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Chapter 3 : Number fields and number rings

After much ado we are finally in the subject. Let me recapitulate the definitions of the basic objects. The
reader may wonder for a while why we had to be so formal and general in the last two chapters. The fact
is that more often than not the proofs for the special cases of interest in this course are no easier than those
for the general cases. That is to say that we had to prove essentially the same results in essentially the same
way with

�
(a general ring) replaced by ��� (a number ring). We lost practically nothing by being general.

On the other hand, that general treatment should have by now given the reader the confidence regarding the
applicability of these tools in other branches of mathematics.

The extension � ��� is not algebraic (nor is the extension � ��� ), since we all know about the
(provable) existence of real numbers like 	 and 
 which do not satisfy any polynomial with rational (or
integer) coefficients. Let �� denote the algebraic closure of � in � . Clearly ��
��� , since � is already an
algebraically closed field. A complex number � is called an a l g e b r a i c n u m b e r , if ��� �� . The (unique)
non-zero monic polynomial ���������������! #"%$'&(���)���������*�,+ -. #"%$/�0�21 "�3 satisfied by an algebraic number �
is called the m i n i m a l p o l y n o m i a l of � (over � ). Of special interest to us are the elements �4� �� for
which �������������,�! #"5$ are in 621 "73 . Such elements are called a l g e b r a i c i n t e g e r s . The set of algebraic
integers is denoted by 8 and is a ring known as the r i n g o f a l g e b r a i c i n t e g e r s .

A finite (and hence algebraic) extension 9 of � is called a n u m b e r f i e l d . The extension degree:<; &=1 9 ; �>3 is called the d e g r e e of the number field 9 . By Corollary 1.68 9 is a simple extension
of � , i.e., there exists an element ���?9 such that @�ACB� D�������������E�� #"%$F$G& : and 9�&H�2 I�J$K&L�21M�N32O&�21 "03#PRQS������������� �  #"5$FT . The field 9 is a � -vector space of dimension

:
with basis UWVX�.VCYCYCYZVX�\[^]!_ . There

exists a non-zero integer ` such that a ; &�`,�b�c9 is an algebraic integer and we continue to have9 &d�2 SaJ$ . Thus without loss of generality we may take � to be an algebraic integer. In this case the� -basis UWVX�\VCYCYCYZVX�e[^]!_ of 9 consists only of algebraic integers.

For a number field 9 the set �f� ; &g9ihf8 of all algebraic integers contained in 9 is a ring (an integral
domain) called the r i n g o f i n t e g e r s of 9 . The rings ��� for number fields 9 are the central objects
of study in this course (if not in algebraic number theory in general). Unfortunately the rings �j� are less
well-behaved than the ring 6(&k� - of rational integers. For example, unique factorization of (non-zero)
elements into primes need not hold in � � . But we will see (in Chapter 4) that unique factorization holds in�K� at the level of ideals.

�K� is a 6 -module. (Any Abelian group is so.) We will prove later in this section that �%� is indeed a
free 6 -module of rank

:l; &m1 9 ; �>3 . But the unfortunate fact is that for 9n&
�2 S�o$f&
�21p�q3 for some
algebraic integer �r��9 we do not in general have ���s&t621p�N3 . For example, for 9 &=�2 vu wyxz$ we

have 621 u wyxJ3{�|�K� (See Exercise 2.2.7), since _~}!� ]E�� ��9 satisfies the monic irreducible polynomial" � w�"k��U>�7621 "�3 and hence is a member of � � , but it clearly does not belong to 621 u wyxe3 . However, in

this case we have 9d&��2 #�!$ and �f��&�621 �E3 , where � ; & _~} � ]E�� . But there are number fields 9 for which�K� does not at all have a 6 -basis of the form UWVX�.VCYCYCYZVX� [^]!_ .
In this chapter we study the overall structures of the number fields 9 and their rings �5� of integers. A
number field 9 �&k� has more than one isomorphic copies sitting inside the field � . But how many such
copies are there? I start by providing an answer to this question. Next I concentrate on the 6 -module
structure of ��� . I will develop the notions of traces and norms and eventually prove the existence of
(integral) bases of �f� over 6 . Inner structures (ideals, units etc.) of number rings will be studied in the
following two chapters.
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3.1 Complex embeddings

Let �o #"5$>���21 "73 be an irreducible polynomial of degree
:�� U . Then the field 9 ; &g�21 "�3#PRQ��o #"5$FT is a

number field of degree
:

and the elements of 9 can be represented by polynomials with rational coefficients
and of degrees � :

. Arithmetic in 9 is carried out as the polynomial arithmetic of �21 "73 followed by
reduction modulo the defining irreducible polynomial �o #"%$ . This gives us an algebraic representation of9 independent of any element of 9 . Now 9 can also be viewed as a subfield of � and the elements
of 9 can be represented as complex numbers.1 A representation 9%����� with a field isomorphism� ; 9�&
�21 "03#P�QS�o #"5$FT�� 9 � is called a c o m p l e x e m b e d d i n g of 9 in � .2 Unfortunately such
a representation is not unique as the following proposition demonstrates.

3.1 Proposition A number field 9 of degree
:�� U has exactly

:
distinct complex embeddings.

Proof As above we take 9 ; & �21 "73#P�QS�o #"%$�T for some irreducible polynomial �o #"%$����21 "03 of
degree

:
. Since � is a perfect field (See Exercise 1.5.6), the

:
roots � _ VCYCYCY�VX� [ �k� of �o #"%$ are all

distinct. For each ��&�UWVCYCYCY�V : the map sending "���QS�o #"%$FT ��¡�J¢ clearly extends to a field isomorphism� ¢ ; �21 "03#PRQI�o #"5$FT£�¤�2 S� ¢ $ . Thus we get
:

distinct complex embeddings �2 �� ¢ $¥��� of 9 in � . Now let9 � be a subfield of � , such that � ; �21 "03#PRQI�o #"5$FT2�¦9 � is a � -isomorphism. Let � ; & �  #"��(QS�o #"5$FTF$ .
Then §�& �  D§z$j& �  S�o #"b�HQS�o #"5$FTF$F$j&¡�o �  #"b�HQS�o #"5$FTF$F$�&¡�o S�J$ . Thus � is a root of � , i.e.,��&��q¢ for some � ��¨zUWVCYCYCYZV :�© . But then 9 � &(�2 I�N¢X$ , since 9 � is a field containing � and � and having1 9�� ; �£3o&ª1 9 ; �23«& : . ¬
This proposition says that the conjugates � _ VCYCYCY­VX� [ are algebraically indistinguishable. For example," � �kU has two roots ®�� , where �K&¯u w2U . But then what does one mean, when one talks about the
‘positive’ and the ‘negative’ square roots of w2U ? They are algebraically indistinguishable and if one calls
one of these � , the other one becomes wG� . However, if a representation of � is given, we can distinguish
between � u wy° and w u wy° by associating these quantities with the elements � u ° and wG� u ° respectively,
where u ° is the positive real square root of ° and where �J& u w2U is the imaginary ‘unit’ available from the
given representation of � .

It is also quite customary to start with 9n&c�2 S�o$ for some algebraic �|��� and seek for the ‘complex
embeddings’ of 9 in � . One then defines �o #"5$ ; &����)��������� �,+ -  #"%$£�5�21 "�3 and proceeds as in the proof
of Proposition 3.1 but now defining the map � ¢ ; �G S�J$/�b�2 I�q¢X$ as the unique field isomorphism that fixes� and takes �l��±�e¢ . If we take �l&ª� _ , then � _ is the identity map, whereas � � VCYCYCY­V � [ are non-identity
field isomorphisms.

The moral of this story is that whether one wants to view the number field 9 as �21 "�3#P�QS�o #"5$�T or as �2 S� ¢ $
for any ���5¨zUWVCYCYCY�V :²© is one’s personal choice. In any case one will be dealing with the same mathematical
object and as long as representation issues are not brought into the scene, all these definitions of a number
field are absolutely equivalent.

