal of this chapter is to prove that the torsion-free part of R � R @ is of
finite rank equal to C 3 �®C + V � , where 
DC 3 
EC + � is the signature of the field A . A popular approach to achieve
that is by using the G e o m e t r y o f N u m b e r s , a field of mathematics introduced by Minkowski. One
starts with the following basic definition.

5.4 Definition Let © 
E�ð� � K , ©ñ�ò� and ó b 3 
6I6I6IJ
 b ªåô a set of ©bõ -linearly independent vectors ofõ � .2 The set ö of all
�

-linear combinations of b 3 
6I6I6IJ
 b ª , i.e., the set of elements of õ � of the form

- 3 b 3 � 46464 �s- ª b ª 
 -�:q� � 

2Let us plan to denote vectors of õ�÷ by lower-case bold-face Roman letters. A vector b of õZ÷ is an ø -tuple ù�ú 18û ú N û�ü8ü�üEû ú ÷pý

with each ú�þ�ÿ!õ . It is often convenient to treat b as the ���Òø matrix ù ú 1 ú N������ ú ÷ ý , i.e., as an ø -dimensional row vector.
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is called an © - d i m e n s i o n a l l a t t i c e in õ � with a b a s i s 
 b 3 
6I6I6IJ
 b ª � . If © � � , then ö is called a
f u l l l a t t i c e of õ�� .
5.5 Example

� � � ó>
D- 3 
6I6I6IM
E- � �u�g-�:�� � ô is a full lattice of õ�� with the c a n o n i c a l b a s i s
 e 3 
6I6I6IJ
 e � � , where e : % � 
 � 
6I6I6IG
 � 
M��
 � I6I6IG
 � � ( � in the � -th position). A lattice need not have a unique
basis. For example,

� +
has the canonical basis 
E
���
 � ��
J
���
M�J�E� . 
E
	��
	�#��
J
���
§�#�E� is also a basis of

� +
, since
���
 � � � ��
	��
	�#��V
��
���
§�#� and 
 � 
M�J� � Và
	��
	�#������
���
§�#� .

5.6 Proposition Let ö be a full lattice of õ � with basis 
 b 3 
6I6I6IJ
 b � � . Then the vectors c 3 
6I6I6IJ
 c � � õ �
constitute a basis of ö , if and only if 
�� :�
 � ��� 
�� :�
 � for some �uaº� matrix � with integer entries and of
determinant ��� .3 (Here ��:�
 (resp. � :�
 ) refers to the � -th component of b : (resp. c : ).)
Proof [if] Since � has integer entries, each c :Ò��ö . Furthermore since ����� �Ï� ��� , � is invertible and� � 3 has integer entries. Choose any x �ßö . Since 
 b 3 
6I6I6IM
 b � � is a basis for ö , we have integers - 3 
6I6I6IJ
E- �
with x � - 3 b 3 ��- + b + � 46464 ��- � b � � 
G- 3 - + 46464 - � �)
���:�
­� � 
G- 3 - + 46464 - � � � � 3 
�� :�
�� �
�� 3 � + 46464 � � ��
���:�
0� � � 3 c 3 ��� + c + � 46464 ��� � c � , where � 3 
6I6I6Ip
�� � are integers. Thus x is in the

�
-

linear span of c 3 
6I6I6Ip
 c � . Also ������
��ë:�
�� � ��������
��§:�
��´��`� , so that c 3 
6I6I6IJ
 c � are õ -linearly independent.

[only if] Clearly each c : belongs to ö . Since b 3 
6I6I6IJ
 b � form a basis of ö , every c : can be written as
a
�

-linear combination of b 3 
6I6I6IJ
 b � . Therefore there exists a matrix � with integer entries satisfying
�� :�
 � � � 
�� :�
 � . Now 
 c 3 
6I6I6IJ
 c � � is also a basis of ö and b : are in ö . Hence there exists another matrix !
with integer entries satisfying 
��ë:�
�� � !�
�� :�
­� . Thus 
�� :�
­� � ! � 
���:�
�� . Taking determinants and observing
the facts that 
�� :�
�� is nonsingular (b 3 
6I6I6Ip
 b { being linearly independent) and that �����"!�
#����� � � �
complete the proof. �
5.7 Corollary Let ö be a full lattice of õZ� and let 
 b 3 
6I6I6IM
 b � � and 
 c 3 
6I6I6IM
 c � � be two bases of ö . Then�������­
���:�
­��� � �������­
�� :�
­��� . Thus the value ��������
�� :�
­�)� is independent of the choice of the basis 
 b 3 
6I6I6IJ
 b � �
of ö and is an invariant of ö . �
5.8 Definition Let ö be a full lattice of õZ� with basis 
 b 3 
6I6I6IJ
 b � � . The value �������­
�� :�
­�)�;�dõ is called
the d e t e r m i n a n t of ö and is denoted by $º
 öµ� . It is also common to call $º
 ög� the d i s c r i m i n a n t of ö .

It follows from elementary calculus that $ß
 ög� is equal to the volume4 of each of the f u n d a m e n t a l
p a r a l l e l e p i p e d%

x % �
&

x � �' :�| 3 -�: b :�� � ��- :�¶z�)(i
 x �ßö¡I
The fundamental parallelepipeds

%
x are pairwise disjoint and cover õ � (i.e., õ � ��* x +-, % x).

I will now prove a theorem due to Minkowski, which states that a subset .�/�õ � meeting certain restrictions
(that I will state later) will have to contain a non-zero point of a full lattice ö of õ�� , whenever the volume
of . is ‘sufficiently large’ compared to $º
 öµ� . I start with the following lemma:

3A square matrix with integer entries and with determinant 01� is often called a u n i m o d u l a r m a t r i x .
4Here I use the term ‘volume’ rather intuitively without making an attempt to define it rigorously. A cynical reader may think

of volume as a measure, for example, the L e b e s g u e m e a s u r e , on õ ÷ , provided that this new term continues to make sense to
him/her. For the time being it is sufficient to concentrate on regions 243�õ�÷ whose ‘volumes’ can be calculated using the standard
techniques of integral calculus.
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5.9 Lemma [ B l i c h f e l d t ’ s t h e o r e m ] 5 Let �ð��² , ö a full lattice in õ � , and let .5/òõ � have
volume T6$ß
 ög� . Then there exist two distinct points x 3 and x + in . such that x 3 V x + �ºö .

