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Chapter 4 : Idealsin number rings

One of the very first ‘proofs’ of Fermat’s last theorem (FLT) was proposed by Lamé in 1847. This proof had
the serious flaw that it was based on the assumption that the ring Z[wy] of cyclotomic integers (w, being a
primitive n-th root of unity) is a UFD. Unfortunately this is not true in general. Kummer later pointed this
out and Cauchy discovered that the smallest n for which Z[w,,] is not a UFD is n = 23.

A great set-back to the mathematicians! But number rings are not as bad as they appeared at the first glance.
Kummer himself proved that unique factorization in Z|wy,] is again restored in terms of what he called ideal
numbers. Dedekind later reformulated Kummer’s notion of ideal numbers to define what we now know as
ideals. Thus ideals admit unique factorization in number rings. This is historically one of the main streams
that led to the birth and development of modern algebraic number theory.

Ideals in a number ring indeed possess very rich structures. This chapter is an introduction to the theory of
ideals in number rings. We prove that number rings are Dedekind domains (Definitions 2.9 and 2.24) and
in any Dedekind domain unique factorization of ideals holds. We will also see how (ideals generated by)
rational primes behave in number rings. 1 will also introduce two other important concepts (norm and class
number) related to ideals in a number ring.

4.1 Unique factorization of ideals

In this section | denote by K an arbitrary number field of degree d = [K : Q] and O g the ring of integers
of K (i.e., the integral closure of Z in K). As claimed above | start by showing that O g is a Dedekind
domain (henceforth abbreviated as DD). | will use Definition 2.24 of Dedekind domains for this purpose. |
proceed by proving a series of auxiliary results. First let me introduce a terminology. Let ¢ : A — B be
a homomorphism of rings. If q is a prime ideal of B, then the contraction p := ¢ '(q) = q¢ is a prime
ideal of A (Exercise 1.2.6(a)). We say that q lies above or over p. If A C B and o is the inclusion
homomorphism, then p = A N g. For a number field K we consider the natural inclusion Z < O .

4.1 Lemma Let q be a non-zero prime ideal of O x. Then g lies above a non-zero prime ideal of Z. In
particular, g contains a rational prime.

Proof If gNZ = 0, then both g and 0 are prime ideals of O x that lie over the zero ideal of Z. Since 0 C q,
it follows from Exercise 2.2.4(c) that ¢ = 0, a contradiction. |

4.2 Corollary Let g be a non-zero prime ideal of O x. Then g lies above a unique non-zero prime ideal of
Z. In other words g contains a unique rational prime.

Proof p := gnNZis the unique prime ideal of Z over which q lies. By Lemma 4.1 p # 0. |

We can in fact prove a more general result.

4.3 Lemma Let a be a non-zero ideal of O k. Then a contains a non-zero rational integer.

Proof Take any non-zero @ € a and let a1,...,a, be the conjugates of o with « = «;. Then
a := Ngjp(a) = (a1 ap)® € Z, where s := [K : Q(a)] = d/r (See Equation 3.4). Certainly a is
non-zero (since «; are evidently non-zero). Now 8 := o' (as - - - o,)* is an algebraic integer and being
equal to a/a belongsto K, ie., € ANK =9Ok. Thusa = af € a. <
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That O is a free Abelian group of rank d has an important consequence.

4.4 Proposition The ring of integers O x of a number field K is Noetherian.

Proof Let ay,...,aq € Ok constitute an integral basis of O g, i.e., Ox = Z[a,...,aq4], i.6., the ring
homomorphism Z[X1,. .., X4] = Ok, f(X1,...,Xq) = f(a1,...,aq), is surjective. By Hilbert’s basis
theorem (Theorem 2.23) the polynomial ring Z[X1, ..., X4] is Noetherian and therefore O, being the
quotient of a Noetherian ring (by the isomorphism theorem), is Noetherian too (Example 2.22). |

Thus all ideals of O x are finitely generated. This fact is also a direct consequence of the following result
which investigates the Z-module structure of non-zero ideals of O .

4.5 Proposition Every non-zero ideal a of O g is a free Abelian group (i.e., a Z-module) of rank d.

Proof Let 31,..., 08y be an integral basis of K. We now explicitly construct an integral basis (i.e., a Z-
basis) 1, ...,7vq of a. By Lemma 4.3 there is a rational integer a € a. We can take ¢ > 0 without loss of
generality. Since af; € a forevery i = 1,...,d, we can choose the smallest positive integer a1; for which
vy := a11P1 € a. More generally forevery i = 1,...,d we choose ; := a;181 + ai2f2 + -+ + a;6; € a
such that a;; are rational integers and a;; is positive and minimal. Since det(a;;)1<i j<d = @11 @ga 7# 0
by construction, ~y1, ...,y form a Q-basis of K. Therefore -4, ...,y are linearly independent over Q and
hence over Z. So it is sufficient to show that 71, ..., y4 generate a as a Z-module.

Take any @ € a and write o = b181 + - -+ + bgBy With b; € Z. Euclidean division of by by aqq gives
ba = qaada + 74 for qg,rq € ZWith 0 < rg < agg. Now @ — qgyqg = c11 + - + c4-18a—1 + raflq € 0,
where ¢; := bj — qqaq; € Z. The minimality of ag4q forces rq = 0, i.e., by = qqaqa, i.6., @ — qgyq4 =
c1fi + -+ + cqg—1P4-1 € a. The choice of ag_1 41 now forces cq—1 = gg—1a4—1,4—1 for some g4 € Z.
Proceeding in this way one can show that « = q1y1 + - - - + ¢qqyq With g; € Z. <

The last proposition implies that every ideal in O g is generated (as an ideal, i.e., as an O g-module) by at
most d elements. We will later see that every ideal in O g is actually generated by at most two elements.

4.6 Theorem The ring of integers O k of a number field K is a Dedekind domain.

Proof We have seen that O g is Noetherian (Proposition 4.4) and integrally closed (Proposition 2.18). It
then suffices to show that each non-zero prime ideal q of Ok is maximal. By Lemma 4.1 g lies over a
non-zero prime ideal p of Z. But then p is maximal in Z. Exercise 2.2.4(b) now completes the proof. |

Now we will derive the unique factorization theorem for ideals in a DD. It’s going to be a long story. First
recall that for two ideals a and b of a ring A the set-theoretic (inner) product S := {ab | a € a,b € b} is
not, in general, an ideal of A. The ideal generated by S is called the product of a and b and is denoted by
ab, i.e.,

m
ab = {Zaibi ‘ m € Zy,a; € a,b; € b}.

i=1

We always have ab C a N b. However if a and b are relatively prime, i.e.,ifa4+b = A, thenab =anb.
In a similar way we can define the product of finitely many ideals of A. This product is clearly associative
and commutative. The power a™ of an ideal a of A, m € Z_, is defined as the m-fold product of a. Let us
adopt the convention that the empty product of ideals of A is A itself. For a principal ideal a = Aa we have
a™ = Aa™.
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4.7 Lemma Let Abearing,r € N, ay,...,a, ideals of A, and p a prime ideal of A suchthatp D a;---a,.
Then p D ay, for some k € {1,...,r}. In particular, if A is a Dedekind domain and a; are non-zero prime
ideals, then p = a, forsome k € {1,...,r}.

Proof The proof is obvious for r = 1. So assume thatr > 1. Ifp 2 a; forall = 1,...,r, then for each
i we can choose a; € a; \ p and see that a; - - - a, € p, a contradiction, since p is prime. The last statement
follows from the fact that in a Dedekind domain every non-zero prime ideal is maximal. |

We now generalize the concept of ideals.

4.8 Definition Let A be an integral domain and K := Q(A). Then an A-submodule a of K is called a
fractional ideal of A4, ifaa C A forsome( # a € A.

Every ideal of A is evidently a fractional ideal of A and hence is often called an integral ideal of
A. Conversely every fractional ideal of A contained in A is an integral ideal of A. The principal
fractional ideal Az isthe A-submodule of K generated by z € K. If A is a Noetherian domain, we
have the following equivalent characterization of fractional ideals.