Finally note that the embeddings �2 I�J¢X$ need not be all distinct as sets. For example, the two embeddings�2 ��³$ and �2 ³wG�v$ of �21 "73#P�Q#" � ��U´T are identical as sets. But the maps µl�� � and µl�� w¶� are distinct
(where µ ; &�"·�7Q#" � �7U´T ). Thus while specifying a complex embedding of a number field 9 it is necessary
to mention not only the subfield 9 � of � isomorphic to 9 , but also the explicit field isomorphism 9s�m9 � .
3.2 Definition Let 9 be a number field of degree

:
defined by an irreducible polynomial �o #"5$>�j�21 "�3

or by any root of �o #"%$ . Let ¸ _ be the number of real roots and ¹Z¸ � the number of non-real roots of � . (Note
that the non-real roots of a real polynomial occur in (complex) conjugates.) By the fundamental theorem of

1A complex number ºy» ¼0½\¾�¿)À.ÁG� has a representation by a pair Â�½ÄÃSÀ³Å of real numbers. Here ¿q» ¼�Æ ÇoÈ plays the rôle ofÉ ¾7Ê É>Ë ¾�È�Ì in � Í É/ÎÐÏ Ê É2Ë ¾�ÈFÌ . Finally every real number has a decimal (or binary or hexadecimal etc.) representation.
2The field � is canonically embedded in Ñ . It is evident that the embedding ÒG»^Ñ?Ó(Ñ2Ô fixes � element-wise.
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algebra we have
: &(¸ _ �?¹Z¸ � . For any real root � of � the complex embedding �2 S�o$ of 9 is completely

contained in � and hence is often called a rea l embedd ing of 9 . On the other hand, for a non-real root a
of � the complex embedding �2 DaJ$ of 9 is termed a n o n - r e a l or a p r o p e r l y c o m p l e x e m b e d d i n g
of 9 . The pair  #¸ _ VF¸ � $ is called the s i g n a t u r e of the number field 9 . It is clear that 9 has ¸ _ real
embeddings and ¹Z¸ � properly complex embeddings. If ¸ � &Õ§ , i.e., if all of the embeddings of 9 are real,
one calls 9 a t o t a l l y r e a l number field. On the other hand, if ¸ _ &Õ§ , i.e., if all the embeddings of 9
are properly complex, then 9 is called a t o t a l l y c o m p l e x number field.

3.3 Example (1) The number field �21 "03#PRQD" � w<¹�T is totally real and has the signature  S¹,V�§z$ . (The roots
of " � wj¹ are ® u ¹ .)
(2) The number field �21 "03#PRQD" � �·¹�T is totally complex and has the signature  D§RV­U´$ . (The roots of " � �·¹
are ®�� u ¹ .)
(3) The number field 9 ; &��21 "73DPRQ#"j�/wj¹�T is neither totally real nor totally complex. The roots of "��Öwj¹
are ×u ¹ and ×u ¹¶Ø ]!_~Ù!� ]E�� Ú . The signature of 9 is  ³UWV­U´$ , i.e., 9 has one real embedding and two properly
complex embeddings.

We now investigate how complex embeddings behave for extensions of number fields.

3.4 Proposition Let 9���Û be an extension of number fields,
:Ü; &ª1 9 ; �£3 and Ý ; &g1 Û ; �>3 . Then every

complex embedding � of 9 extends to exactly ÝeP : complex embeddings Þ of Û satisfying Þqß���& � .

Proof Let ¸ ; &�1 Û ; 903�&¤ÝeP : . For ¸�&àU the proposition is obvious. So consider the case that¸�áâU . The extension 9 �sÛ is simple (Corollary 1.68). Choose some ���|Û with Ûi&m9l S�J$ , let�o #"5$ ; &¡������������� �,+ �  #"%$�&±ã%äåçæ�è ` å " å �H9l1 "73 and define éê #"5$ ; & �  S�N$ ; &�ãjäåçæ�è �  D` å $~" å ��  D9j$^1 "73 . Since � is irreducible over 9 , é is also irreducible over �  D9j$ and hence has exactly ¸ distinct
(simple) roots a _ VCYCYCY´VFa ä � �� . For each �?& UWVCYCYCYZVF¸ the map ÞC¢ ; 9l S�«$��  �  D9j$F$^ #a²¢~$ takingë è � ë _ �K�?ìCìCì�� ë ä ]!_ � ä ]!_ �� �  ë è $!� �  ë _ $~a²¢²�?ìCìCì�� �  ë ä ]!_ $~a ä ]!_¢ is a unique embedding of Û<&�9l S�«$
in � whose restriction to 9 is � and which maps �%���a ¢ .
Now let Þ be any complex embedding of Û with Þqß � & � . We have éê DÞN S�«$F$�&âã äåíæ�è �  D` å $vÞN S�J$ å &ã äåçæ�è ÞN D` å $vÞN S�J$ å &gÞN ã äåíæ�è ` å � å $y&ÕÞN D§z$/&ª§ , i.e., ÞN S�J$/&ÕaE¢ for some �{�·¨zUWVCYCYCY�VF¸ © . It then follows
that Þ�&�Þ^¢ . ¬
We will now concentrate on a special class of number fields. Let Ý<�0î . A complex number � is called anÝ - t h r o o t o f u n i t y , if �Jïf&rU , i.e., if � is a root of the (monic) polynomial "%ï�w�U . It immediately
follows that the Ý -th roots of unity are algebraic integers. One can easily check that the set

ð ï ; &(¨��4�7�(ßW� is an Ý -th root of unity
©

is a subgroup of the multiplicative group �'ñ . In fact, the elements of ð ï are ò ¢ï , where ò ï ; &|	zó �³ôÄõ ï and�«&�§RV­UWVCYCYCY´VFÝ¥w�U . In particular, ð ï is cyclic (of order Ý ) and has exactly öJ #Ýe$ generators ò ¢ï , §ø÷��.÷·Ý¥w�U ,B�ùC@q #��VFÝe$/&�U . Any generator of ð ï is called a p r i m i t i v e Ý - t h r o o t o f u n i t y . It is easy to verify
that ò��5� is a primitive Ý -th root of unity, if and only if ò is an Ý -th root of unity and is not an ú -th root
of unity for any út��¨zUWVCYCYCY�VFÝ7w·U © .
The (monic) polynomial

û ï  #"5$ ; &�ü�ý5 #"iw%ò�$'�7�¥1 "�3zV
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where the product runs over all primitive Ý -th roots of unity, is called the Ý - th cyc lo tomic polynomia l .
Clearly @�ACB û ï  #"5$¥&göJ #Ýe$ . This definition does not make it clear that

û ï  #"%$ is actually a polynomial in621 "73 . This (and something more) are what we will prove next. The most non-trivial part in this proof is
establishing the following lemma.