Proof For each y �ºö define . y % � .�� % y. Then . y are pairwise disjoint and cover . . Thus the volume of. is the sum 7 y +8,:9 �#� 
;. y � . The translation of each . y by V y shifts the region . y in the parallelepiped
%

y
to the region . y V y inside the parallelepiped

% % � % 0. We clearly see that these translations do not change
the volumes of . y and thus the volume of . equals 7 y +8, 9 �#� 
;. y V y � . Since $º
 öµ� � 9 �#� 
 % ��¶ 9 �#� 
;.¡� , it
follows that we have some y 3 �� y + �ºö for which there is an overlap of . y 1 V y 3 and . y N V y + , i.e., there
are points x 3 �<. y 1 and x + �<. y N with x 3 V y 3 � x + V y + . But then x 3 V x + � y + V y 3 �ºö . �
The main theorem of this section is an easy corollary to the last lemma and the following definitions.

5.10 Definition Let . be a subset of õ � . We call . s y m m e t r i c (about the origin), if V x �=. whenever
x ��. . . is called c o n v e x , if x 3 
 x + �>. implies that the line segment joining x 3 and x + is completely
contained in . , i.e., ? x 3 �=
���V@?E� x + �<. for all ? , � ��?<�"� .
5.11 Theorem [ M i n k o w s k i ’ s c o n v e x - b o d y t h e o r e m ] Let ���º² , ö a full lattice in õ�� and .
a symmetric and convex subset of õ � with 9 �#� 
;.¡�gTj� � $ß
 ög� . Then . contains a non-zero point of ö .

Proof Define the region
3+ .ð% � ó x �ºõ � ��� x �=. ô . Then 9 �#� 
 3+ .¡� � 3+ ÷ 9 �#� 
;.¡�µTA$º
 ög� . By Lemma 5.9

there exist distinct points y 3 
 y + � 3+ . such that 0 �� x % � y 3 V y + � ö . Now y 3 � 3+ x 3 and y + � 3+ x + for
some x 3 
 x + �<. . Thus x � 3+ x 3 V 3+ x + � 3+ x 3 �F
��µV 3+ �ë
�V x + � . Since . is symmetric, V x + �=. . Moreover
since . is convex, x �4. . �
It can be shown that if the convex and symmetric region . of Theorem 5.11 is also compact (i.e., closed and
bounded), then the condition 9 �#� 
;.¡�CBF� � $º
 ög� is sufficient for . to contain a non-zero point of ö . If . is
not compact, we need the strict inequality 9 �#� 
;.¡�µT�� � $º
 öµ� .
Though Minkowski’s theorem is fairly intuitive and straightforward to prove, it has important consequences.
In the next section we will prove Dirichlet’s unit theorem using Theorem 5.11. The Minkowski bound
(Equation 4.4) can also be derived following this line of thought (Exercise 5.3.8). For the time being let us
concentrate on an equivalent characterization of a lattice.

5.12 Definition The � -dimensional closed b a l l (or s p h e r e ) D � � 9 of radius C and with center at the
origin is defined asD � � 9 % �FE x � 
HG 3 
6I6I6IJ
�G � �g��õ �JIII � x � �LK G + 3 � 46464 �MG +� ��CONwI
If � is understood from the context, one can abbreviate D � � 9 as D 9 . A subset ö of õ�� is called d i s c r e t e ,
if ö��JD � � 9 is a finite set for every positive real number C .
5.13 Proposition A subset ö of õ � is a lattice, if and only if ö is a discrete (additive) subgroup of õ � .
Proof [if] Let ö be a discrete additive subgroup of õ � and let ó c 3 
6I6I6IJ
 c ª�ô /�ö , � ��©���� , be a maximal
set of õ -linearly independent elements of ö . If © �`� , then ö � ó>
 � 
 � 
6I6I6IG
 � � ô is the � -dimensional lattice.
So let us assume that ©PB"� and prove by induction on © that ö is an © -dimensional lattice of õ¡� .

5The original version of Blichfeldt’s theorem (1914) states that if a bounded region 2Q3�õ N is of area RTS (for some SFÿ!² ),
then 2 can be so translated as to contain at least SVU<� points of the integer lattice

� N
. This theorem can be generalized for any

lattice and for any dimension ø . We are here interested in the special case: SXWY� .
Department of Mathematics Indian Institute of Technology, Kanpur, India
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If © � � , every x �=ö is a real multiple of c 3 . Since ö is discrete by hypothesis, it is easy to see that
the set ó[Zt��õ �-ZtT � 
#Z c 3 �ºö ô contains a minimal element, say � . Define b 3 % � � c 3 �Sö . I claim
that every x �òö is an integral multiple of b 3 . Clearly the claim holds for x � 0. So assume x �� 0
and write x � Z b 3 for some ZÏ�Ñõ �ió � ô . Writing Z � \ Z^]à� C for some C , � � Cò¶ñ� , we getC�� c 3 � C b 3 � 
_Z�V \ Z^]p� b 3 � x V \ Z^] b 3 �"ö . The choice of � then forces C�� � � , i.e., C � � , i.e.,
x �5\ Z^] b 3 . It follows that ö � � b 3 , i.e., ö is a one-dimensional lattice of õ � .
Now assume that ©�Tð� and that the result holds for ©FVt� . Since öa` % � öà�:bc` , bd`�% � õ c 3 � 46464 �sõ c ª¡� 3 ,
is a discrete subgroup of õ�� containing ó c 3 
6I6I6IM
 c ª¡� 3 ô as a maximal subset of õ -linearly independent
elements, by the induction hypothesis öe` is an 
D© Vd�J� -dimensional lattice with some basis 
 b 3 
6I6I6IM
 b ª�� 3 � .
But then 
 b 3 
6I6I6IJ
 b ª�� 3 
 c ª � is an õ -basis of b % � õ c 3 � 46464 �zõ c ª . Therefore every x �Söf/gb
can be written as x � Z 3 b 3 � 46464 �hZ ª�� 3 b ª¡� 3 �LZ ª c ª with Z>:��Xõ . The set ó[Z ª ��õ �-Z ª T � 
Z 3 b 3 � 46464 �>Z ª�� 3 b ª¡� 3 �>Z ª c ª �ºö with � Z : �¥¶ð� for �å�X�Z¶�© ô is non-empty (since c ª ��ö , so that� belongs to this set) and by the discreteness property of ö contains a minimal element, say � . Choose any
b ª % � � 3 b 3 � 46464 ��� ª�� 3 b ª¡� 3 �>� c ª �ºö . Clearly b 3 
6I6I6Ip
 b ª are õ -linearly independent and span b .