49 Lemma Let A be a Noetherian integral domain, K := Q(A) and a C K. Then a is a fractional ideal
of A, if and only if a is a finitely generated A-submodule of K.

Proof [if] Leta = Azy +--- + Az, Where z; = a;/b;, a;,b; € A, b; #0. Then by - - - b0 C A.

[only if] Let 0 # b € A be such that ba C A. Itis easy to check that ba is an (integral) ideal of A and is
finitely generated, since A is Noetherian. Let ba = Aa1+ -+ Aay,, a; € A. Thena = Az +-- -+ Az,
where z; := a;/b € K. <

We define the product of two fractional ideals a, b of an integral domain A as we did for integral ideals:

m
ab := {Zazb, ‘ m € Zy,a; € a,b; € b}

=1

It is easy to check that ab is again a fractional ideal of A. Let F denote the set of non-zero fractional ideals
of A. The product of fractional ideals defines a commutative and associative binary operation on F. The
ideal A acts as a (multiplicative) identity in F. A fractional ideal a of A is called invertible,ifab= A
for some fractional ideal b of A. We shall see shortly that if A is a DD, then every non-zero fractional ideal
of A is invertible and, therefore, F is a group under multiplication of fractional ideals.

Fractional ideals often play an important role in analyzing the properties of integral ideals, for example, in
proving the central theorem (Theorem 4.12) of this section. Before going directly to this theorem let us
deduce some auxiliary results.

4.10 Lemma Let A be a Noetherian domain and a an (integral) ideal of A. Then there exist prime ideals
q1,- - -, qr Of A each containing a such thatq; ---g, C a.

Proof Let S be the set of ideals of A for which the claim does not hold. Assume that S # 0. Since A is
Noetherian, S contains a maximal element, say b. Clearly b is a proper non-prime ideal of A. Then for some
a,b & bwe have ab € b. The ideals b’ := b + Aa and b” := b + Ab strictly contain b and, therefore, by the
maximality of b are not in S, i.e, there exist prime ideals ¢}, ..., g} each containing b’ (and hence b) such
that g’ --- g, C b’ and prime ideals g7, ..., q} each containing b” (and hence b) such that g7 ---q} C b".

Department of Mathematics Indian Institute of Technology, Kanpur, India



Page 4 of 18 MTH 617 Algebraic number theory

Moreover (g} ---q%)(qf - - - gqf) C 6’6" = (b + Aa)(b + Ab) = bb + ab + bb + Aab C b, since ab € b, s0
that b ¢ S, a contradiction. Thus S must be empty. |

Note that the condition “each containing a” was necessary in Lemma 4.10 in order to rule out the trivial
possibility that g; = 0 for some 7 € {1,...,7}.

411 Lemma Let AbeaDD, K := Q(A) and g a non-zero prime ideal of A. Define the set
g l:={zcK|zqCA}.

Then:

(1) g~ ! is a fractional ideal of A.

2AGq

(3) gqq~! = A. In particular, every non-zero prime ideal in a DD is invertible.

Proof (1) Clearly ' is an A-submodule of K and for each 0 # a € q we have aq™' C qq~! C A.

(2) Since 1 € q~1, we evidently have A C gq~L. In order to prove the strict inclusion we take any 0 # a € q

and consider the ideal a := Aa. By Lemma 4.10 there exist prime ideals q1, .. ., g, €ach containing a (and
hence non-zero) such that q; - - - g, C a. We choose 7 to be minimal, so that a does not contain the product
of any r — 1 of q1,...,9,. Now g1 ---g, C g and hence by Lemma 4.7 q; = g for some ¢, say, i = 7.

Choose any b € q1---gr—1 \ a. Since b ¢ a, we have b/a ¢ A. On the other hand b € q;---q,—1 and
q = q,, Sothat (b/a)q C (1/a)(q1---q,) C (1/a)a = (1/a)(Aa) = A,i.e,blacq '\ A

(3) By the definition of g~ it follows that qq—! is contained in and hence an integral ideal of A. Since
A C g7, itfollows that g = qA C gq~". Since q is a maximal ideal, we then have qq~! = q or qq~—! = A.
Assume that qq—! = q. | claim that this assumption implies that g~ C A, a contradiction to Part (2). So
we must have qq~! = A. Letb € q~! and choose 0 # a € q. Then we have ab € qq~! = q and therefore
ab?® = (ab)b € q, ab® = (ab®)b € q and so on. For each m € Z define the ideal a,, := 7, Aab'.
Then ap C a1 C ag C --- is an ascending chain of ideals in A. Since A is Noetherian, the chain must be
stationary, i.e, for some m € N we have a,, = a1, i€, ab™ € Y7 ! Aabl, ie, ab™ = Y7 a;ab’
with a; € A. Since A is an integral domain and a # 0, we see that b is integral over A. Since A is integrally
closed, b € A. Therefore g=! C A, as claimed. <

4.12 Theorem Let A be a DD. Then every non-zero ideal a of A can be represented as a product of prime
ideals of A. Moreover such a factorization of a is unique up to permutations of the factors.

Proof If a = A, there is nothing to prove. So let a be a proper ideal of A. I will first show that if a contains
a product of non-zero prime ideals, then a is a product of prime ideals. By Lemma 4.10 we have prime
ideals q1, ..., 9., r € N, of A each containing a, such that q; - - - g, C a. Let us choose r to be minimal and
proceed by induction onr. If r = 1, @ = ¢ is already prime. So take » > 1 and assume that if an ideal b of
A contains a product of » — 1 or less non-zero prime ideals of A, then b is a product of prime ideals. Let g
be a maximal ideal containing a. We then have q; --- g, C a C g and by Lemma 4.7 q = q; for some 1, say,
i = r. Now consider the fractional ideal b := aq, . Then b C q,q, ' = A and so b is an integral ideal of
A. Furthermore b=aq, ' D g1+ -q-q, ' = (91 qr—1)A = q1 -+ - g1, i.&, b contains a product of r — 1
non-zero prime ideals. By the induction hypothesis b is a product of prime ideals, i.e., b = g} ---q’. But
then a = a4 = a(q;'q,) = (aq, ')g, = bg, = g} - - - qq, is also a product of prime ideals.

In order to prove the uniqueness of this product let a = g1 -+ q, = py---p; with prime ideals g; and p;.
Now q1 D 1 --- g, = p1---p; and hence by Lemma 4.7 q, = p; forsome 5 € {1,...,t},say, j = 1. Then
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G2 0p = Agz- - dp = (97 'q1)g2 -9 = a7 (g1 q7) = p7 (b1 -+ py) = Pa- -~ p¢. Proceeding in this
way shows the desired uniqueness. |

In the factorization of a non-zero ideal of a DD we do not rule out the possibility of repeated occurrences of
factors. Taking this into account shows that every non-zero ideal a in a DD A admits a unique factorization

__ € €
a_qll...qTT

with distinct non-zero prime ideals g1, ..., g, and with exponents e;,...,e, € N. Of course, uniqueness
here is up to permutations of the indexes 1,...,r. This factorization can be extended to fractional ideals,
but this time we have to allow non-positive exponents. First note that for integers ey, ..., e, and non-zero
prime ideals q1, ..., q, of A the product a := q$* - -- g is well-defined and is a fractional ideal of a. The
converse is proved in the following corollary.

4.13 Corollary Every non-zero fractional ideal a of a DD A admits a unique factorization of the form
a = g7 ---q¢ with non-zero prime ideals q1,. .., q, of A and with exponents e; € Z. Moreover for such a
fractional ideal a we have a(q; “ ---q, ¢") = A.

Proof By definition there exists 0 # a € A such that aa C A. But then aa = (Aa)a is an integral ideal
of A. We write aa = [];_; q;* and Aa = [[;_, q;* with f;,g; € Z,. Since each non-zero prime ideal is

invertible (Lemma 4.11(3)), it follows that a = [];_; qu"’gi. This proves the existence of a factorization of
a. The proof for the uniqueness is left to the reader as an easy exercise. The last assertion follows from a
repeated use of Lemma 4.11(3). |

The fractional ideal g7 - - - q;¢" in the last corollary is denoted by a=!. We have a='a = aa=! = A. One
can easily verify that a~! defined as above is equal to the set

o' ={z € K|zaCA}.