3.5 Lemma Two primitive Ý -th roots ò and ò � of unity have the same minimal polynomial over � .

Proof We have ò � &(ò ¢ for some � coprime to Ý . If ��&kU , we are done. Next let �'&·þ be a prime. Thenþ2�ÿß´Ý . Let �o #"5$ ; &c������������� ý  #"%$ . Since ò is a root of " ï w�U , it follows that " ï w�U7&
�o #"5$�éê #"%$
for some é� #"5$����21 "�3 . Since ò is an algebraic integer, �o #"5$ is in 621 "73 and is also monic. Therefore,éê #"%$>��621 "�3 and is again monic. We will now show that �o #ò � $y&ª§ . Assume not. Since  �� � $~ï�w�UG&ª§ ,
we must have é� #ò\��$ &�éê #ò � $ &�§ , i.e., ò is a root of éê #" � $ . Since �o #"%$ is the minimal polynomial of ò ,
this implies that �o #"5$>ßzéê #" � $ , i.e., é� #" � $ &ª�o #"5$ �  #"5$ for some

�  #"5$£�%�21 "03 . Again it is easy to see
that

�  #"5$¥�7621 "73 .
Now we reduce modulo þ . Consider the canonical surjection 621 "73¶� � � 1 "73 with the image of ¸² #"5$
denoted as �¸� #"%$ . Thus �é! #" � $?& ��« #"5$ç��  #"5$ . But by the binomial theorem �é� #" � $�& �éê #"5$ � , i.e,�é� #"%$ � & ��« #"5$í��  #"%$ , i.e., any irreducible factor of �� divides �é! #"5$ � and hence �éê #"5$ , i.e., �� and �é have
common root(s) in �� � , i.e., " ï w·U�&d" ï w � U5& ��« #"5$ �éN #"5$ has multiple roots. Now since þ �ÿßZÝ , the
(formal) derivative of "�ï�w �U is nonzero in � � 1 "�3 and hence is coprime to "�ï�w �U , i.e., "0ïøw �U does not
contain multiple roots, a contradiction.

Thus we must have �o #ò.� $'&��o #ò ¢ $'&�§ in the case when �.&4þ is a prime. Since � is irreducible over � , it
follows that ���)��������� ý Ô  #"5$.&��o #"5$ in this case.

Finally consider the general case �l&¦þ _ ìCìCìSþ�� , where the primes þê¢ (not necessarily all distinct) are
all coprime to Ý . By repeated uses of the special case discussed above we then have ������������� ý  #"%$7&�����²�ê����� ý��
	  #"%$\&������²�ê����� ý���	�� Ë  #"%$.&�ìCìCìR&�������������� ý��
	�
 
 
 ���  #"%$\&����)��������� ý Ô  #"5$ . ¬
Now we are in a position to prove the promised results about

û ï  #"5$ .
3.6 Proposition Let Ýj��î . Then

û ï  #"5$ is the minimal polynomial of every primitive Ý -th root of unity.
In particular,

û ï  #"%$ �7621 "�3 and is irreducible in 621 "73 (or in �21 "03 ).
Proof Let ò be a primitive Ý -th root of unity, �o #"5$ ; &�������������� ý  #"%$ and 9 ; &��2 Dò�$ . Lemma 3.5 asserts
that every primitive Ý -th root of unity is a conjugate of ò , i.e., �o #"%$\& û ï  #"%$�éê #"5$ for some éê #"5$y�f�¥1 "73 .
In particular, @²ACB�� � @�ACB û ï &�öJ #Ýe$ .
Conversely if 9â� � 9 � ��� is a complex embedding of 9 and if �  #ò�$¥&Õò � , then U & �  ³U´${& �  #òoï�$¥& #òo��$ ï , i.e., ò\� is also an Ý -th root of unity. If ò�� is an ú -th root of unity for some ú �=Ý , we have�  ³U´$¥& �  #ò��>$ &�U , i.e., � is not injective. Thus ò�� must also be a primitive Ý -th root of unity, i.e., 9 has÷?öJ #Ýe$ complex embeddings, i.e., @�ACBÖ�5÷?öJ #Ýe$\&�@�ACB û ï .
It follows that @�ACB��7&�@²ACB û ï , i.e., �o #"5$\& û ï  #"5$ . The proposition is now obvious. ¬
3.7 Definition Let Ý��fî . The number field 9 ; &��21 "�3#PRQ û ï  #"%$FT�O& �2 Sò�$ for any primitive Ý -th root ò
of unity is called a c y c l o t o m i c e x t e n s i o n of � . We have 1 9 ; �£3«&�öJ #Ýe$ .
Cyclotomic fields constitute a rich set of examples of number fields. We will study the properties of these
fields and their rings of integers throughout the course as case studies. Another interesting set of examples
is provided by the q u a d r a t i c f i e l d s �2 u � $ , where � is a square-free integer �&�§RV­U (Exercise 2.2.7).

Department of Mathematics Indian Institute of Technology, Kanpur, India



Chapter 3: Number fields and number rings Page 5 of 14

Exercises for Section 3.1

1. Find the minimal polynomial and the conjugates of � and also the degree of ������� , where:

(a) ����� �! #" $ .

(b) �%�'& ���( )" $*�,+.- .

(c) ���'/0 1-32,4,56 1-.78485 .
2. Let 9;:<�j�����=� , where �>�@?" - .

(a) Find the complex embeddings 9BA C�D>9FE�G0� , H��'/.I8-JI,� , of 9 .

(b) Show that 9 2 , 9 7 and 9 5 are pairwise distinct as sets.

(c) Compute K 2 ���=�L #K 7 �����M 1K 5 ����� and K 2 �����NK 7 ���=�OK 5 ����� .
3. Let � be an algebraic number with P �����=�Q:´�SR odd. Show that �������(�j�����T73� .
4. A r o o t o f u n i t y is an U -th root of unity for some U�V î . Show that all the roots of unity constitute a multiplicative

subgroup W of �(X . Deduce that W is infinite and not cyclic. (Hint: An infinite cyclic group is isomorphic to �)6SI� Y� .)
5. Let U�V î and Z[V]\ .

(a) Show that ^>_a`#/(�cb>d0e _gf d ��^>� . (Hint: Look at the roots of the polynomials on the two sides.)

(b) Using Part (a) conclude that f _ �h^>�YVf6�P ^[R . (Hint: Use induction on U .) Recall that this fact was proved in a
different manner in Proposition 3.6.

(c) Use Möbius inversion formula to deduce that f _ �h^��0�'b�die _ ��^ d `j/k�Nl3mn_.4 d�o , where p is the Möbius function.
This gives yet another way to conclude that f _ ��^>�6Vø6�P ^qR .
(d) If U#r�'/ is odd, show that f 78_ �h^��T� f _ �N`�^�� . (Hint: If s.t�uiv1�jU , then swt8ux�O`yv0�T�z-*U .)

(e) Show that fi{}| �h^>�T�~^ { |��3� m {k� 2 o  �^ { |��3� m {�� 7 o  ~�}�
�k �^ { |��3�  �/ .
6. Let 9;:<�j���,�N�(�� ��P ^qRh+J�h^�7! ~/�� . By Exercise 2.2.7 we have �����%6�P���R , the ring of Gaussian integers.

(a) Show that �� z��� (with ��I8�!V 6 ) is a unit in 6�Pn��R , if and only if �J7i 1��7!�'/ .
* (b) Show that the prime elements of 6�P���R are the associates to:Z , where Z[V]\ is a rational prime congruent to � modulo � ,�Y c��� , where ��I8�!V î and ��7i #��7 is - or a rational prime congruent to / modulo � .

7. Show that:

(a) For a rational prime Z the equation � 7  ]� 7 ��Z has a solution ���LIO�J�yV 6 7 , if and only if Z]�z- or Z]��/Q���Ss�u���� .
(b) For U>V î the equation � 7  >� 7 ��U has a solution ���LI,����V 6 7 , if and only if � { �hUL�T�z���h�Ss�u�-.� for all rational
primes Z[V]\ with Z]�����h�Ss�u��3� .

* 8. Let v be a primitive cube root of unity. What is the degree of ����v0� ? Show that ���hv0� is an ED. (Hint: Consider the
function �x���Y #�8v0�6:<�~��7y`%���� 1��7 .)

9. Let Z be an odd rational prime, v a primitive Z -th root of unity and 9�:<�j���hv� qv � 2�� . Show that 9 is a number field
of degree �<Z�`)/��,+.- .

10. Let � and   be algebraic numbers with ¡B:¢�£P �������Y:´�SRy¤z/ and U>:<�£P ���� M��:´��R0¤¥/ . Let 9;:<�j�����iI, =� .
(a) Show that P 9;:´�SR«÷c¡¦U .