What remains is to show that every x �³ö is a
�

-linear combination of b 3 
6I6I6Ip
 b ª . This being obvious for
x � 0, take x �� 0 and write x � Z 3 b 3 � 46464 �6Z ª b ª for some real Z�: �i\ Z>:j]µ��CM: , � �`CJ:Z¶ � . Consider
y % � x V³
 \ Z 3 ] b 3 � 46464 � \ Z ª ] b ª � � C 3 b 3 � 46464 �ºC ª b ª �lk 3 b 3 � 46464 � k ª¡� 3 b ª�� 3 ��C ª � c ª �ºö , wherek :­% � CJ:��uC ª �§: for �����<��© V�� . But then 
 k 3 V \_k 3 ]�� b 3 � 46464 �`
 k ª�� 3 V \_k ª�� 3 ]G� b ª¡� 3 �5C ª � c ª �ºö
and so the choice of � forces C ª � � , i.e., y � C 3 b 3 � 46464 �=C ª¡� 3 b ª�� 3 � öj�Mbd` � ö1` . Therefore
y � � 3 b 3 � 46464 �>� ª�� 3 b ª�� 3 for some integers � 3 
6I6I6IM
#� ª¡� 3 and consequently x � 
_� 3 � \ Z 3 ]G� b 3 � 46464 �
_� ª�� 3 � \ Z ª¡� 3 ]p� b ª�� 3 � \ Z ª ] b ª � � b 3 � 46464 � � bª .

[only if] A lattice ö of õ�� is clearly an additive subgroup of õZ� . Let © be the dimension of ö . If © � � ,
then ö � ó>
 � 
 � 
6I6I6I�
 � � ô is evidently discrete. So assume that © B � and let 
 b 3 
6I6I6IJ
 b ª � be a basis
of ö . Then b 3 
6I6I6Ip
 b ª span an © -dimensional õ -subspace b of õZ� . The bijective linear transformationm %Cbon õ ª , b :qpn e : , (where 
 e 3 
6I6I6IJ
 e ª � is the canonical basis for õ ª ) maps ö to the full latticeö1`�% � m 
 ög� � � ª � ó>
D- 3 
6I6I6IM
E- ª �i��- : � � ô of õ ª . For every positive real number Cr` the condition
D- 3 
6I6I6IJ
E- ª �µ�4D ª � 9�s implies that each � -;:E����C ` , i.e., ö ` �tD ª � 9�s is finite. Now choose a real number C�T �
and look at � ö��YD � � 9 � � � ö��ub"�YD � � 9 � � � m 
 ö��ubz�YD � � 9 �6� � � öv`~� m 
wbz�YD � � 9 �6� . Since the regionm 
wb �YD � � 9 � is bounded6 in õqª , we can choose a real C ` T � such that m 
wb"��D � � 9 �x/yD ª � 9 s . But then� ö��JD � � 9 �¥�"� ö1`��zD ª � 9�s �¥¶ { . �
5.14 Example For any irrational (real number) k the elements � and k are linearly independent over

�
and

hence ö`% � � � � k is a free Abelian group of rank � . But ö is not a lattice of õ , since � and k are linearly
dependent over õ . The set óM-��V��ki�p-­
��'� � ô is dense in õ and so ö is not a discrete set.

Exercises for Section 5.2

1. (a) Show that È[|�}w¾�~0¿ is the best possible bound on the volume of � in Minkowski’s convex-body theorem.

(b) Show that symmetry and convexity are both individually necessary for Minkowski’s convex-body theorem.

2. Let ~ be a full lattice of õv| and � a symmetric convex subset of õv| with �JØpÙ^¾j�q¿ZÄ5È[|�}w¾�~0¿ . Show that � contains
at least three points of ~ .

3. Let ~ be a full lattice of õv| . Show that there exists a non-zero point x ÀF¾����Mì§í�í§í§ì�� | ¿�¹T~ with Ã � é Ã>�f�� }w¾�~0¿ for
all ê;À�ÁJì§í�í§í2ì�� . Conclude that the shortest non-zero vector of ~ is of length �A� �t�� }w¾�~0¿ .

6The map � is a homeomorphism of � onto õ�� and hence preserves compactness. In õ1� , �tÿß² , the term ‘compact’ is
synonymous with ‘closed and bounded’.
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4. [ M i n k o w s k i ’ s l i n e a r f o r m s t h e o r e m ] Let �"Î À ¾[� é�� ¿ be an �4�q� matrix with real entries and with���	� �L�À�Ý . Further let � � ì§í�í§í�ì�� | be positive real numbers with � �����	� � | Ä`Ã ���	� �!Ã . Show that there exist integers� � ì§í�í§í2ì�� | , not all zero, such that Ã 7 |��� � � é�� � � Ã�Åu� é for all ê;À�ÁJì�í§í§í§ì�� .
5. As a sample application of Minkowski’s convex-body theorem this exercise demonstrates a proof of the fact that every

prime â is a sum of four squares of integers. Since ÈµÀ�Á ï�� Á ï�� Ý ï�� Ý ï , let us concentrate on â�ÄdÈ .
(a) Show that the congruence � ï �Q¡Pï�� Á1¢�Ý´¾}Ó´Ø � â�¿ has a solution for ¾£� ì ¡ ¿ .
(b) Let ¾���ì ¡ ¿ be a solution of the congruence of Part (a). Define~�Î À�èG¾j�>ì�¤ëì�¥Mì�Í�¿�¹ �§¦ Ã¨¥�¢@�^� �Q¡ ¤<¾}Ó´Ø � â�¿2ì�Í©¢ ¡ ��ÂJ�ª¤<¾}Ó´Ø � â�¿Eîpí
Show that ~ is a full lattice of õ ¦ with discriminant }w¾�~0¿ÒÀjâ ï . (Hint: ¾LÁJì�Ý�ì�� ì ¡ ¿ , ¾ÞÝ�ì§Ápì ¡ ì§Â��¥¿ , ¾ÞÝ�ì�Ý#ì^â�ì8Ýp¿ and¾ÞÝ�ì�Ý�ì�Ý#ì^â�¿ constitute a basis of ~ .)

(c) Show that the ball « ¦ Ü ¬ contains a non-zero point of ~ , if ­ ï B ¦�® ï¯ âiÀ=¾LÁJí °JÝJÝ8±[²GÈ¨±[²GÈ¨²qí�í§í ¿�â . (Hint: You may
assume that �pØJÙ ¾�« ¦ Ü ¬ ¿­À�³ ï ­ ¦¨´ È .)
(d) If

¦ ® ï¯ âm�M­ ï Å ÈEâ , conclude that every non-zero point ¾���ì�¤6ì�¥6ì8ÍG¿�¹x~Tµ¶« ¦ Ü ¬ satisfies � ï�� ¤ ï�� ¥ ï�� Í ï Àºâ .
5.3 Dirichlet’s unit theorem

Now back to the business – the units in A . We continue to use the notations introduced at the beginning of
Section 5.1. In order to bring lattices in the scene one uses the complex embeddings of A .