In fact, one can use the last equality as the definition for a—".

To sum up every non-zero fractional ideal of a DD A is invertible and thus the set F of all non-zero fractional
ideals of A is a group as claimed earlier. The unit ideal A acts as the identity in F.

As in every group we have the cancellation law(s) in F.

4.14 Corollary Let A beaDD and a, b, ¢ fractional ideals of A. If ac = becand ¢ # 0, then a = b. |

In view of unique factorization of ideals in A we can speak of the divisibility of integral ideals in A. Leta
and b be two integral ideals of A. We say that a divides b and write a | b, if b = ac for some integral
ideal ¢ of A. We will now show that the condition a | b is equivalent to the condition a O b. Thus for ideals
in a DD the term “divides’ is synonymous with ‘contains’.

4.15 Corollary Let aand b be integral ideals of a DD A. Thena | b, ifand only if a D b.

Proof [if]Ifa D b, we have A = a~'a D a7'b, i.e, ¢ := a~'b is an integral ideal of A. Also
b=Ab= (aa"")b = a(a"'b) = ac.

[only if] If b = ac for some integral ideal ¢, we have b Canc¢ C a. <
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4.16 Corollary Leta:=q7' ---g¢ andb:=gqj"--- qf7 with e;, fi € Z_. be the prime decompositions of
two non-zero integral ideals of aDD A. Thena | b,ifandonly ife; < f; foralli =1,...,7.

Proof [if] We have b = ac, where ¢ := q{l’el .- qfr=¢ is an integral ideal of A.

[only if] Let b = ac for some integral ideal ¢ of A. Clearly, ¢ # 0 and we can write the prime decomposition
lr lr 8 H l'r l'r 8 H

¢ =qt---qbq - g with [ > 0. We have gf' -+ gfr = gft* ... qerthgrH - g7 By unique

factorization we have fi =e; +l1,..., fr=e+l,and 41 =--- =145 =0. <

Thus as we pass from Z to O g, the notion of unique factorization passes from the element level to the ideal
level. Of course, if a DD is already a PID, these two concepts are equivalent. (Non-zero prime ideals in a
PID are generated by prime elements.) A DD is in general not a PID. But a DD is not quite far away from a
PID as the following two results justify.

4.17 Lemma Foranon-zero ideal a in a DD A there exists a non-zero ideal b of A such that ab is a principal
ideal of A. Furthermore given any non-zero ideal ¢ of A the ideal b can be so chosen that b + ¢ = A.

Proof | start by proving the first statement. By Lemma 4.9 a1 is finitely generated as an A-module, say
by a1/b1,...,a¢/by € K := Q(A) with by,...,b # 0. Take b := by ---b;. Then Ab = (b) = A(b) =
(aa=1)(b) = ab, where b := a1 (b) = (b1--- b)) (X1 Aa;/b;) C A, i.e., b is anon-zero integral ideal of A.

Now the second statement. For ¢ = A the ideal b as found above will do. So assume that ¢ C A.

Z
Let ¢ = gf'---q¢ be the prime factorization of ¢ with r,e; € N. Define € := q;---q, and ¢; :=
1+ qi-19i+1---qr- FOreveryi = 1,...,7 we have ¢; 2 €, so that ac; 2 ad, i.e., we can choose
b; € ac; \ a€. Setb:= 7 ,b. Eachb; € ac; C a,s0thatb € a, i.e., (b) C a, i.e., (b) = ab for some

non-zero ideal b of A. It remains to show that b + ¢ = A. Assume not, i.e., b 4+ ¢ has a non-zero prime
divisor. Since b +¢ D ¢, i.e,, (b +¢) | ¢, any prime ideal dividing b + ¢ must be a divisor of ¢ too. Let
qi | (b4 c) forsome i € {1,...,r}. We also have (b +¢) | b, i.e, q; | b, i.e,, ag; | ab = (b), i.e,
b € aq,. Butb; € ag, forall 7 # < and so b; € ag;. Also by choice b; € ac;. Now g; and ¢; are relatively
prime ideals and hence € = q,;c; = q; N ¢, i.e., b; € (ag;) N (ac;) = a(q; N ¢;) = a€, where the equality
(ag;) N (ac;) = a(g; N ¢;) follows from Exercise 4.1.2. But by choice b; ¢ a€, a contradiction. <

4.18 Proposition Every (integral) ideal ina DD A is generated by (at most) two elements. More precisely
for a proper non-zero ideal a of A and for any 0 # a € a there exists b € a with a = (a,b) = (a) + (b).

Proof The first statement obviously holds for the zero ideal and the unit ideal. So let us prove the second
statement. Since a D (a), we have a | (a), i.e., (a) = ac for some non-zero ideal ¢ of A. By Lemma 4.17
we can choose a non-zero ideal b of A such that b + ¢ = A and ab is the principal ideal (b) for some b € a.
Butthen (a) + (b) =ac+ab=a(b+¢) =ad =a. <

Of course, a DD can be a UFD or even a PID. However, being a UFD is a necessary and sufficient condition
for a DD to be a PID.

4.19 Proposition A Dedekind domain A is a UFD, if and only if A is a PID.

Proof [if] Every PID is a UFD (Theorem 1.12).

[only if] Let A be a UFD. In order to show that A is a PID it is sufficient (in view of Theorem 4.12) to show
that every non-zero prime ideal g of A is a principal ideal. Choose any non-zero a € q. Then g O (a). Now
a is a non-unit in A (since otherwise we would have q = A) and A is assumed to be a UFD. Thus we can
write @ = ugq ---¢q, forr € N, u € A* and for prime elements ¢; in A. Clearly each (g;) is a non-zero
prime ideal of A and (a) = (q1) - - - (gr). Therefore ¢ O (¢1) - - - (¢,) and hence by Lemma 4.7 q = (g;) for
somei € {1,...,r}. <
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Exercisesfor Section 4.1
Let K be a field. Prove or disprove: K[X,Y] isa DD.

Leta:=q$'---qé~and b := q{l ---qfr, e;, fi € Z, be the prime decompositions of two non-zero ideals a, b of a
DD A. Definethe gcd and Icm of aand b as

gcd(a, b) = qunin(el’fl) e q;nin(eryfr)7
lem(a,b) = gmexenSu . gmax(ernfr)

Show that ged(a, b) = a + b and lem(a, b) = a N b. Conclude that ged(a, b) lem(a,b) = (¢ + b)(a N b) = ab.
(Remark: If A is a general ring, we only have (a + b)(anb) = a(anb) + b(anb) C ab.)

Let A be a DD and ay, as, b non-zero ideals of A satisfying a;a, = b™ for some m € N. Show that if a; + a; = A4,
then a; = b7 and a, = b%* for some ideals by and b, of A.

Let A := Z[v/-3] and let a be the ideal (2,1 + +/—3) in A. Show that a # (2) and a® = (2)a. Explain why this
example does not contradict Corollary 4.14.

Let A be a DD and a a non-zero ideal of A. Show that:
(8 The number of ideals containing a is finite.
(b) Every ideal of A/a is principal.

Let A be an integral domain and K := Q(A). Show that:

(8 K isan A-module.

(b) If K is a fractional ideal of A, then A = K.

(c) If K isanumber field, then K is not a fractional ideal of its ring of integers.

. Let K be a number field, a a non-zero ideal of Ok and v € K. If ya C a, show that v € O k.

. (&) Prove or disprove: Every UFD is a DD.

(b) Prove or disprove: Every PID is a DD.

. (Linear congruence in a DD) Let A be a DD, a a non-zero ideal of A and a,3 € A. Prove that the

congruence
az = 8 (mod a) (4.1)

is solvable for z, if and only if gcd({a), @) | (8). In particular, if a + (a) = A, then the congruence (4.1) is solvable
for z and the solution is unique modulo a. Moreover if a is a non-zero prime ideal of A, then the congruence is
solvable uniquely modulo a, if and only if « & a.

(Chinese remainder theorem in a DD) Let AbeaDD, a4, ..., a, pairwise coprime non-zero ideals of A
and ay,...,a, € A. Show that there is an a € A unique modulo a; - - - a,. satisfying the simultaneous congruences
a=q; (mod a;) foralli=1,---,r.