(b) Give an example where P 9�:´�SRy§1¡¦U . (Avoid the trivial case: ��V ���� M� or  %Vø������� .)
(c) Prove that if ¨3©}ux��¡>I,UL�i��/ , then P 9;:´�SRT��¡¦U .

* (d) Prove or disprove: If ¨3©}uª��¡>I,UL�T�'/ , then P �����M =�Y:��SRT��¡]U .

** (e) Prove or disprove: If ¨w©
uª�h¡�IOUL�T��/ , then P �����« « M�6:Z�SR��~¡¦U .
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3.2 Traces and norms

Let me now introduce some important concepts from linear algebra, that will be useful in the next section
for proving the existence of integral bases of number rings.

3.8 Definition Let ¬¦��9 be an extension of fields with
:�; &â1 9 ; ¬£3 �®­ . For any �L��9 the

multiplication map ¯ � ; 9¤��9 taking µj��±�qµ is an ¬ -linear transformation. Let °0± denote the matrix
of the transformation ¯ � with respect to some ¬ -basis ² of 9 . We know that the trace (i.e., the sum of
the elements in the principal diagonal) and the determinant of °y± are independent of the basis ² and is an
invariant of the transformation ¯ � . This allows us to define the t r a c e ³0´ �Sµ ¶  S�J$ and the n o r m · �Sµ ¶  S�«$
of � as³0´ �Sµ ¶  S�J$ ; &¸³i´Z �°=±!$ and · �Sµ ¶  S�J$ ; &�@�A�¹º°�±GY
If ¬ is understood from the context, we simply write ³0´­�  S�«$ and · �  S�J$ . If 9 is also clear in the context,
we may even omit the 9 . ³i´´ S�«$ and ·  S�J$ are elements of ¬ , since °T± is a matrix with entries from ¬ .

In a similar manner the c h a r a c t e r i s t i c p o l y n o m i a l of � is defined as

ù
»ª¼�´�������� �,+ �Sµ ¶  #"%$ ; &�ù
»ª¼�´��������º½�¾N #"5$\&�ù}»ª¼�´��������À¿wÁN #"%$.&�@�A�¹´ #"#Â [ wj°=±!$Ö��¬�1 "�3IV
where Â [ is the

:0Ã�:
identity matrix (over ¬ ). Once again it follows from linear algebra that this characteristic

polynomial is independent of the basis ² . Again we drop the suffix 9·ß ¬ , if there is no scope of confusion.

The three items introduced in the last definition are related by the following important formula:

ù
»ª¼�´�������� �  #"5$�&�" [ wz³i´´ S�«$~" [^]!_ ��ìCìCìZ�� ³w¶U´$ [ ·  S�«$ Y (3.1)

Now we specialize to the case ¬ ; &�� and 9 ; & a number field of degree
:
. In this case we have equivalent

characterizations of the trace and norm functions. Before discussing about these characterizations let us
prove some auxiliary results.

3.9 Proposition Let 9 be a number field of degree
:

and ����9 . Then the characteristic polynomial of �
over � satisfies ù}»ª¼�´X�ê����� �,+ �Sµ -  #"5$\&ª D������������� �,+ -  #"5$F$v[ õ ä , where ¸2&g1 �2 I�J$ ; �£3 .
Proof First consider the case ¸¶& : (i.e., 9s&��2 S�o$ ). By the Cayley-Hamilton theorem °y± and ¯ � satisfyù}»L¼�´�������� �,+ �Sµ -  #"%$ . Thus  Dù}»ª¼�´X�ê����� �,+ �Sµ -  N¯ � $F$^ ³U´$ &(§ , i.e., ù}»ª¼�´X�ê����� �,+ �Sµ -  S�J$Ö&(§ , i.e., ������������� �,+ -  #"%$
divides ù
»ª¼�´��������²�,+ �Sµ -o #"%$ . Since both these polynomials have the same degree ( &Õ¸ø& : ) and are monic,
we have ù
»ª¼�´��������R�,+ �Sµ -. #"%$\&����)���������*�,+ -. #"%$ and the result follows.

Now suppose that ¸L� :
and consider the tower of field extensions � �±�2 I�«$ª��9 of extension

degrees ¸ and Ä ; & : P�¸ respectively. By the special case proved above we have ù}»ª¼�´X�ê����� �,+ -ªÅÐ�JÆ µ -  #"5$G&�����²�ê�����z�,+ -� #"5$ . So it is sufficient to prove that ù
»ª¼�´��������E�,+ �Sµ -. #"5$4&  Dù}»ª¼�´����������,+ -LÅÐ�JÆ µ -/ #"5$F$ � . Let² _ ; &  #a _ VCYCYCY�VFa ä $ be a � -basis of �2 I�«$ and ² � ; &  � _ VCYCYCY´V³�º�í$ a �2 I�«$ -basis of 9 . Then ² ; & � _ a _ VCYCYCY­V³� _ a ä VCYCYCY­V³�x�Fa _ VCYCYCY�V³�º��a ä $ is a � -basis of 9 . Let us denote by ° _ the matrix of the multiplication
map �2 S�o$/�¯�2 S�o$ , µ0��¯�qµ , with respect to the ordered basis ² _ . It is now an easy check that the matrix
of the multiplication map 9s�â9 , µf��b�Nµ , with respect to the ordered basis ² is

° ; & ÇÈÈÈÉ ° _ § ìCìCì §§ ° _ ìCìCì §
...

... ìCìCì ...§ § ìCìCìÊ° _
Ë}ÌÌÌÍ Y
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Therefore, @�A�¹´ #"1Â [ wj°>$\&ª D@�A�¹´ #"#Â ä wj° _ $F$ � , whence the proposition follows. ¬
3.10 Corollary Let �����f� . Then ³0´ �Sµ -  S�«$ and · �Sµ -  S�«$ are in 6 .

Proof Since � is an algebraic integer, ������������� �,+ -  #"5$K��621 "�3 . By Proposition 3.9 we then also haveù}»L¼�´�������� �,+ �Sµ -  #"%$Ö�7621 "�3 . Equation (3.1) now completes the proof. ¬
3.11 Corollary Let 9 be a number field of degree

:
, �r�Õ9 , ¸ ; &¦1 �¶ S�o$ ; �£3 and � _ VCYCYCY´VX� ä the

conjugates of � (i.e., the roots of ������������� �,+ -  #"5$ ). Then we have:

ù
»ª¼�´����������,+ �Sµ -\ #"5$¡& Î äü¢ æ _  #"
w��N¢I$,Ï [
õ ä V (3.2)

³0´ �Sµ -  S�J$¡& :
¸ äÐ
¢ æ _ �q¢,V (3.3)

· �Sµ -  S�J$¡& Î äü¢ æ _ �N¢ÑÏ [
õ ä Y (3.4)

Proof Since �������������R�,+ -� #"5$'& b ä¢ æ _  #"iw<�N¢I$ , Proposition 3.9 establishes (3.2), whereas (3.3) and (3.4)
follow from Equations (3.1) and (3.2). ¬
Now come the desired characterizations of traces and norms (over � ) of elements of a number field.