5.15 Definition The map· %�A ? n±õ 9 1 K 9�N 
 rYpn ¸ �}� � H 3 
	r0�6�Ö
6I6I6Ip
 �Þ� � H 9 1 
	r0�6�Ö
§� �}� � H 9 1�K 3 
	r0�6�Ö
6I6I6Ip
§� �}� � H 9 1�K 9�N 
	r0�6� ¹)

is called the l o g a r i t h m i c r e p r e s e n t a t i o n or the l o g a r i t h m i c m a p of A (or A ? ). The restriction
of
·

to R will be denoted by º`% � ·:» ¼ . The space õ 9 1�K 98N is called the l o g a r i t h m i c s p a c e of A . Let
us denote the coordinates of the logarithmic space by G 3 
6I6I6Ip
�G 9 1�K 9�N , where G : represents

�Þ� � H�:2
	r��6� . The
hyperplane ½e%ªG 3 � 46464 �VG 9 1 ���-G 9 1�K 3 � 46464 ���-G 9 1�K 9�N �"� of the logarithmic space is of importance in
what follows. We have � � �
½ � C 3 �sC + V�� .
First let us look at the immediate properties of

·
(and º ).

5.16 Lemma (1)
·

is a homomorphism of the multiplicative group A ? to the additive group õ 9 1ëK 98N . In
particular, º is a group homomorphism from R to õ 9 1 K 9�N .
(2) ¾d��¿Àº � W . In particular, ¾c��¿Àº is finite.

(3) Á���º is contained in the hyperplane ½ and is isomorphic to c .

Proof (1) For each r�
Ex`��Au? and �!��ó���
6I6I6IG
EC 3 ��C + ô we have H�:E
	r�x0� � H�:�
	r0�8H~:2
Dx�� ( H~: being a field
homomorphism), so that

· 
	r�x�� � · 
	r���� · 
Dx�� .
(2) Since W � ° ª for some ©���² , for each r5�ºW and �Z�dó���
6I6I6Ip
EC 3 �ºC + ô we have H�:�
	r0� ª � H~:E
	r ª � �H : 
��J� � � , i.e., � H : 
	r��6� � � . Thus WÂ/F¾c��¿�º . Conversely if re�Ã¾c��¿�º , we have � H : 
	r0�6� � � for all� � ��
6I6I6Ip
2B . This implies that � H :2
	r � �6� � � for all � and for all �u�®² . By Proposition 5.2 r can not be of
infinite order, i.e., r5��W .

(3) Let r���R . By Proposition 5.1 we have � � � v 
	r0�6� �"y 9 1 K +�9 N:}| 3 � H : 
	r0�6� . Now H 9 1LK 98N K 
 
	r0� � H 9 1LK 
 
	r0�
for each � � ��
6I6I6Ip
EC + , so that � � ¸ y 9 1:�| 3 � H�:�
	r0�6� ¹1¸ y 9 1�K 9�N:}| 9 1�K 3 � H~:E
	r��6� + ¹ . Taking logarithm we conclude

that º¡
	r0�ß�l½ , i.e., Á8��ºÄ/5½ . Finally R�_� W±a�c and hence by the isomorphism theorem we haveÁ��Xº5_� RCÅ ¾c��¿Àº � RCÅpWÑ_� c . �
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5.17 Theorem Á���º is a lattice of õ 9 1�K 98N of dimension ��C 3 �tC + Vß� . In particular, c is finitely generated
with rank ��C 3 �5C + V�� .
Proof I will first show that Á��Xº is a discrete subgroup of õ 9 1�K 98N . Choose any real CFT � . The ballD 9 1�K 9�N � 9 is contained in the cube Æ 9 1LK 98N � 9 % � ó x ��õ 9 1 K 9 N ��� G :E�q�eC for all � ô . Let r � R be such thatº¡
	r0�º�ÇD 9 1 K 9 N � 9 , i.e., º¡
	r0���hÆ 9 1 K 9 N � 9 , i.e., � H�:�
	r0�6�¡�È�ë£ � C for all � � ��
6I6I6IJ
2B . By Proposition 5.2
the number of such r is finite, i.e., 
HÁ8�Xº<����D 9 1�K 9�N � 9 is a finite set. Hence Á���º is a discrete subgroup
and thereby a lattice of õ 9 1ëK 98N (Proposition 5.13). Moreover since Á8��ºF/y½ , the dimension of Á��Xº is�X� � �M½ � C 3 �sC + V�� . The last assertion in the theorem follows from the fact that cò_� Á8�Xº . �
So far so good! It is at least proved that the free part c of R is of finite rank, i.e., is finitely generated. The
rank of c is no more than C 3 ��C + V�� . It turns out that the rank of c is exactly equal to C 3 ��C + V�� . It is
by no means an easy task to prove this. If C 3 �sC + V�� �=� , then there is nothing to prove. So let us assume
that C 3 �dC + Vu�dBð� and proceed by proving a series of auxiliary results. First we have to look at a different
kind of lattices. We again consider the complex embeddings of A .

5.18 Definition The map

H�%#AÉn õ 9 1 a4Ê 9�N 
 rupn ¸�H 3 
	r0��
6I6I6Ip
2H 9 1 
	r���
2H 9 18K 3 
	r0��
6I6I6Ip
2H 9 1LK 98N 
	r0��¹)

is called the c a n o n i c a l e m b e d d i n g of A in õ 9 1 aYÊ 98N . Here we focus on the additive groups of A
and õ 9 1 a<Ê 9�N . Using the standard õ -basis 
���
 � � of Ê one can identify õ 9 1 aYÊ 98N with õ 9 1 aºõ +�9�N � õ {
and so H can be thought of as a group homomorphism from 
 Aß
���� to 
Dõ { 
���� .
5.19 Proposition Let Ë be a non-zero ideal of $ . Then H�
�Ë�� is a full lattice of õ { with discriminant$º
 H�
�Ë��E� � � � 98N v�
�Ë�� � � $ @ � . In particular, H�
^$t� is a full lattice of õ { with $ß
 H�
^$t�E� � � � 98N � � $ @ � .
Proof Let 
jÌ 3 
6I6I6IJ
�Ì { � be an integral basis of Ë . It suffices to show that H�
jÌ 3 ��
6I6I6Ip
2H�
jÌ { � are linearly
independent over õ , i.e., to show that the matrix

Í % �gÎÏÏÏÏÐ
H 3 
jÌ 3 � 46464 H 9 1 
jÌ 3 �@Ña��H 9 1LK 3 
jÌ 3 ��Á���H 9 1LK 3 
jÌ 3 � 46464 Ña��H 9 1�K 98N 
jÌ 3 �uÁ8��H 9 1LK 9�N 
jÌ 3 �H 3 
jÌ + � 46464 H 9 1 
jÌ + �@Ña��H 9 1 K 3 
jÌ + ��Á���H 9 1 K 3 
jÌ + � 46464 Ña��H 9 1 K 9 N 
jÌ + �uÁ8��H 9 1 K 9 N 
jÌ + �... 46464 ...