4.2 Norms of ideals

In Section 3.2 we have introduced the concept of the norm of an algebraic number (or integer). Now we
extend the definition to ideals in a number ring. As usual we will continue to work with a generic number
field K of degree d with ring of integers O k. Since we will in general not work with many number rings
simultaneously, it would be harmless to abbreviate O g as ©.
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4.20 Definition Let a be a non-zero ideal of O. The norm of a, denoted N(a), is defined as the
cardinality of the quotient ring O/a, i.e., N(a) is the number of distinct cosets of a in the additive group O.
It is customary to define the norm of the zero ideal as zero.

For the simplest case K = Q, i.e., Og = Z, every non-zero ideal of Z is of the form nZ = (n) for some
n € N. The quotient ring Z/nZ is isomorphic to the ring Z,. Thus N({n)) equals n and is finite. For a
general K also N(a) is finite for every ideal a of O . This is immediate from the next proposition which
gives an explicit formula for the norm of a non-zero ideal of O k.

By Proposition 4.5 a non-zero ideal a of O is a free Z-module of rank d. In the proof of that proposition
we constructed an integral basis 1, .. .,y4 of a of the form ; = 23':1 a;;p; forall i = 1,...,d, where
B1,---, PB4 is a given integral basis of K. We selected a;; € Z with a;; > 0 and minimal. With these
notations we have:

4.21 Proposition N(a) = a11 - - - a4q-

Proof 1 will show that the elements o, ., := Z;i:l B, 1 € Z,0 < r; < ag, constitute a complete
residue system of £ modulo a.

Claim o, ..., are distinct modulo a.

Let ap,..r, = 0.5, (mod a). Then 2;1:1(” —8;)B; =0 (mod a), i.e., Egzl(m —8)Bi = Ele tiy;
for some t; € Z. Substituting the values of ~y; in terms of 3; allows us to rewrite the last equality as
4 (s —s5)B; = oL, uyB; for some integers u;. Since (B1,. . . , B4) is a basis of O, we have r; — s; = u;
forall: =1,...,d. Inparticular, ry — sg = ug = agqtq. Thus agqq | (rg—sq). Since —agq < 14— $q < @44,
we must have 74 — sq = 0, i.e., rqg = s4. This implies that ug = agqtq = 0, i.e., t4 = 0. But then
Td—1 — Sd—1 — Ud—1 = ad,l,dfltdfl + ad,d,ltd = adfl,dfltdfl. As before we obtain r4_; = s4_1 and
tq—1 = 0. Proceeding in this way shows that r; = s; forall i = 1,...,d. This proves the claim.

Claim Any ¢ € O is congruent to some . r,-

Write ¢ = >4, v;8i, v; € Z. Euclidean division of vy by agq gives vy = agqqq + rq With 0 < 74 < agq.
Then &y := €—qqyq—74Bq € ZP1+---+ZB4-1. As above we thenfind & := &1 —qq-1Y4-1—7Td-18d-1 €
Zp1 + --- + ZB4—o for integers g4—1 and r4—1 With 0 < rq—; < ag—1,4—1. Proceeding in this way gives

€a=0,s0that & = (X gimi) + (X4y 74B:) = oy (mod @), <
As in the case of © one can show that the discriminant A(a1, ..., a4) is independent of the choice of the
integral basis (a1, ..., aq) of a (See Corollary 3.20). One can then define A(a) := A(ay,...,aq) for any
integral basis (a1, ..., ag) of a. In view of Lemma 3.15 we then have:

4.22 Corollary For a non-zero ideal a of O we have N(a) = \/A(a)/Ak. <

4.23 Corollary For every non-zero ideal a of O the quotient ring O /a is a finite ring. In particular, for a
non-zero prime (and hence maximal) ideal g of O the quotient ring O/q is a finite field. |

We will study the norms of non-zero prime ideals of © shortly. Before that let us look at some other
properties of the norm function. First note that it is tempting to define the norm of an element « € O to be
the norm of the principal ideal («) = Oa. It turns out that this new definition is (almost) the same as the
old definition of N(«). More precisely:
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4.24 Proposition For any element o € © we have N({a)) = |N(a)|.

Proof  The result is obvious for &« = 0. So assume that & # 0 and call a := («a). Let §1,..., 084
be an integral basis of O. It is a straightforward matter to check that af1,...,afB, is an integral basis
of a. Let oq,...,04 be the complex embeddings of K. Then A(a) is the square of the determinant
o1(a@) 0 0
_ 0 oa(a) ---
of the matrix (c;(afB;)) = (0j(a)o;(Bi)) = _ _ _ (04(B:)). It follows that
0 0 e op(a)
A(a) = N(a)?A(Bi, - - -, Ba) = N(a)?Ag. Corollary 4.22 now completes the proof. <
4.25 Corollary Forany a € Z we have N(Da) = |a?|. <

An interesting generalization of Fermat’s little theorem is the following.

4.26 Proposition Let g be a non-zero prime ideal of O and let a € O\ . Then aN@~1 =1 (mod q).

Proof Letai,...,ay(q) be acomplete residue system of O modulo g. We may take ay(q) = 0 (mod q).
It is plain to check that aas, . .., aayq) is again a complete residue system of © modulo g with aayq) =
0 (mod q). Therefore oN(®—1(q; - .- an(q)—-1) = (aaq) -+ (@ayg)—1) = @1+ ayq)-1 (mod q). Since
q is a prime ideal, a1 - - - ag(q) -1 & 9, whence the result follows. |

We know that a non-zero ideal a of © contains a non-zero rational integer (Lemma 4.3). N(a) is also a
rational integer. Let me now relate these two observations.

427 Lemma Let a be an ideal of O. Then N(a) € a.

Proof ~ The result being obvious for the zero ideal, we consider a # 0 only. Again let ay, ..., ay()
constitute a complete residue system of © modulo a. Then 1 + ai,...,1 + ay(, Is also a complete
residue system of O modulo a. Therefore, N(a) + (a1 + - + ay@) = 1+ 1) + -+ (1 + ay@) =
@1 + - + ay(q) (mod a), i.e., N(a) = 0 (mod a). <

For non-zero prime ideals g this lemma implies the following:
4.28 Corollary Let g be a non-zero prime ideal of . Then N(q) = p/ for some f € N, where p is the
unique rational prime contained in g (Corollary 4.2).

Proof By Corollary 4.23 /q is a finite field, i.e., N(q) = p/ for some p € Pand f € N. By Lemma 4.27
pl € g. Let g contain the rational prime ¢. If ¢ # p, then ged(p/,q) = 1 (in Z) implies that q is the unit
ideal, a contradiction. |

Lemma 4.27 has another important consequence.

4.29 Proposition Leta € N. Then there are only finitely many ideals a of O with N(a) = a.

Proof The ring ©/(a) is finite (Corollary 4.23) and hence contains only finitely many ideals. Now use the
one-to-one correspondence of the ideals of ©/(a) with the ideals of O containing (a) (or equivalently a). <«
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Since norm of elements of O is multiplicative, it simply follows that norms of principal ideals of O is also
multiplicative. We will now show that this multiplicativity continues to hold for arbitrary ideals.

4.30 Proposition Let aand b be ideals in ©. Then N(ab) = N(a) N(b).

Proof The proposition evidently holds for a = 0 and for a = ©. So assume that a is a non-zero proper
ideal of ©. We first prove the result when a =: g is prime. Since N(gqb) = [O : qb] = [O : b][b : qb] =
N(b)[b : gb], it is sufficient to show that N(q) = [b : gb].

Letn := N(q) = [©O : g] and let .y, ..., a, be a complete residue system of © modulo q. We will find
B € b such that Bay, ..., Ba, is a complete residue system of b modulo gb. First note that b 2 qb. We
choose any 3 € b\ gb and want to show that this 8 has the desired property.

Claim fBay,...,Ba, are distinct modulo gb.