3.12 Proposition Let 9 be a number field of degree
:
, � _ VCYCYCY�V � [ the

:
complex embeddings of 9 and�<�79 . Then we have:

³0´ �Sµ -  S�«$¡& [Ð
¢ æ _
� ¢³ S�«$çV (3.5)

· �Sµ -  S�«$¡& [ü¢ æ _
� ¢³ S�«$çY (3.6)

In particular, for �\VFa4�79 and Ò>�f� we have:³0´ �Sµ -  S�f�<aJ$¦& ³i´ �Sµ -  S�«$q�¥³0´ �Sµ -  #aJ$ V (3.7)· �Sµ -  S�qaJ$¡& · �Sµ -  S�«$�· �Sµ -  #aJ$ V (3.8)³0´ �Sµ -  ÑÒC�J$¡& Ò�³i´ �Sµ -  S�«$ V (3.9)· �Sµ -  ÑÒC�J$¡& Ò [ · �Sµ -  S�«$ V (3.10)³i´ �Sµ -  ÑÒ­$¡& Ò : V (3.11)· �Sµ -  ÑÒ­$¡& Ò [ Y (3.12)

Proof Let ¸ ; &ª1 �2 I�«$ ; �£3 (We have ¸�ß : .) and let Þ _ VCYCYCY­V�Þ ä be the complex embeddings of �2 S�o$ mapping� to its conjugates � _ VCYCYCY­VX� ä respectively. By Proposition 3.4 each Þ å extends to exactly
: P�¸ complex

embeddings � å + Ó of 9 and all complex embeddings � _ VCYCYCY´V � [ of 9 are obtained this way. Therefore,ã [¢ æ _ � ¢³ S�«$ø& ã äåíæ _ ã [ õ äÓ æ _ � å + Ó  S�J$�& ã äåçæ _  : P�¸�$³� å & [ä ã äåíæ _ � å &Ô³0´ �Sµ -  S�J$ , where the last equality
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follows from Equation (3.3). In an analogous way one can derive the formula (3.6) for norms. The remaining
assertions in the proposition are immediate consequences of (3.5) and (3.6). ¬
One may take (3.5) and (3.6) as the definitions of the trace and the norm of an algebraic number. However,
these definitions do not immediately make it clear that ³0´´ S�J$ and ·  S�J$ are elements of � . Furthermore,
if the extension ¬m��9 is not separable3 , embeddings of 9 in �¬ fail to satisfy the nice properties as in
the case of number fields, whereas Definition 3.8 continues to make sense, because it does not require any
embedding at all.

Exercises for Section 3.2

1. Let ��:<�®?" - and v a primitive cube root of unity. Define 9�:<�j������� and Õj:<��9#��v0�T�������6INv0� .
(a) What are the degrees P 9;:´��R , P Õ):´�FR and P Õj:.9qR ?
(b) Compute ÖLt � e - ���=� and × � e - ����� .
(c) Compute ÖLt�Ø e - ����� and × Ø e - ���=� .

2. Show that if �#Ùk  in ��� , then × � e - ���=�!Ù × � e - �� M� in 6 .

3. (a) Let 9 be a number field. Show that �1V¶�%� is a unit (in ��� ), if and only if × � e - �����i�¥Úa/ .
(b) Let Û be a square-free integer r�¥�JI}/ and 9Ü:<����� " ÛÝ� . If ÛÞ�c-JI,������s�uÝ�3� , show that the (integer) solutions
of the Diophantine equations ��7º`�Û���7!�cÚa/ are in one-to-one correspondence with the units of �«� . Derive a similar
result for the case Ûß��/Q����s�u��3� .
(c) Let ÛÞ§j� . Show that the only units of ��� are Úa/ except in the cases Ûß��`�/ and Ûà��`g� . What are the units
of �>� for these two special values of Û ?

4. Prove that ���8��� does not contain an element of norm � .
5. Let Z[V¦\ , v a primitive Z -th root of unity and 9;:¢�j���hv0� . Then P 9;:´�SRi��u�á
¨ f0{ �câ=�<Zº�i�%Z�`)/ . Show that:

(a) ÖMt � e - �hv0�T�'`�/ and ÖLt � e - �N/!`�v0�T�«Z .

(b) For any ��VG� � we have Z�Ù�ÖMt � e - ���6�N/!`�v0�,� . (Note that �0�O/g`�v0�6VG� � and hence ÖMt � e - ���6�N/!`�v0�,�6V 6 .)

6. Let �ãGà9äGåÕ be extensions of number fields and �¸VzÕ . Further let æ):¢��P Õà:�9qR and K 2 I}ç}ç
ç}I8K d be all the
complex embeddings of Õ that fix 9 (i.e., all the complex embeddings of Õ that extend the identity embedding of 9 ).
Prove the generalized formulas for trace and norm:ÖMt Ø e � ���=�è� dÐ E�é 2 K E �����ºI (3.13)

× Ø e � ���=�è� düE�é 2 K E ���=�xç (3.14)

(Hint: Imitate the proof for the special case 9B��� as given in the text.)

7. Let �ÞG�ê£G�9;GjÕ be extensions of number fields and ��V[Õ . Prove the following t r a n s i t i v i t y p r o p e r t i e s
o f t r a c e a n d n o r m :ÖMt Ø e ë �����ì� ÖMt � e ë ��ÖLt Ø e � �����O�ºI (3.15)× Ø e ë �����ì� × � e ë ��× Ø e � �����O�ºç (3.16)

3Let í be a field and Ñ an algebraic extension of í . An irreducible polynomial î,Â É ÅoÁïíÖÍ É/Î is called s e p a r a b l e overí , if î does not admit a multiple root in any extension of í . An element ðfÁøÑ is called separable over í , if ñ ¿óòwô�õ�ö¢÷ ¾�ø ù Â É Å
is separable over í . Finally the (algebraic) extension íBú�Ñ is called separable, if every ð�ÁjÑ is separable over í . By
Exercise 1.5.6 every algebraic extension of a perfect field (e.g. a field of characteristic zero or a finite field) is separable.
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(Hint: Let ûa:<�£P 9�:.êüR , ý�:<��P Õ):.9[R , K 2 I}ç
ç}ç
I,Kÿþ the embeddings of 9 in � that fix ê and � 2 I}ç
ç}ç}I���� the embeddings
of Õ in � that fix 9 . For each

� V��w/wI}ç}ç
ç�I8ý�� consider 	�
ÝV�� with ��
3��Õ6�(� ê��
	�
�� . Define � :<� 91�
	 2 I}ç
ç}ç}I�	���� .
For each H0V��3/.I
ç}ç}ç�I,û�� let � E be an embedding of � in � that extends K E . First show that � E�� ��
 for H���/wI}ç
ç}ç}I,û and� ��/.I
ç}ç
ç�I8ý give all the embeddings of Õ in � that fix ê . Then use the formulas (3.13) and (3.14).)

8. Let 9 be a number field. We say that 9 is n o r m - E u c l i d e a n , if for every �0IO %V �«� ,  jr��� , there exist ��IOû�V¶���
such that �%���k ] �û and Ù × �hû*�}ÙJ§�Ù × �h M�
Ù .
(a) Conclude that if 9 is norm-Euclidean, then � � is an ED with the Euclidean degree function �x�����a:¢� Ù�×a�����}Ù .
(Remark: The converse of this is not true. For example, it is known that 9®:<�l���," ���.� is not norm-Euclidean, but� � is an ED.)

(b) Prove the following equivalent characterization of a norm-Euclidean number field: 9 is norm-Euclidean, if and
only if for every ��Vï9 there exists  %VG��� such that Ù × ����`> =�}Ù�§¥/ .
(c) Show that the following number fields are norm-Euclidean: � , ��� " `�/
� , ��� " `!-*� , ����" -*� and ����" �3� .
(d) Show that ��� " `��w� is not norm-Euclidean. (Hint: Take ��:<� 2���� �! 7 in Part (b).)

3.3 Discriminants and integral bases

Recall that for the quadratic polynomial �o #"%$ ; &�" � � ë "��1Ò we call the quantity
ë � w�"JÒ the discriminant#  S�N$ of � . The sign of

#  S�N$ gives us information about the roots of � . We generalize this concept now and
define the discriminant of any non-constant irreducible polynomial in �21 "�3 or even of a set of elements in
a number field. Throughout this section we denote by 9 a number field of degree

:
and by �5� the ring of

integers of 9 . Our aim in this section is to the prove the fact that ��� is a free 6 -module of rank
:
. The

language of discriminants is one usual weapon to win this battle. The trace and norm of an element �4��9
over � will be denoted simply as ³i´� S�«$ and ·  S�«$ without the subscript 9·ß � .