...
... 46464 ...

...H 3 
jÌ { � 46464 H 9 1 
jÌ { �uÑa��H 9 1�K 3 
jÌ { �YÁ���H 9 1�K 3 
jÌ { � 46464 Ña��H 9 1LK 98N 
jÌ { �YÁ8��H 9 1�K 9�N 
jÌ { �
Ò	ÓÓÓÓÔ

has non-zero determinant. Consider the matrix

�Ï% � 
#H^
#
jÌ�: ��� � ÎÏÏÏÏÐ
H 3 
jÌ 3 � 46464 H 9 1 
jÌ 3 � H 9 1 K 3 
jÌ 3 � 46464 H 9 1 K 9 N 
jÌ 3 � H 9 1 K 3 
jÌ 3 � 46464 H 9 1 K 9 N 
jÌ 3 �H 3 
jÌ + � 46464 H 9 1 
jÌ + � H 9 1LK 3 
jÌ + � 46464 H 9 1LK 9�N 
jÌ + � H 9 1�K 3 
jÌ + � 46464 H 9 1�K 9�N 
jÌ + �... 46464 ...

... 46464 ...
... 46464 ...H 3 
jÌ { � 46464 H 9 1 
jÌ { �dH 9 1�K 3 
jÌ { � 46464 H 9 1�K 9�N 
jÌ { � H 9 1LK 3 
jÌ { � 46464 H 9 1LK 9�N 
jÌ { �

Ò	ÓÓÓÓÔ I
Adding the 
DC 3 ��C + �"�J� -st column to the 
DC 3 �z�J� -st column of � gives twice the 
DC 3 �z�J� -st column ofÍ

. Subsequently subtracting half the 
DC 3 ���J� -st column from the 
DC 3 ��C + ���J� -st column of (the modified)� gives V � times the 
DC 3 �`�#� -nd column of
Í

. Proceeding in this way for all � � ��
6I6I6IJ
EC + shows that�Õ����� ��� � � 98N �Õ����� Í � . But � �� $º
�Ë�� � $º
jÌ 3 
6I6I6IM
�Ì { � � 
_�������m� + , which shows that ����� Í ��F� . Moreover$º
 H�
�Ë��E� � �Õ����� Í � � �>� 98N �Õ�������º� � �>� 9�N � � $º
�ËP�6� � �>� 9�N v�
�Ë�� � � $ @ � , where the last equality follows
from Corollary 4.22. �
The canonical embedding of A in õ 9 1 a<Ê 98N leads to a generalization of the concept of norms.
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5.20 Definition Let x % � 
HG 3 
6I6I6Ip
�G 9 1 
#Ö 3 
6I6I6IJ
#Ö 9 N � �5õ 9 1 a�Ê 98N , where G : are real numbers and Ö×
 are
complex numbers. (x can be viewed as the B -tuple 
HG 3 
6I6I6IJ
�G 9 1 
#Ña�ØÖ 3 
�Á��XÖ 3 
6I6I6IJ
#Ña��Ö 98N 
�Á��6Ö 9�N � under the
identification of õ 9 1 a4Ê 98N with õ { .) We define the n o r m of x as

v 
 x �<% � G 3 46464 G 9 1 Ö 3 OÖ 3 46464 Ö 98N OÖ 98N I
Clearly v�
	r�� � vw
 H�
	r0�E� for r5�ºA , where the norm of the left hand side corresponds to Definition 3.8.

Since õ 9 1 aMÊ 9�N is also a ring (It is in fact an õ -algebra.), one can define the product of two elements
x % � 
HG 3 
6I6I6IJ
�G 9 1 
#Ö 3 
6I6I6IJ
#Ö 98N � and x `!% � 
HGÀ` 3 
6I6I6IJ
�GO` 9 1 
#Ö�` 3 
6I6I6IJ
#Ö�`9 N � of õ 9 1 aMÊ 98N as the coordinate-wise
product xx `�% � 
HG 3 GÀ` 3 
6I6I6IJ
�G 9 1 GO`9 1 
#Ö 3 Ö�` 3 
6I6I6IM
#Ö 9�N Ö�`98N � , which viewed as an element of õ { is to be identified
with 
HG 3 G ` 3 
6I6I6IJ
�G 9 1 G `9 1 
#Ña��
_Ö 3 Ö `3 ��
�Á��ß
_Ö 3 Ö `3 ��
6I6I6IJ
#ÑC�>
_Ö 9�N Ö `98N ��
�Á��ß
_Ö 9�N Ö `98N �E� .7 Clearly this new norm function
is multiplicative, i.e., v 
 xx `Þ� � v 
 x � v 
 x `}� for every x 
 x `)�tõ 9 1 a4Ê 98N . Let us also define the set

x H�
^$��Z% � ó x H�
	r0���Pr5�t$ ô /�õ 9 1 a4Ê 9�N I
5.21 Proposition For x �ºõ 9 1 adÊ 98N with � v 
 x �6����=� the set x H�
^$t� is a full lattice of õ { with discriminant$º
 x H�
^$t�E� � �>� 98N � v�
 x �6� � � $ @ � .
Proof The proof is similar to that of Proposition 5.19. If 
jÌ 3 
6I6I6Ip
�Ì { � is an integral basis of A , then it
suffices to show that x H�
jÌ 3 ��
6I6I6Ip
 x H�
jÌ { � are õ -linearly independent. The details are left to the reader. �
Now we have the requisite machineries to prove the unit theorem. In what follows let us denote by ö x the
lattice x H�
^$t� of õ { .
5.22 Theorem [ D i r i c h l e t ’ s u n i t t h e o r e m ] Á8��º is a lattice of õ 9 1�K 9�N of dimension C 3 �5C + V�� ,
i.e., c is a free Abelian group of rank C 3 �sC + V�� .
Proof Let � % �ÚÙ x �ºõ 9 1 a4Ê 9�N � 3+ �"� v 
 x �6�¥�z�rÛ . We have � � 9�N � 3¨� � $ @ �)�Ü$º
 ö x �´�"� � 9�N � � $ @ �
for every x �ñ� . Choose any convex closed bounded symmetric region . of õ 9 1 aÇÊ 9 N having9 �#� 
;.¡�@B � 9 1�K 98N � � $ @ � . By Minkowski’s convex-body theorem (5.11) for each x ��� there exists a
non-zero r���$ such that x H�
	r0�µ�Y. . Since points in . have bounded coordinates, we have a positive real
constant � depending on . such that � v 
 y �6���j�qÅ�� for every y �<. . Then for each x ��� and rs�t$ with
x H�
	r����<. we have � v�
 x H�
	r��E�6� � � v�
 x �6��� v�
 H�
	r��E�6� � � v�
 x �6��� v�
	r��6�~���qÅ�� , so that � v�
	r0�6����� .