Assume not, i.e., Ba; = Baj (mod qb) fori # j, ie, By € gb, where v := o; — «j & . Since q is
maximal, g + (y) = O, i.e., 7§ = 1 (mod q) for some § € . Also 5 € b and so B(yd — 1) € gb. But
B~y € qb and hence 8vd € gb, so that 8 = Svd — B(yd — 1) € gb, a contradiction to the choice of 3.

Claim Let¢ € b. Then € = Ba; (mod gb) for some i.

First note that b | qb + (8) and qb + (B) | gb. Since g is prime and qb + (8) # qb, we must have
b = qb+ (8). Therefore ¢ = Ba (mod qb) for some o € O. But a = «; (mod q) for some 7 and 5 € b,
so that Ba = Ba; (mod qb), i.e., £ = Ba; (mod gb) as claimed.

Now let us come to the general situation a = q1---q, for r € N and for non-zero primes ¢;. In order
to show that N(ab) = N(a) N(b) we proceed by induction on r. For r = 1 we have the special case
discussed above. So assume that » > 1 and that the result holds for all ideals a having » — 1 (or less) prime
ideals in the factorization. Then N(ab) = N(q1q2---q,b) = N(q1) N(qz2-- - q-b) (by the special case) =
N(q1) N(q2 - - - a-) N(b) (by induction) = N(gx ---q,) N(b) (by the special case) = N(a)N(b). <

The following immediate corollary often comes handy.

4.31 Corollary Leta and b be non-zero ideals of O. If a = q§*---q¢ is the factorization of a, then
N(a) = N(q1)¢* - - N(q,)¢ . In particular, if a | b, then N(a) | N(b) (in Z). |

Exercisesfor Section 4.2

. Let K := Q(+/=5). Compute the norms of the following ideals of O x: (v/=5), (1 +v/=5), (2,1 + v/=5) and
3,1+ v/=5).

. (Generalized totient function) Let K be a number field and a, b non-zero ideals of O = O k.

(@ Leta,B € ©O. Showthatif a = 8 (mod a), then ged({a), a) = ged((B), a).

(b) Let ¢(a) denote the number of cosets « + a such that ged({«), a) = (1). Show that if a and b are coprime, then
¢(ab) = ¢(a)¢(b).

(c) If g is anon-zero prime ideal of O and e € N, show that ¢(q°¢) = N(q)¢ — N(q)**.

(d) If a = q5*--- g8 with pairwise distinct non-zero prime ideals q, ..., q, and with e1,...,e, € N, show that
: 1
o@ =N (1- )
(a) = N( )E[ o
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. Let K be a number field and a a non-zero ideal of O = O k. Show that the ¢(a) cosets a + a with ged({a), a) = (1)
form an (Abelian) multiplicative group. We denote this group by (O /a)*. (Remark: (/a)* is the group of units of
the quotient ring O /a.)

. Show that if g is a non-zero prime ideal of £, then the group (O/q)* is cyclic.

4.3 Rational primesin number rings

The behavior of rational primes in number rings is an interesting topic of study in algebraic number theory.
Recall from Exercise 3.1.6 that a rational prime p congruent to 3 modulo 4 continues to remain prime in the
ring Z[i] = Oqi) of Gaussian integers, whereas 2 and primes congruent to 1 modulo 4 split non-trivially
in Z[i]. We know that Z[i] is a UFD. Thus splitting or remaining prime of p € P makes sense in terms of
factorization of p as an element in Z[i]. Unfortunately all number rings © are not UFDs and so we have to
talk in terms of the factorization of the ideal Op.

Let K be a number field of degree d and © := O . Consider a rational prime p and denote by (p) the ideal
Op generated by p in O. Let us use the symbol p to denote the (prime) ideal of Z generated by p. Further let

(p) =qai'---q; (4.2)

be the prime factorization of (p) with » € N, with pairwise distinct non-zero prime ideals q; of O and with
e; € N. For each ; we have (p) C q;, i.e., p € q;, 1.e., p = Z N q; (Corollary 4.2), i.e., q; lies over p.
Conversely if g is an ideal of O lying over p, thenp € q,i.e., (p) C q,ie., q| q5'---q%,i.e., q = g; for
somes=1,...,r. Thus, q1,...,q, are precisely all the prime ideals of O that lie over p.

By Corollary 4.25 N({p)) = p?. By Corollary 4.31 each N(g;) divides p and is again a power p% of p.

4.32 Definition We define the ramification index of q; over p (or p) as e(q;/p) := e;. Thisis
the largest e € N such that q¢ divides (i.e., contains) (p). The integer d; (where N(q;) = p%) is called the
inertial degree d(q;/p) of g; over p.

By the multiplicative property of norms we have

T

d="> ed; =" e(qi/p)d(ai/p). (4.3)
io1

i=1
Let me now introduce some common terms.

4.33 Definition If r = d, so that each e; = d; = 1, we say that the prime p (or p) splits completely
in O. On the other extreme, if r = 1, e; = 1, d; = d, then (p) is prime in O and we say that p is inert

in O. Finally if e; > 1 for some i, we say that the prime p ramifies in O. If r = 1 and e; = d (50 that
dy = 1), then the prime p is said to be totally ramified in ©O.

The following important result is due to Dedekind. Its proof is long and complicated and is omitted here.

4.34 Theorem A rational prime p ramifies in O g, if and only if p divides the discriminant Ag. In
particular, there are only finitely many rational primes that ramify in O . <

Though this is not the case in general, let us assume that the ring © is monogenic (i.e., © = Z[«] for some
a € ) and try to compute the explicit factorization (4.2) of (p) in O. In this case K = Q(«) and we denote
by f(X) € Z[X] the minimal polynomial of . We then have O = Z[a] = Z[X]/(f(X)).
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Let us agree to write the canonical image of any polynomial ¢(X) € Z[X] in F,[X] = Z[X]/pZ[X] as
g(X). For the minimal polynomial f(X) € Z[X] of o we factorize f(X) as

FX) = A&X) - fr(X)*

with r,eq, ..., e, € Nand with pairwise distinct irreducible polynomials f; € F,[X]. If d; := deg f;, then
Yi1ed; =d. Foreachi = 1,...,r choose f;(X) € Z[X] whose reduction modulo p is f;(X). Define
the ideals

q; := (p, fi(a))
of O. Since O = Z[X]/(f(X)), we have O/(p) = Z[X ]/( f(X)) = F[X]/(f(X)) and O/q; =

O/{p, fi(e)) 2 Z[X]/{p, f(X), fi(X)) 2 Fp[X]/{fi(X)) = . Therefore ¢; are non-zero prime ideals

of O. Moreover N(qz) = p%. Thus N({p)) :p —pzr eidi N(ql)e1 - N(g-) =N(q7* ---gq¢). On

the ther hand af? - = TTi_y (p, ()" C (p), since f(a) — 0and £(X) IIL, £i(X)" € pZIX]
Thus we must have (p) = q7* --- g, i.e., we have obtained the desired factorization of (p).

Let us now concentrate on an example of this explicit factorization.

4.35 Example Let D # 0, 1 be a square-free integer congruent to 2 or 3 modulo 4. If K := Q(+/D), then
© = Z[v/D] is monogenic. We take an odd rational prime p and compute the factorization of (p) in O. We
have to factorize modulo p the polynomial f(X) := minpoly 5 (X) = X? — D. We consider three cases

separately based on the value of the Legendre symbol (%).

Case 1: (%) =0

Inthis case p | D, i.e., f(X) = X2. Then (p) = q2, where q := (p, /D). Thus p (totally) ramifies in O.

Case 2: (%) =1

Since p is assumed to be an odd prime, the two square roots of D modulo p are distinct. Let d be an integer
with 62 = D (mod p). Then f(X) = (X — 6)(X + 6). In this case (p) = q1q2, where q; := (p, VD — 4)
and qo := (p,v/D + 6). Thus p splits (completely) in O.

. (D) _
Case 3: (5) =-1
The polynomial f(X) = X? — D is irreducible in F,[X] and hence (p, f(v'D)) = (p,0) = (p) remains
prime in O, i.e., pisinertin O.
Thus the quadratic residuosity of D modulo p dictates the behavior of the prime p in O.