3.13 Definition Let a _ VCYCYCY­VFa [ ��9 . We call the determinant of the matrix  Ñ³i´Z #aê¢Da å $F$ _�$ ¢ + å $E[ (i.e., of
the matrix whose �&% -th entry is equal to ³i´´ #a�¢Da å $ ) the d i s c r i m i n a n t of a _ VCYCYCY´VFa [ and denote this as#  #a _ VCYCYCY�VFa [ $ ; &�@�A�¹´ Ñ³i´Z #a ¢ a å $F$ . Since ³i´� #a ¢ a å $ are all elements of � , it follows that

#  #a _ VCYCYCY­VFa [ $'�7� .
Moreover, if a _ VCYCYCY´VFa [ are all algebraic integers, then

#  #a _ VCYCYCY­VFa [ $'�76 .

Discriminants can be defined in an alternative way by using the complex embeddings � _ VCYCYCY­V � [ of 9 .

3.14 Proposition
#  #a _ VCYCYCY­VFa [ $\&g D@�A�¹� � å  #a²¢�$F$F$ � .

Proof Consider the matrices � ; &k Ñ³0´� #aê¢#a å $F$ and ' ; &k � å  #a²¢�$F$ . By definition
#  #a _ VCYCYCY´VFa [ $.&�@�A�¹ � .

We will show that � &(')'+* , which implies that @�A�¹ � &ª D@�A�¹,' $ � and thereby proves the proposition. The�&% -th entry of '-' * is ã [. æ _ � .  #a²¢�$ � .  #a å ${& ã [. æ _ � .  #aE¢#a å $y& ³0´� #a²¢Da å $ , where the last equality follows
from Equation (3.5). ¬
Let 9s&��2 S�o$ for some �<�79 and let �o #"5$ ; &��������������,�,+ -' #"5$ . We define the discriminant of � as

#  S�N$ ; & #  ³UWVX�.VX� � VCYCYCY´VX� [^]!_ $ Y (3.17)

I have to show that the quantity
#  S�N$ is well-defined, i.e., independent of the choice of the root � of �o #"%$ .

Let �<&Õ� _ VX� � VCYCYCY´Yÿ� [ be all the roots of �o #"5$ and let the complex embedding � å of 9 map � to � å . By
Proposition 3.14 we have

#  S�N$Ö&L D@�A�¹/' $ � , where 'k&L � å  S� ¢ ]!_ $F$Ö&L S� ¢ ]!_å $ . By Exercise 3.3.1 we then

get
#  S�N$o&ª ³w¶U´$ [ Å [^]!_ Æ õ³� [ü0 ø 1�2 	0&32�1  S� å w7�N¢I$ , which implies that

#  S�N$ is independent of the permutations of the

conjugates � _ VCYCYCY­VX� [ of � . Notice that since � _ VCYCYCY�VX� [ are all distinct,
#  S�N$/�&�§ .
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Now let me give a simpler description of
#  S�N$ . First I write �o #"5$\& [ü¢ æ _  #"gw��N¢I$ . Taking formal derivative

gives � �  #"5$.& [Ðåçæ _ [ü 0 2 	0&32�1  #"�w �N¢�$ , i.e., � �  S� å $\& [ü 0 2 	0432�1  S� å w �q¢S$ . Therefore,
#  S�N$o&g ³w2U´$ [ Å [^]!_ Æ õ³� [üåçæ _ � �  S� å $o&

 ³w2U´$ [ Å [^]!_ Æ õ³� [üåçæ _ � å  S� �  S�J$F$ , i.e.,

#  S�N$o& #  ³UWVX�.VX� � VCYCYCY´VX� [^]!_ $\&ª ³w2U´$ [ Å [^]!_ Æ õ³� ·  S� �  S�«$F$ (3.18)

I will now show how the discriminant
#  #a _ VCYCYCY´VFa [ $ discriminates between the cases that a _ VCYCYCY­VFa [ form

a � -basis of 9 and that they do not. I start with the following lemma.

3.15 Lemma Let a _ VCYCYCY�VFa [ V³� _ VCYCYCY´V³� [ �j9 satisfy �,¢\&gã [. æ _ 5 ¢ . a . for �'&LUWVCYCYCY�V : and for
5 ¢ . �%� .

Then
#  � _ VCYCYCY�V³� [ $o&g D@�A�¹x°£$ � #  #a _ VCYCYCY­VFa [ $ , where °�&ª 5 ¢ å $ .

Proof Let ' _ ; &L � å  #a²¢�$F$ and ' � ; &L � å  �,¢�$F$ . Now � å  �*¢�$Ö& � å  ã [. æ _ 5 ¢ . a . $ & ã [. æ _ 5 ¢ . � å  #a . $ is the�&% -th entry of the matrix °6' _ , i.e., ' � &¸°6' _ . Hence
#  � _ VCYCYCY´V³� [ $�&| D@�A�¹,' � $ � &| D@²A�¹º°£$ �  D@�A�¹,' _ $ � & D@�A�¹x°>$ � #  #a _ VCYCYCY´VFa [ $ . ¬

3.16 Corollary Let ² _ ; &b #a _ VCYCYCY´VFa [ $ and ² � ; &b � _ VCYCYCY�V³� [ $ be two � -bases of 9 . Let us denote#  Ñ² _ $ ; & #  #a _ VCYCYCY´VFa [ $ and
#  Ñ² � $ ; & #  � _ VCYCYCY´V³� [ $ . Then

#  Ñ² � $¶&s D@�A�¹º°£$ � #  Ñ² _ $ , where ° is the
change-of-basis matrix from ² _ to ² � . ¬
3.17 Corollary The elements a _ VCYCYCY­VFa [ �79 form a � -basis of 9 , if and only if

#  #a _ VCYCYCY´VFa [ $/�&�§ .
Proof Let 9 &b�2 S�o$ as above, ² _ ; &� ³UWVX�.VCYCYCYZVX� [^]!_ $ and ² � ; &± #a _ VCYCYCY�VFa [ $ . Since ² _ is a � -
basis of 9 , each a ¢ can be written (uniquely) as aê¢�& ã [^]!_åçæ�è 5 ¢ å � å with

5 ¢ å �s� . By Lemma 3.15#  Ñ² � $\&| D@�A�¹x°£$ � #  Ñ² _ $ , where ° ; &g 5 ¢ å $ 	87 0 7:9; 7 1 7:9=<�	 . We have seen that
#  Ñ² _ $£�&�§ . Therefore,

#  Ñ² � $>�&�§>@? @�A�¹º°k�&�§ >@? ² � is a � -basis of 9 . ¬
Finally comes the main theorem of this section:

3.18 Theorem Let 9 be a number field of degree
:
. Then � � is a free 6 -module of rank

:
.

Proof Let a _ VCYCYCY´VFa [ ��9 form a � -basis of 9 . We know that for some ¸ _ VCYCYCY�VF¸ [ �76BA.¨´§ © the elements¸ _ a _ VCYCYCY�VF¸ [ a [ are in ��� and clearly continue to constitute a � -basis of 9 . So we may assume that the
elements a _ VCYCYCY­VFa [ are already in ��� . Consider the set C of all � -bases  #a _ VCYCYCY­VFa [ $ of 9 consisting of
elements from �f� only. By Definition 3.13 and Corollary 3.17

#  Ñ² $¥�56DA£¨´§ © for every ²��BC . Choose² ; &ª #a _ VCYCYCY´VFa [ $Ö�EC such that ß #  Ñ² $Cß is minimal in C .

Claim ² is linearly independent over 6 .² is by definition a � -basis of 9 , i.e., linearly independent over � and hence trivially over 6 too.