Now consider the set ! consisting of the non-zero principal ideals r�$ for which x H�
	r��³�Ý. for some
x �d� . For each r�$ �
! we have v�
	r)$�� � � v�
	r��6���ð� . By Proposition 4.29 ! is a finite set, say ! �ópr 3 $ß
6I6I6IM
§r�ÞM$ ô . Then for every x ��� and � �� r`�d$ with x H�
	r0�å�
. we have r�$ � r : $ for some�!�só���
6I6I6IG
	ß ô , i.e., r � k#r�: for some unit kº�tR , i.e., x H�
Dk�� � x H�
	r�r � 3: � � H�
	r � 3: � x H�
	r0�å��H�
	r � 3: ��. .
The region .a`�% �h* Þ:}| 3 H�
	r � 3: ��.L/Fõ 9 1 a=Ê 9�N is bounded (since . is so), i.e., for every x �d� we have a
unit k of $ such that the absolute value of each coordinate of x H�
Dk�� is ¶�à for some finite bound à T �
that depends on .a` (and not on x).

For each �à�=ó���
6I6I6Ip
EC 3 �FC + ô choose a point x : � 
HG : 3 
6I6I6IM
�G�: � 9 1�K 9�N ����õ 9 1 auÊ 9�N with � G :�
�� � à for�d�� � and with � G : : � so adjusted that � v 
 x : �6� � � . Then each x : �ß� and hence we have a unit k : �iR such

that x :	H�
Dk6:	� � ¸ G�: 3 H 3 
Dk6: ��
6I6I6IJ
�G : 9 1 H 9 1 
Dk6: ��
�G�: � 9 1�K 3 H 9 1LK 3 
Dk6: ��
6I6I6IJ
�G�: � 9 1 K 9�N H 9 1LK 9�N 
Dk6: � ¹ �X. ` . The absolute

values of the coordinates of x : H�
Dk6:	� are ¶ à and so � Hª
#
Dk6:L�6��¶ð� , i.e.,
�Þ� � Hª
#
Dk6:L�6�¥¶ � for �ß�� � .

Finally let us come back to our old lattice Á��Xº � º!
 R�� � º¡
�cå� of the logarithmic space õ 9 1�K 98N ofA . We have seen (Theorem 5.17) that Á���º has dimension �SC 3 �`C + Vð� . I now claim that the vectors
7xx s is not to be identified with ùâá 1 á s 1 û�üEü�ü8û á 7wã á s 7wã û;ä�å ù£æ 1 ý ä�å ù£æ s 1 ý û;çHè ù£æ 1 ý çHè ù£æ s 1 ý û8ü�ü�ü�û;ä�å ù£æ 7_é ý ä�å ù£æ s7_é ý û;çjè ù£æ 7_é ý çjè ù£æ s7_é ý	ý .

We identify õ 7wã �:Ê 7Hé with õ�ê as an õ -vector space, not as a ring.
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º¡
Dk 3 ��
6I6I6IJ
#º!
Dk 9 1 K 9 N � 3 �i�ÃÁ��Xº are õ -linearly independent, so that Á��Xº has dimension BÑC 3 �FC + Vz� ,
thereby proving Dirichlet’s unit theorem.

For the proof of the claim just mentioned let us project the 
DC 3 �³C + � -dimensional vectors º¡
DkJ: � to õ 9 1�K 98N � 3
by dropping the last coordinate8 and show that the matrix

Í % � 
�ë^:�
­� 3�ì : � 
 ì 9 1LK 98N � 3 is non-singular, whereë}:�
³% � E �}� � H^
>
Dk6:	�6� for �å�M�i��C 3 ,� �}� � H^
>
Dk6:	�6� for C 3 �=���
�i��C 3 �sC + V�� . We have seen that ë^:�
d¶ � for ���� � . Furthermore

since vw
Dk6:L� � ��� , we have 7 9 1�K 98N � 3
 | 3 ë}:�
 � VCí �}� � H 9 1 K 9�N 
Dk6:	�6��T � for �'¶XC 3 �=C + , where í is � or �
depending on whether C + �X� or C + T � respectively. It is left to the reader as an easy exercise to show
that the above two conditions on the coefficients ë :�
 of

Í
are sufficient to prove the non-singularity of

Í
(Exercise 5.3.2). �
That’s it! And it’s already too much for a theorem with such a simple statement! The above proof for the
unit theorem is not constructive, i.e., it does not specify how to compute a set of generators of c (often
called a set of f u n d a m e n t a l u n i t s of $ ). For real quadratic number fields one can use the theory of
continued fractions9 to compute the fundamental unit.

5.23 Example Let î ��b� 
M� be a square-free integer, A % � «�
 � î�� and $ñ% � $ @ . If î ¶ � , then
the signature of A is 
 � 
M�J� and the rank of c is � �z�!VF� �ò� , i.e., R � W � ° ª for some even © with¬�
D©®� � � or � . That is, R is finite in this case. (See Exercises 5.1.2 and 5.3.3.)

For î T � the signature of A is 
	��
 � � , i.e., the rank of c is �¡� � V�� � � . This means that $ contains an
infinite number of units. Let k be a fundamental unit of $ . Then every unit of $ is of the form �´k � , ��� �
(Exercise 5.1.3). The question is how to compute k for such an $ .

First consider the easier case îiï���
	�ß
 � � �Qð>� . In this case every element of $ is of the form Z � � � î
with Z 
	�´� � . For Z´�>� � î ��R the condition v 
_Z´�>� � ît� � ��� implies that Z + Vuîz� + � ��� .10 Since a
solution 
_Z�
	�6� of these equations gives four solutions 
 �:Z 
��c�6� , we need to concentrate only on the solutions
with Z
B � and �TB � . Furthermore the only solutions with Zª� �S� are 
 ����
 � � , so that we may considerZ'T � and �´T � only.