Let us finally look at the fate of the even prime 2 in ©. If D is even, then f(X) = X2 and if D is odd, then
f(X) = (X + 1)2. In each case 2 ramifies in O.

Recall from Example 3.22 that A = 4D. Thus we have a confirmation of the fact that a rational prime p
ramifies in O, ifand only if p | Ag.

Cool! Now why don’t you study the behavior of rational primes in O /5y = Z[(1+ v/D)/2], where
D =1 (mod 4) is a square-free integer # 0,1? More formally solve Exercise 4.3.2.
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Exercisesfor Section 4.3

Let p be a rational prime = 1 (mod 4).
(@) Show that p splits in Z[i]. (Hint: Note that (—71) = 1. Now use Example 4.35.)
(b) Show that p = a® + b2 for some a, b € Z. (Hint: Z[i]isaPID.)

Let D # 0,1 be a square-free integer, p a rational prime and O = ‘DQ(\/E)' Prove the following assertions:
(a) Ifpisanodd prime, then:

p ramifies in O, if and only if (%) =0.

psplits in O, if and only if (g) -1

p remains inert in O, if and only if (%) =-1.
(b) If D = 2,3 (mod 4), then 2 ramifies in O.

If D =1 (mod 8), then 2 splits in O.
If D = 5 (mod 8), then 2 remains inert in O.

Let o := 21/3. Show that Oy ) = Z[e]. (Hint: Look at the minimal polynomial of a2.)

Let K := Q(21/3).

(@) Find the smallest rational prime that ramifies in O k.

(b) Find the smallest rational prime that does not ramify in O .

(c) Find the smallest rational prime that remains inert in O .

(d) Find the smallest rational prime that splits in O .

(Remark: You may use a computational number theory package (like PARI).)

Let p be an odd prime, n € N, w,= a primitive p™-th root of unity and O = D@(UP") = Z|wyn]. Show that the only
rational prime that ramifies in © is p. (Hint: Either use the unproven Theorem 4.34 in tandem with Exercise 3.3.3 or
use Exercise 3.1.5(e).)

. Letn € N, n > 3. Show that no rational prime remains inert in O q,,.) = Z[wan], Where wox is a primitive 2"-th

root of unity. (Hint: Use the fact from elementary number theory that —1 is a quadratic residue modulo a (rational)
prime p, ifand only if p =2 orp = 1 (mod 4).)

4.4 |deal classes

A number ring © = O is not necessarily a PID. We have seen, however, that © is not far away from a
PID in the sense that every ideal of © is generated by at most two elements. There is another sense in which
this comment holds. For this we look at the set 7 = F of all non-zero fractional ideals of K. We proved
that F is an (Abelian) group under multiplication. By Lemma 4.9 every fractional ideal a € F is finitely
generated as an ©-module. Consider the set P of all principal fractional ideals of O, i.e., those
a € F that are cyclic ©-modules, i.e., that are of the form Oz for some non-zero z € K = Q(9). Itis
evident that P is a subgroup of F.

4.36 Definition The quotient group F/P is called the class group of K (or of O) and is denoted by
H = Hx. The cardinality of A is called the class number of K (or of ) and is denoted by h = h .
The equivalence classes in F/P are called ideal classes of K. Two (fractional) ideals a,b € F are
called equivalent, if they belong to the same ideal class of K, or equivalently if a = (Oz)b for some
T € K*.

I will now prove that the class number h g is finite, i.e., in F the proportion of principal fractional ideals is
positive (viz. non-zero). Obviously © is a PID (or equivalently a UFD), if and only if hx = 1. But in the
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general case there are not too many non-principal fractional ideals for each principal fractional ideal. This
is the sense in which | said that the deviation of O from a PID is not too much.

Let us now concentrate on the proof of the finiteness of the class number A. | start with a lemma.

4.37 Lemma For every non-zero integral ideal a of O there exists a non-zero o € a with |N(a)| <
CkN(a), where Ck is a constant that depends only on K.

Proof Choose an integral basis /1, . . ., B4 of O and denote n := N(a) and ¢ := [nl/dJ . Since (t+1)4
the elements Zle B, 1 € Z,0 < r; < t, can not be all distinct modulo a. Thus there exists a non-

Zero o = Z;i:l sifi € awith s; € Z and |s;| < t. Let o1,--.,04 denote the complex embeddings
of K. Then oj(a) = 4 si05(6:), so that |oj(a)] < $L, |sz|\a](ﬂz)| < tYL |oj(Bi)]. Therefore
IN(e)| = [T}-1 |oj(@)| < t*Ck < nCk = CkN(a), where C =1}y =41 |o(Bi)]- <

4.38 Corollary Every ideal class € of K contains an integral ideal of norm < C'x, where Ck is a constant
depending only on K.

Proof Choose any fractional ideal a in the inverse class €=! € H. By definition (a)a C A for some
0 # a € O. But then (a)a is an integral ideal of O and also belongs to € ~1. Thus we may assume without
loss of generality that a itself is an integral ideal of O.

By Lemma 4.37 there exists a non-zero @ € a with |[N(a)| < CxN(a) for some constant Cx depending
only on K. Since @ € a, we have a | («), i.e., (o) = ab for some non-zero integral ideal b of O.
Now b = (a)a™! € €. Furthermore N(b) = N(a)N(b)/N(a) = N(ab)/N(a) = N({a))/N(a) =

IN(a)|/N(a) < Ck- <

4.39 Theorem The class number h = hg of a number field K is finite.

Proof Assume not. Then by Corollary 4.38 there exists an infinite number of (non-zero) integral ideals of
O with norm < Ci, where Ck is a constant depending on K. But this contradicts Proposition 4.29. |

Determining the class number of a number field K is an interesting computational problem of algebraic
number theory and involves a heavy usage of the theory developed throughout this chapter. The basic steps
are as follows.

Step 1: Compute the constant Cx = ;1-:1 >¢ . |o;(B;)| of Lemma 4.37. By Corollary 4.38 it is sufficient
to concentrate only on the non-zero integral ideals of O with norm < Ck-.

Step 2: For each rational prime p < Ck compute all the prime ideals of © which contain p. This can be
done by computing the factorization of (p) in O. For the case that O is monogenic this can be performed by
the procedure described in Section 4.3.

Step 3: Combine the prime ideals of Step 2 to generate all the non-zero integral ideals of O having norms
< Ck. The theory of unique factorization of ideals and of multiplicative nature of norms helps here.

Step 4: Determine a maximal list L of pairwise non-equivalent ideals among those obtained in Steps 2 and
3. Then h = |L|.

4.40 Example Let us compute the class number of K := Q(1/—5). Since —5 = 3 (mod 4), we have
O = Ox = Z[+/-5]. The class of an ideal a will be denoted by [a] and equivalence of two ideals by
a ~ b. These notations are as in the case of a general equivalence relation.
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Step 1: Compute Ck.

The complex embeddings of K are o; = idg and o3 : vV/—5 +— —/—=5. Thus Cx = (1 ++/5)% =
10.472.... Thus it is sufficient to look at the non-zero integral ideals of © of norms < 10.

Step 2: Factorize (p) forp € {2,3,5,7}.

We use the results of Example 4.35. The factorizations are listed in the following table.

P Factorization of (p) Norm
(2) = g2, where g2 = (2,1 +/=5). N(g2) =2
3 ( 3 ) (—) = 1 and hence (3) = q3q5, where g3 = (3,1++/—5) | N(q3) = N(q}) = 3
and g5 = (3,—-1+/=5).
5 | (5) = g5, where g5 = (5,v/=5) = (V=5). N(ds) =5

71 () = (3) = (-1 ~Y/% = 1 and therefore (7) = q,q}, where | N(a7) = N(a}) = 7

q7 = (7,3++/—5) and g% = (7, =3 +v/—5). (The square roots of
—5 modulo 7 are £3.)

It turned out that for each rational prime p < 10 the prime ideals of © occurring in the factorization of (p)
have prime norms p. This is not the general case however. For example, <;—f) = —1, so that 11 remains
inertin O, i.e., (11) is a prime ideal of O and has norm 112 = 121.