Claim ² generates �f� as a 6 -module.

Assume not, i.e., there exists ���j�7� such that �·&ª` _ a _ ��ìCìCìz��` [ a [ with some `,¢2���6 . Without loss
of generality we may assume that ` _ ��<6 and write ` _ &|`G��¸ with `j�<6 and §0�(¸0��U . Now define
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� _ ; &���w�`*a _ &�¸Wa _ �4` � a � ��ìCìCìÄ�4` [ a [ V³� � ; &�a � VCYCYCY�V³� [ ; &�a [ . Since ��� is a ring, � _ (and hence all
of � _ VCYCYCY´V³� [ ) are in ��� . Furthermore, if

° ; &
ÇÈÈÈÈÈÉ
¸ ` � ` � ìCìCìt` [§ U § ìCìCì §§ § U ìCìCì §
...

...
... ìCìCì ...§ § § ìCìCì U

Ë}ÌÌÌÌÌÍ V
by Lemma 3.15 we have

#  � _ VCYCYCY´V³� [ $�&à D@²A�¹x°£$ � #  #a _ VCYCYCY�VFa [ $�&â¸ � #  #a _ VCYCYCY�VFa [ $ . Since ¸k�&¯§ ,#  � _ VCYCYCY­V³� [ $>�&�§ , i.e.,  � _ VCYCYCY´V³� [ $ is again a � -basis of 9 (Corollary 3.17), i.e.,  � _ VCYCYCY´V³� [ $'�EC . Finally
since ¸ø��U , we have ß #  � _ VCYCYCY�V³� [ $Cß,��ß #  #a _ VCYCYCY­VFa [ $Cß , a contradiction to the choice of  #a _ VCYCYCY´VFa [ $ . Thus
every ������� has to be a 6 -linear combination of a _ VCYCYCY´VFa [ . This completes the proof of the second claim
and also of the theorem. ¬
3.19 Definition Any 6 -basis of the free 6 -module �0� is called an i n t e g r a l b a s i s of 9 (or of ��� ).

3.20 Corollary Every integral basis of 9 has the same discriminant (for a given 9 ).

Proof Let ² _ ; &  #a _ VCYCYCY´VFa [ $ and ² � ; &  � _ VCYCYCY´V³� [ $ be two integral bases of 9 . Let ° be the
transformation matrix for the change of basis from ² _ to ² � . ² _ being an integral basis of 9 , all the
entries of ° are integers. Also from Corollary 3.16 we have

#  Ñ² � $G&s D@�A�¹ª°£$ � #  Ñ² _ $ and hence
#  Ñ² _ $

divides and has the same sign as
#  Ñ² � $ . In a similar manner one can show

#  Ñ² � $Kß #  Ñ² _ $ . Therefore,#  Ñ² _ $\& #  Ñ² � $ . ¬
3.21 Definition Let 9 be a number field and ² an integral basis of 9 . The d i s c r i m i n a n t of 9
is defined to be the integer

# � ; & #  Ñ² $ . By Theorem 3.18 and Corollary 3.20
# � is well-defined, i.e.,

defined and independent of the choice of the integral basis ² of 9 .

It’s now time for some case studies. We will as usual consider quadratic fields and cyclotomic fields. In both
these cases ��� has an integral basis of the form UWVX�\VCYCYCYZVX� [C]!_ for some suitable � . Let me emphasize here
that this is not the general case, i.e., every number field 9 need not possess an integral basis of the formUWVX�.VCYCYCY�VX� [^]!_ . Whenever it does, �f��&�621p�!3 is called m o n o g e n i c and an integral basis UWVX�.VCYCYCY´VX� [^]!_
of 9 is called a p o w e r i n t e g r a l b a s i s . Clearly if 9 has a power integral basis UWVX�.VCYCYCY�VX� [^]!_ , then9 &i�2 S�o$ . But the converse is not true, i.e., for 9 &i�2 I�«$ with �L����� and with ��� monogenic,UWVX�.VCYCYCY�VX� [^]!_ need not be an integral basis of 9 . This is demonstrated in the next example.

3.22 Example (1) Consider the quadratic number field 9 ; &â�2 u � $ for some square-free integer� �&�§RV­U . We consider the two cases:

Case 1: �GF ¹,VXxÜ D�ø�R@H"*$
Here ���±&�621 u � 3 , i.e.,  ³UWV u � $ is a power integral basis of 9 . The minimal polynomial of u �
is " � w � and the conjugates of u � are ® u � . Therefore by Equation (3.18) we have

# � & ³w2U´$ � Å � ]!_ Æ õ³� ·  S¹ u � $\&�w¶ S¹ u � $^ ³w{¹ u � $.&I" � .

Case 2: �GF UG D�ø�,@@"*$
In this case �f�g&ª6KJ _~} � L� M , i.e.,  ³UWV _~} � L� $ is a power integral basis of 9 . The minimal polynomial of

_~} � L� is " � w<"tw L ]!_N and the conjugates of _~} � L� are _~Ù � L� . Therefore Equation (3.18) tells us that# ��&ª ³w2U´$ � Å � ]!_ Æ õ³� ·  S¹2Ø _~} � L� Ú w·U´$\&ªw ·  u � $o&ÕwG u � $^ ³w u � $.& � .
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(2) Let Ý?�<î , ò a primitive Ý -th root of unity and 9 ; &k�2 Dò�$ . Then 9 is of degree
:j; &�öJ #Ýe$ . It can

be shown (using lengthy calculations) that ���L&H621 ò«3 , i.e.,  ³UWVFò VCYCYCY�VFò.[^]!_í$ is a power integral basis of9 . The minimal polynomial of ò is the cyclotomic polynomial
û ï  #"5$ . For the special case Ý�&�þ5�%\ we

have
û �  #"%$Ö&�" � ]!_J��ìCìCìW�4"r��U (Exercise 3.1.5). I leave it as an exercise to the reader to show that in

this case
# ��&ª ³w2U´$ Å � ]!_ Æ õ³� þ � ] � , provided that þ is odd.

Let us now prove some simple properties of integral bases. As in the proof of Theorem 3.18 we denote by C
the set of all � -bases of 9 comprising elements of ��� only. We have seen that a basis ²?�OC with minimalß #  Ñ² $Cß is an integral basis of 9 . On the other hand, by Exercise 3.3.5 any integral basis ² of 9 is in C and
by Corollary 3.20 has minimal ß #  Ñ²Ö$Cß in C .

3.23 Corollary Let ²��OC . If
#  Ñ²Ö$.& # � , then ² is an integral basis of 9 . ¬

3.24 Corollary Let ²��OC have square-free discriminant
#  Ñ² $ . Then ² is an integral basis of 9 .

Proof Let ² _ ; &
 #a _ VCYCYCY­VFa [ $ be an integral basis of 9 . Then
#  Ñ² $/&
 D@�A�¹ª°£$ � #  Ñ² _ $ , where ° is the² _ -to- ² change-of-basis matrix. Note that the entries of ° are integers. Since

#  Ñ² $ is square-free and
non-zero, we must then have @²A�¹º°Õ&ª® U , i.e.,

#  Ñ² $ & #  Ñ² _ $ & # � . Corollary 3.23 now completes the
proof. ¬
The converse of Corollary 3.24 is not necessarily true, i.e., the discriminant of an integral bases need not be
square-free. For example, look at Case 1 of Example 3.22(1).