The solutions of the equations Z + V
îz� + � ��� are related to the the (simple) continued fraction expansion
of � î , which is periodic and is of the form ñ_Z�ò�
 Z 3 
6I6I6IM
#Z 9 � 3 
§��Zªò[ó .11 The (least) period of this expansion isCxBð� . Let ô � Å�ß � , ��� � K , be the convergents of the expansion of � î . Then each positive solution 
_Z�
	�6� ofZ + V=îz� + � ��� is from the set ó>
;ô � 
	ß � ���p��� � K ô . If C is even, there are no solutions of Z + VYîJ� + � V�� ,
whereas the positive solutions of Z + V@îz� + � � are given by 
;ô � 9 � 3 
	ß � 9 � 3 � for all ���ß² . If C is odd, then
the positive solutions of Z + V>îJ� + � V�� are 
;ô � 9 � 3 
	ß � 9 � 3 � for all odd ���5² , and the positive solutions
of Z + V
îz� + � � are 
;ô � 9 � 3 
	ß � 9 � 3 � for all even ���d² . In either case we can name the positive solutions
of Z + V�îz� + � ��� as 
_Z � 
	� � �à% � 
;ô � 9 � 3 
	ß � 9 � 3 � , �=��² . Then Z � �Ã� � � î � 
_Z 3 �Ã� 3 � î�� � , that is,k�% � Z 3 ��� 3 � î � ô 9 � 3 ��ß 9 � 3 � î is a fundamental unit of $ .

The following table gives the (positive) fundamental unit k T � of $ for some small positive square-free
values of îõï=��
	�i
 � � �qð>� .

8The last unit ö 7wãw÷�7_é and the last coordinate were dropped on aesthetic grounds. Dropping the ø -th vector and (hence) the ø -th
coordinate would have served our purpose equally brilliantly for any ø ÿúù×� û�üEü8ü�û;ûM1 U û N�ü .9See any book on elementary number theory, say, the book by Niven, Zuckerman and Montgomery.

10The Diophantine equation á N�ýxþ§ÿpN W@� is known as P e l l ’ s e q u a t i o n after John Pell. However John Pell contributed
very little to solving or even noticing this equation. The equation bears his name owing to a mistake of Euler who supposedly
wanted to give the credit to Brouncker, the founder of continued fractions. What would better be called ‘Brouncker’s equation’ has
been since then (and till now) erroneously dubbed as Pell’s equation.

11This property of the continued fraction expansion of � þ is true even when
þ�� �´ù è������ ý . What is demanded is that

þ
should be square-free.
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 ¬�� � ´�
 ¬�� � �È � Ápì È�� Á Á ´ Á Á � � È² �LÁJì Ápì8È�� È È ´ Á È � � ²± �DÈPì È#ì���� È � ´ È � � È � ±� �^ÈPì ÁJì�ÁJì§Ápì���� � ° ´ ² ° � ² � �Á Ý ��²�ì ±�� Á ² ´ Á ² � � Á ÝÁpÁ �j²#ì ²�ì�±�� È Á Ý ´ ² Á�Ý � ² � ÁJÁÁ�� ��²#ì ÁJì�ÈPì§Ápì�±�� � Á�� ´ � Á�� � � � Á��Á�� �j²#ì Ápì�±�� È � ´ Á � � � Á��Á�� ���>ì ÈPì�ÁJì�²#ì§Ápì8È#ì�°�� ± Á � Ý ´ ²�� Á � Ý � ²�� � Á��
Note that the fundamental unit k may be quite large even for small values of î . For example, the continued
fraction expansion of � ���¥� is

� ���¥� � ñ;�¥��
 ��
M�M��
M� � 
§��
§�¥
§��
p��
J��
���
��¥
M�P
M�#
M��
J��
���
J��
� ¥
�ð�
M�P
§��
J��
���
���
M�#
�ð~
M�P
§� � 
��¥
�ð�
	����
ð�
���
§� � 
M��
�ð�
M��
	��
§�¥
M�P
§�¥
M��
#ð�
� �
J��
	�¥
M�P
M�P
M��
p��
���
���
M�P
M�P
§��
§��
���
J� � 
M�J��
§��
��#�Àó�

which corresponds to a period of C � � � , so that

k � ô"!$#���ß%!$# � ���¥�� �'&(��)¥���-ð �P� � � �� ¥�P����� � ���� � �×ð* ��'� �  � �=�M� � )�)'&���)'&(� � ���¥�¨�')��-ð�ð+&-ð�ð>��)r�� %&(�'& � ���¥�#I
Now let us consider a positive square-free integer î ïb�º
 � � �Yð>� . In this case the elements of $ are of

the form Z ���a¸ 3 K * ,+ ¹ with Z 
	��� � . Putting Gd% � ��Zå�6� and -�% � � allows us to rewrite this element as


HGw�.- � ît��Å�� , where G and - are integers of the same parity. Applying the norm condition on a unit of this
form implies that G + VMî/- + � � ð . Since î is odd, any integer solution of these equations corresponds toG and - of the same parity and therefore to a unit of $ . As in the previous case we need to concentrate only
on the positive solutions of G + Vuî/- + � � ð .
In this case also the continued fraction expansion of � î helps. Let � î � ñ_Zªò�
 Z 3 
6I6I6IJ
#Z 9 � 3 
§��Zªò[ó with
least period C . We compute the least positive solution TÑ� of Z + V�îJ� + � ��� as 05% � ô 9 � 3 �Aß 9 � 3 � î .
Clearly �10 (i.e., 
	��ô 9 � 3 
§��ß 9 � 3 � ) satisfies G + VMî/- + � � ð , i.e., 0 is a unit in $ . But the fundamental unitk�% � 
D-m�V� � î���Å���Tð� of $ may be smaller than k . One has:

0 � 23 4 k if îõï � 
 � � �5 #� ,k if îõï6)m
 � � �5 #� and -4ïA�xï � 
 � � ���#� ,k ¨ if îõï6)m
 � � �5 #� and -4ïA�xï � 
 � � ���#� .
Since - and � are not known in advance, one should try to compute the cube root of 0 in $ (for the caseîPï7)®
 � � �8 #� ). If the attempt is successful, one gets k � 0 3:9 ¨ (the real cube root), otherwise one takesk � 0 . The following table supplements the previous one by listing the fundamental unit k³T � of $ for
some small square-free îõï � 
 � � �tð>� .	 � 	 ­ 
 ¬�� � ´�
 ¬;� � < �� �DÈPì ��� Á È ´ Á È � � � < �:=?> À�¾LÁ � � �p¿ ´ ÈµÀuÝ � Á ¸ ��@ ® Aï ¹Á�² ��²�ì Ápì§ÁJì�ÁJì�ÁJì�±�� � Á�° ´ � Á�° � � � Á�² < �:=?> À�¾j² � � Á ²J¿ ´ È�À�Á � ¸ �B@ ® ��>ï ¹Á � �C��ì °�� Á � ´ Á � � � Á � < ÀD� � � Á � À@² � È ¸ ��@ ® �BEï ¹
For a general number field computing a set of fundamental units can be carried out by discovering pairs
	r�
Ex��5�e$ + with v�
	r�� � v�
Dx0� � © for some small integer © . Since there are only finitely many
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(principal) ideals of $ of norm © , there is a finite (i.e., non-zero) chance that r�$ � x)$ . If so, r Åpx is a unit
of $ . When many units are available in this way, we have to find out a set of C 3 �iC + V�� linearly independent
units. Suitable roots of these linearly independent units will give us the desired set of fundamental units of $ .

Exercises for Section 5.3

1. Complete the details in the proof of Proposition 5.21.

2. Let ��ÎÐÀ�¾�F é�� ¿ be an �T�d� matrix with real entries having the properties that F é�� ÅdÝ for ê��ÀHG and that 7 |��� � F é�� Ä³Ýfor all ê0¹tèGÁJì§í�í§íEì���î . Show that � is non-singular (i.e., invertible). (Hint: If � is singular, the system � x À 0 has a
non-zero solution x. Look at the ê -th equation, where Ã � é ÃpÀ ÓJI�K� ì � ì | Ã � � Ã .)

3. Compute R�¼ for ·ÑÎÐÀ�«å¾ � 	 ¿ , where
	 Å®Ý is a square-free integer.

4. Let ¸ be a root of the polynomial L�¾�Mi¿�ÎÐÀNM > � Á�Ý�M � Á (Show that L�¾CMi¿ is irreducible in « æ Mmç .), ·ÑÎ Àu«å¾Þ¸�¿ and$ Î Àd$i¼ .

(a) Compute that }à¾^¸;¿­À�ÂO�GÝpÈ � and hence deduce that $SÀ �åæ ¸�ç .
(b) Show that the signature of · is ¾ Ápì§Á ¿ .
(c) Show that ¸ is a unit of · . (Remark: ¸ is indeed a fundamental unit of $ , but proving that requires some boring
calculations.)

(d) Conclude that R�¼sÀ�è6Ì<¸"|wÃ��i¹ � î .
5. (a) Let P�¹�² . Find all possible values of Í for which there may exist a number field · of degree Í with c ¼ having

rank P .

(b) For which values of Í found in Part (a) will a complex embedding of · have a real fundamental root ÄuÁ ?
6. Find the fundamental unit Ä=Á of $t¼ for ·�ÎÐÀF«å¾ � ÈPÁ�¿ , ·�ÎÐÀF«å¾ � ÈJÈM¿ , ·�ÎÐÀ`«å¾ � È¨²J¿ , ·�ÎÐÀ`«å¾ � ²[²J¿ and for·ÑÎÐÀ «å¾ � ² � ¿ .
7. Let �'¹w² .

(a) Show that � � ï � ÁZÀQ���)ì È��R� . Conclude that if �Y�¢uÈ#ì�±å¾}Ó´Ø � °p¿ and � ï � Á is square-free, then a fundamental
unit of $ �RS ® | é @O��T is � � � � ï � Á .
(b) Show that � � ï Â³ÁZÀQ���!Â'ÁJì ÁJì�È#¾£�àÂ®Áë¿�� . Conclude that if �zB�È and � ï ÂiÁ is square-free, then a fundamental
unit of $ �RS ® | é � �BT is � � � � ï Â®Á .
(c) Show that � � ï � È¡ÀU�£�)ì �)ì8È¨�V� . Conclude that if � ï � È is square-free, then a fundamental unit of $ �RS ® | é @ ï T
is ¾�� ï�� Áë¿ � � � � ï � È .

8. [ T h e M i n k o w s k i b o u n d ] Let · be a number field of degree Í and signature ¾�­ � ì�­ ï ¿ and let $ ÎÐÀ³$'¼ . Show
that every non-zero ideal Ë of $ contains a non-zero element ¸ with Ã ½¡¾Þ¸�¿§Ã��XW�¼i½!¾;ËG¿ , whereWº¼�ÎÐÀ Í%YÍ(Z\[ �³^] ¬ é � Ã }Ò¼åÃ
is a constant that depends only on · . (Hint: Apply Minkowski’s convex-body theorem on the lattice á)¾wËG¿ of õ ¬ ã ��Ê ¬ é
and on the compact region �O_�ÎÐÀ Ù ¾£� � ì�í§í�í§ì�� ¬ ã ì?` � ì§í�í§í§ì?` ¬ é ¿�¹wõ ¬ ã �tÊ ¬ é II 7 ¬ ãé � � Ã � é Ã � È 7 ¬ é��� � Ã ` � ÃP�ba Û for a

suitable a . You may use the fact that �JØpÙ^¾j� _ ¿�À5È ¬ ã ¾�³ ´ Èp¿ ¬ é a Z ´ Í%Y .)
9. Let · be a number field of degree Í . Show that:

(a) Ã }Ò¼´ÃrB ¤ ¯ ¦ ¦ Z ¸ Z$cZ;d ¹ ï .
(b) Ã }Ò¼´Ã#ÄuÁ for ·Ä�À « .

(c) Ã } ¼ Ã1egf as Íhegf . (Hint: Ù Õ��iYGÀ��gÙ Õ��àÂJ� �8j ¾}Ù Õ���¿ .)
* 10. [ H e r m i t e ’ s t h e o r e m ] Let }ò¹'² . Show that there are only finitely many number fields · with Ã } ¼ Ã>ÀX} .

(Hint: By Minkowski’s theorem on the lattice á)¾�$t¿ there exists a non-zero ¸�¹�$ ¼ with Ã á)�M¾^¸;¿�Ã;Å � } � Á andÃ á é ¾Þ¸�¿§ÃPÅsÁ for ê;À5ÈPì§í�í§í2ì�­×� � ­ ï . Argue that ·�Àu«å¾Þ¸�¿ . Also use Exercise 5.3.9(c).)
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