Step 3: Find non-prime ideals of norms n < 10.

n Ideals of norm n
1]a;=9=(1)

4| as = q}

6| ag= 243 and ag = q,q5%

8| ag= c|2

9 | ag = g3, a = g5” and ag = q3q5
10 | a0 = q295

Step 4: Find the list L of pairwise non-equivalent ideals of norms < 10.

This is the most non-trivial part of the whole business. Let us first insert in L all the ideals found in Steps 2
and 3, i.e., we start with with L = (ay, g9, 93, 45, 64, 45, 0g, 0, d7, 7, Og, g, g, 64, d10). We will later
throw away one of a and b whenever we detect a ~ b.

Let us plan to keep a; = © in L and throw away all other principal ideals from L. By simple inspection
g5 = (v/=5), ag = (2) ag = (3) are principal ideals. Let us now check if g2 = (a + by/—5) for some
a,b € Z. If so, then [N(a + bv/=5)| = a® + 5b* = N(q2) = 2. There are no integer values of a and b for
which a? + 5b% = 2. Therefore g2 is not principal. In a similar manner we see that q3, g5, 47, 4%, ag, a; are
all non-principal. But ag = g3 = (2)g2 ~ g2 and a9 = gaq5 = (V/—5)g2 ~ q2. Thus the list L can be
shortened to (ala 92,93, qéa Os) aga q7, ql7> Gy, aé))

In order to detect relations among the remaining members of L we look at principal ideals of O having
small norms, i.e., ideals of the form a,  := (a + by/—5) for integers a, b of small absolute values. We have
N(asp) = [N(a + bv/=5)| = a? + 5b%. Consider a = 1, b = £1. Then N(ay,1) = N(a1,—1) = 6 and it
is an easy check that a; ;1 # a;,_1. The only ideals of O of norm 6 are ag and ag and so they must be the
same as a1 and a;,—q (not necessarily in that order) and are therefore principal and should be discarded
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from L. Furthermore since g3 is principal, we have [q3] = [q2]? = [9], i.e., [q5'] = [92] * = [q2]. Hence,
3 = dg "(9993) ~ gy - ~ gy. Similarly g} ~ q,. So we delete q5 and g also from L.

Likewise looking at the ideals a3 ; and a3 _; of norm 14 reveals that both g, and g’ are equivalent to g, and
hence should be removed from L.

Finally consider the ideals a2 ; and ag _; of norm 9. All the ideals of O of norm 9 are ag, a4 and ag. But
neither of ag 1 and ao 1 can be equal to a§ = q3q% = (3), since 3 is not associate to 2 + v/—5. Hence az
and ap _; must be the same as the ideals a4 and ag (again not necessarily in that order), i.e., aq and a5 are
both principal and should be rejected as candidates of L.

So we are left with a very short list L = (a1, q2). Since g2 has been shown to be non-principal, this is the
desired list of pairwise non-equivalent ideals of norm < 10.

Thus the class number of Q(v/—5) is 2. In particular, Z[v/—5] is not a UFD (nor a PID nor an ED). In fact,
5 is the smallest of the square-free integers D > 1 for which D@ J=D) is not a UFD. On the other hand,
10 is the smallest of the square-free integers D > 1 for which DQ(\/B) Is not a UFD. Both these assertions

can be checked by routinely computing the class numbers of the fields Q(+/D) for small (positive and
negative) square-free integer values D. The table in the next page summarizes the class numbers .. and h_
respectively of Q(v/D ) and Q(v/—D) for some small positive square-free integers D.*

It can be shown (not easily though) that the only square-free values of D < 0 for which the (imaginary)
quadratic field Q(v/'D) is a UFD are D = —1,-2,-3,-7,-11,-19, 43,67, -163. Out of these the
only values of D for which Q(+/D) is also an ED are —1, —2, -3, —7, —11.

The list of ideals available from Steps 2 and 3 of the above procedure can be shortened and the subsequent
Step 4 can be sped up considerably, if better values of the bound C'x of Lemma 4.37 can be made available.
The way we proved Lemma 4.37 gave the formula Cx = H?:l >4, loj(Bi)]. While this value was
theoretically sufficient for the proof of Theorem 4.39, exercising a little more care and involvement allows
one to get better formulas for C'x. For example, the Minkowski bound allows us to choose the value

d 4\
Mg =2(2)"/|a 4.4

for a field K of degree d, signature (r1,72) and discriminant A . For Example 4.40 this shows that it is
sufficient to consider all ideals of norms < Mg = 2.847.... This means that we could have started with
L = (a1, q2). Proving that g5 is not principal would have been sufficient for computing h = 2.

1This table has been generated by post-processing the output of the following GP-PARI program:

for (D=2,1000, \
if (issquarefree(D), \
if (D%4)==1, print1(D,quadclassunit(D)), print1(D,quadclassunit(4*D))); \
printl (" AND "); \
if (-D%4)==1, print(-D,quadclassunit(-D)), print(-~D,quadclassunit(—4*D)))))

The routine quadclassunit takes the discriminant as the input and produces the class number along with some other information.
Well! GP-PARI, developed by Henri Cohen and his team, is indeed a very powerful and efficient package for computational
algebraic number theory. It is downloadable freely from the Internet. Also look at Cohen’s book on computational algebraic
number theory (GTM #138, Springer-Verlag, 1993).
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Table of class numbers: A = h@(\/ﬁ) and h_ = hQ(\/j)

Dhih_ | Dhyh_ | Dhyh | D hyh. | Dhh_ | D hyh_ | D hy ho | D hyh_ | D hy h_
T - 1 |110 212 | 220 2 16 | 334 1 12 | 446 1 32 | 559 2 16 | 670 2 12 | 782 2 24 | 897 4 16
2 1 1111 2 8|22 212|335 218 | 447 214 | 561 2 16 | 671 2 30 | 785 6 16 | 898 6 12
3 1 1113 1 8[223 3 7[337 1 8 |449 120 |52 2 8 |673 112 |78 6 16 | 899 6 14
5 1 2|114 2 8| 226 8 8339 2 6|45 2 6 |563 1 9 |674 424|787 1 5|90l 4 24
6 1 2|115 2 2| 227 1 5| 341 128|453 112 |565 212 | 677 130 | 789 1 32 | 902 2 28
7 1 1[118 1 6| 229 310 | 345 2 8 |454 114 | 566 1 30 | 678 2 20 | 790 2 16 | 903 4 16
10 2 2| 119 210 | 230 2 20 | 346 6 10 | 455 4 20 | 569 1 32 | 679 2 18 | 791 4 32 | 905 4 24
11 1 1122 210 | 231 412|347 1 5 |457 1 8 |570 416 | 681 120 | 793 4 8 | 906 6 28
13 1 2123 2 2| 233 112|349 114 | 458 226 | 571 1 5| 682 212 | 794 242 | 907 1 3
14 1 4127 1 5|235 6 2|35 116|461 130 | 573 116 | 683 1 5 |795 4 4 | 910 8 16
15 2 2| 129 112 | 237 112|354 216 | 462 4 8 | 574 6 16 | 685 2 12 | 797 130 | 911 1 31
17 1 4130 4 4 | 238 2 8|35 2 4 |463 1 7 |577 7 8| 687 212|798 4 16 | 913 1 12
19 1 1131 1 5| 239 115|357 2 8 |465 2 16 | 579 4 8 | 689 4 40 | 799 8 16 | 914 4 36
21 1 4133 1 4| 241 112|358 1 6 |466 2 8 |58 128|690 416 [802 2 12 | 915 4 8
22 1 2|134 114|246 212|359 319 | 467 1 7 | 582 416 | 691 1 5 [803 2 10 | 917 1 20
23 1 3[137 1 8| 247 2 6| 362 218 | 469 3 16 | 583 2 8 | 694 1 10 [ 805 2 16 | 919 1 19
26 2 6138 2 8| 249 112|365 220 | 470 220 | 586 2 18 | 695 2 24 [ 806 2 28 | 921 1 20
29 1 6139 1 3| 251 1 7 |366 212|471 216 | 587 1 7 |697 6 8 [807 2 14 | 922 2 18
30 2 4141 1 8| 253 1 4| 367 1 9 |473 312 | 589 1 16 | 698 2 26 [ 809 1 32 | 923 2 10
31 1 3|142 3 4| 254 316|370 4 12 | 474 220 | 590 2 20 | 699 2 10 [ 811 1 7 | 926 1 40
33 1 4143 210 | 255 412 | 371 2 8 | 478 1 8 | 591 222|701 134 (813 112|929 1 36
34 2 4|145 4 8| 257 316 | 373 110 | 479 125 | 593 124 | 703 2 14 | 814 2 12 | 930 4 24
3 2 2|146 216 | 258 2 8 | 374 228 | 481 2 16 | 595 4 4 | 705 2 24 [ 815 230 | 933 1 16
37 1 2|149 114 | 259 2 4 | 377 216 | 482 220 | 597 112 | 706 4 24 | 817 512 | 934 3 26
3 1 6151 1 7|22 1 6379 1 3 (483 4 4598 2 8707 2 6 |818 428|935 428
39 2 4154 2 8| 263 113|381 120|485 220 | 599 125|709 110 821 130 | 937 1 20
41 1 8|15 2 4|25 2 8| 382 1 8|487 1 7601 120|710 232 |82 220|938 216
42 2 4157 1 6| 266 220|383 117 | 489 120 | 602 224 | 713 124 [ 823 1 9 |939 4 8
43 1 1|158 1 8| 267 2 2| 385 2 8491 1 9 | 606 212 | 714 4 24 [ 826 2 12 | 941 1 46
46 1 4159 210 | 269 122 | 386 220 | 493 2 12 | 607 113 | 715 4 4 [827 1 7 | 942 2 12
47 1 5| 161 116 | 271 111 | 389 122 | 494 228 | 609 2 16 | 747 1 16 | 829 1 22 | 943 4 16
51 2 2|163 1 1| 273 2 8|39 416 | 497 124 | 610 4 12 | 718 112 [ 830 2 20 | 946 2 16
53 1 6165 2 8 | 274 412|391 214 | 498 2 8 | 611 210 | 719 131 [831 228 | 947 1 5
55 2 4|166 110 | 277 1 6| 393 112|499 5 3 | 613 110 | 721 116 834 2 16 | 949 2 12
57 1 4 |167 111|278 114 | 394 210 | 501 1 16 | 614 134 | 723 4 4 835 2 6 | 951 2 26
58 2 2170 412 | 281 120|395 2 8 |502 114 | 615 4 20 | 727 513 [ 838 1 14 | 953 1 32
50 1 3[173 114|282 2 8397 1 6 (503 121 |617 112|730 12 12 [ 839 3 33 | 955 2 4
61 1 6 |174 212|283 1 3| 398 120|505 4 8 |618 212 | 731 412 [ 842 626 | 957 2 16
62 1 8 |177 1 4 | 285 216 | 399 8 16 | 506 6 28 | 619 1 5 | 733 314 (843 2 6 | 958 1 16
65 2 8 |178 2 8| 286 212 | 401 520 | 509 130 | 622 112 | 734 140 | 849 1 28 | 959 4 36
66 2 8 |179 1 5| 287 214 | 402 2 16 | 510 4 16 | 623 2 22 | 737 120 [ 851 2 10 | 962 4 28
67 1 1 |181 110|290 420 | 403 2 2 | 511 214 | 626 436 | 739 1 5 [853 110 | 965 2 44
69 1 8 |182 212 | 291 4 4 | 406 2 16 | 514 4 16 | 627 4 4 | 741 2 24 | 854 2 44 | 966 4 24
70 2 4|183 2 8| 293 118 | 407 216 | 515 2 6 | 629 236 | 742 2 8 857 132 |97 111
71 1 7|185 216|295 2 8| 409 116 | 517 112 | 631 1 13 | 743 1 21 [ 858 4 16 | 969 2 24
73 1 4|18 212|298 2 6 | 410 4 16 | 518 2 16 | 633 1 20 | 745 2 16 [ 859 1 7 | 970 4 12
74 210|187 2 2| 299 2 8| 411 2 6 |519 218 | 634 214 | 746 2 26 [ 861 2 24 | 971 1 15
77 1 8190 2 4 |301 1 8| 413 120|521 132|635 210|749 132 (862 1 8 |973 1 12
78 2 4191 113|302 112|415 210 | 523 1 5638 220|751 115 [863 121 | 974 1 36
79 3 5[193 1 4 |303 210|417 112|526 112 | 641 128|753 112 [ 865 2 16 | 977 1 20
82 4 4194 220|305 216 | 418 2 8 | 527 218 | 642 2 16 | 754 4 20 | 866 2 44 | 978 2 24
83 1 3[195 4 4|307 1 3|49 1 9|53 428|643 1 3| 755 212 [869 132|979 4 8
85 2 4197 110|309 112|421 110 | 533 2 12 | 645 2 16 | 757 1 10 [ 870 8 16 | 982 5 10
86 110 (199 1 9 | 310 2 8 | 422 110 | 534 220 | 646 8 16 | 758 1 22 | 871 2 22 | 983 1 27
87 2 6201 112|311 119|426 224 | 535 2 14 | 647 123 | 759 4 24 | 874 6 20 | 985 6 24
89 112|202 2 6313 1 8 |427 6 2 (537 112|649 120|761 340 | 877 110 | 986 4 44
91 2 2203 2 4 |314 226|429 216 | 538 210 | 651 4 8 | 762 212 [ 878 120 | 987 4 8
93 1 4 |205 2 8 |317 110|430 212 | 541 110 | 653 114 | 763 2 4 [ 879 2 22 | 989 1 36
94 1 8| 206 120|318 212 | 431 121 | 542 124 | 654 228|766 124 881 140 | 991 1 17
95 2 8 |209 120|319 210 | 433 112 | 543 212 | 655 2 12 | 767 2 22 [ 883 1 3 | 993 3 12
97 1 4 |210 4 8| 321 320|434 424|545 232|658 4 8 | 769 120|885 224|994 8 16
101 114 | 211 1 3|32 4 8|43 4 4 |546 424 |65 311 | 770 432 |86 1 18 | 995 2 8
102 2 4213 1 8323 4 4437 120|547 1 3 |661 118|771 2 6 |87 129|997 1 14
103 1 5214 1 6326 322|438 4 8 |551 226|662 122|773 126 |89 116|998 1 26
105 2 8| 215 214 | 327 212 | 439 515 [ 553 1 8 | 663 4 16 | 777 4 16 | 890 4 24

106 2 6217 1 8320 124|442 8 8 | 554 222|665 224 | 778 2 14 | 893 1 28

107 1 3218 210 | 330 4 8 |443 3 5|55 4 4 |667 2 4| 779 2 10 | 894 6 28

109 1 6219 4 4|33 1 3|445 4 8 |557 118 | 669 1 12 | 781 1 20 | 895 6 16
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Exercisesfor Section 4.4

Let A be the class number of a number field K and let m € N be coprime to h. If a and b are non-zero integral ideals
of O i such that the ideal classes of a™ and b™ are the same, show that the ideal classes of a and b are also the same.
(Hint: By Lagrange’s theorem a* and b” are principal.) In particular, if a™ is principal, then so is a.

Demonstrate that O  is a PID, if and only if all prime ideals of norms < C are principal, where C'x is a constant
depending on the field K.

Let a be an integral ideal of O x and let « € a satisfy N(a) = |[N(a)|. Show that a = {(a).

Let a and b be two non-zero integral ideals of .
(@ Show that a ~ b, if and only if there exist non-zero a, 8 € O with (a)a = (B)b.
(b) Prove or disprove: a ~ b, if and only if there exists a non-zero v € O with a = (v)b.

(a) Find all quadratic number fields K for which —8 < Ak < 13.
(b) Using the Minkowski bound conclude that all the fields of Part (a) are UFDs.

Compute the class number of Q(+/—6). (Remark: Use the formula for Ck as in Lemma 4.37.)

Show that the generalized Bachet equation y2 = z3 — n has no (rational) integer solutions for n = 6. (Hint: Work in
Z[v/—6]. Also look at Exercise 3.3.10.)

Compute the class number of (+/—23). (Remark: You should better use the Minkowski bound.)
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