3.25 Corollary Let �o #"%$K��621 "73 be a monic irreducible non-constant polynomial with a square-free
discriminant

#  S�N$ . Further let � be a root of � and 9 ; &��2 S�«$ . Then ����&�621p�N3 .
Proof Consider ² ; &� ³UWVX�.VCYCYCY�VX� [C]!_ ${�PC , where

:f; &�@�ACB'� . Then
#  Ñ²Ö$Ö& #  S�N$ is square-free. Now

use Corollary 3.24. ¬
Now we ask the question whether any integer can be the discriminant of a number field. The answer is ‘No’.
To see why let ² ; &� #a _ VCYCYCY­VFa [ $ be an integral basis of 9 . Then

# � & #  Ñ² $¥&� D@�A�¹,' $ � , where ' ; & S	C¢ + å $ ; &g � å  #a²¢�$F$ (See Proposition 3.14). We have @�A�¹,'�&Õã ô�Q:R 9 ØTSR��B��! D
q$ b [¢ æ _ 	 ¢ + ô Å ¢ Æ Ú & Ä�U8V=U�W w1Ä�XZY[Y ,
where Ä�U�V=U�W ; & ã ô�Q�\ 9 b [¢ æ _ 	 ¢ + ô Å ¢ Æ and Ä�XZY[Y ; & ã ô�Q:R 9�] \ 9 b [¢ æ _ 	 ¢ + ô Å ¢ Æ . For any �>�?¨zUWVCYCYCY´V :²© note that � ¢_^ � _ VCYCYCY´V � ¢_^ � [ $ is a permutation of  � _ VCYCYCY­V � [ $ ; call it ` ¢ . If ` ¢ is even, then � ¢  �Ä U8V=U�W $ø&@Ä U8V=U�W
and � ¢³ �Ä�XZY[Yz$0&èÄ�XZY[Y . On the other hand, if `£¢ is odd, then � ¢F �Ä�U8V=U�W*$�&ìÄ�XZY[Y and � ¢F �ÄaX�Y[Y�$�&èÄaU8V=U�W .
In both the cases we have � ¢³ �Ä�U8V=U�W�� ÄaX�Y[YÄ$g& ÄaU8V=U�W0� Ä�XZY[Y and � ¢F �ÄaU8V=U�W�Ä�XZY[Yz$ª& Ä�U8V=U�WJÄ�XZY[Y . By
Exercise 3.3.4 we then have Ä�U8V=U�W2�¸Ä�XZY[Y,V}ÄaU�V=U�WÿÄaX�Y[Yj��� . But each 	­¢ + å & � å  #a²¢�$ is an algebraic integer
and, therefore, Ä�U8V=U�W �ÞÄaX�Y[Y*V}Ä�U8V=U�WÿÄ�XZY[Y��ª�K��h��¯&b6 . This implies that

# �b&� �Ä�U8V=U�W�w¸Ä�XZY[Y�$ � & �Ä U8V=U�W ��Ä�XZY[Yz$ � w�"ÿÄ U�V=U�W ÄaX�YbY F  �Ä U8V=U�W �'Ä�XZY[Yz$ �  D�ø�R@H"*$ . This gives us the following result.

3.26 Theorem [ S t i c k e l b e r g e r ’ s c r i t e r i o n ] Let 9 be a number field. Then
# � F §RV­U¶ D�ø�R@H"*$ . ¬

Finally we inquire about the sign of the discriminant
# � of a number field 9 . The following result is due

to Kronecker.

3.27 Theorem Let 9 be a number field with signature  #¸ _ VF¸ � $ . Then the sign of
# � is  ³w2U´$ ä Ë .

Proof As usual let ² ; &i #a _ VCYCYCY­VFa [ $ be an integral basis of 9 . Then
# �|& #  Ñ² $£&
 D@�A�¹,' $ � , where'
&i � å  #a²¢�$F$ . Consider the matrix �' ; &i � å  #a²¢�$�$ , where bar denotes complex conjugate. If � å is a real
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embedding of 9 , then � å  #a²¢�$/& � å  #a²¢�$ , whereas if � å is a properly complex embedding of 9 , then there
exists a properly complex embedding � å Ô of 9 with � å  #aE¢I$Ö& � å Ô  #a²¢�$ . Thus �' can be obtained from ' by¸ � column exchanges. Hence @�A�¹/'g&�@²A�¹ �'g&g ³w2U´$ ä Ë @�A�¹/' . It follows that @�A�¹,' is purely real or purely
imaginary according as whether ¸ � is even or odd. This proves the result. ¬
As a sample application of the theory developed so far let us look at Euler’s solution of B a c h e t ’ s
e q u a t i o n :

c � &�µ � w�¹'Y (3.19)

Bachet pointed out in 1621 that the only solution of his equation in positive integers is µ(&�x , c &�° .
If we allow negative solutions as well, it turns out that the only integer solutions of Bachet’s equation areµ4&rx , c &r®>° . Exercise 3.3.10 deals with a step-by-step derivation of this result. Bachet was a French
mathematician who is famous for his Latin translation of Diophantus’s Greek book ‘Arithmetica’. He also
published books on mathematical puzzles.

Exercises for Section 3.3

1. Let 9 be a field and � 2 I}ç
ç}ç�I8� d V[9 . Show that the determinant of the V a n d e r m o n d e m a t r i x

d :¢� d ��� 2 I}ç}ç
ç}I8� d �6:<�
ÇÈÈÈÈÉ

/ / / �
�}� /� 2 � 7 � 5 �
�}� � d�=72 �=77 �=75 �
�}� �=7d
...

...
... �
�}� ...� d � 22 � d � 27 � d � 25 �
�}� � d � 2d

Ë ÌÌÌÌÍ
is

düD
e f&g �Dihaf ��� 
 `1�=E�� and that the square of this determinant is

düD
e f&g �Dihaf ��� 
 `1�=E�� 7 �å�N`�/k� d m d � 2 o 487 düDie f4g �D&jg�f ��� 
 `��=EÑ� . (Hint:

Use induction on æ .) In particular, u�á=k d is nonzero, if and only if � 2 I
ç}ç
ç}I,� d are pairwise distinct.

2. Let Z be an odd (rational) prime, v a primitive Z -th root of unity, 9 :<�����hv0� and æ%:<�ßâ=�óZ�� �'Z¦`z/ . Show thatl �¥� l �N/.IOvgI}ç
ç}ç�IOv d � 2��i���N`�/k��m {�� 2 o 487NZ {�� 7 . (Remark: You may assume that �%�¥�j6�P v�R .)
3. Let U¥V0î and v a primitive U -th root of unity. Then �S�nmpoÀs�qsrut!v -!��^>�Q� f _ �h^>� . Show that

l � f _ ��^>�O��ÙºU,wwm�_ o .(Hint: In view of Equation 3.18 it is sufficient to look at × - m t oNe - � fyx_ �hv0�O� . By Exercise 3.1.5 we have ^>_Ý`z/Ý�f _ �h^��{zx�h^>� for some zx�h^>�0Vø6�P ^qR . Differentiate, substitute ^ �)v and take norm.)

4. Let �)V�9 be fixed by all complex embeddings of 9 . Show that �jV�� . (Hint: Assume that û�:¢� P �����=�a:Ä�SRg¤'/ .
Consider any extension of a non-identity embedding of ������� in � to an embedding of 9 in � .)

5. Show that any integral basis of 9 (i.e., of �%� ) is a � -basis of 9 .

6. Let ��I8�kI}|üV � . Show that:

(a) The discriminant of the quadratic polynomial ^%7i 1��^  B| (assumed irreducible over � ) is �}7y`>��| .
(b) Consider the cubic polynomial ^�5i ��3^�7i #��^ß O| (assumed irreducible over � ). Show that substituting ^ by^Þ`>�J+�� reduces this general cubic polynomial to the s t a n d a r d f o r m : ^%5� E~À^  �� , where ~=I��ÝV � . Compute
that

l �h^�56 E~�^  O���i��`���~�5y`«-��T�37 .
7. Let ���h^��6:¢�~^ d  1�3^à 1�!Vø��P ^[R be irreducible. Show thatl �4�x�i�'�O`�/�� d m d � 2 o 487�� æ d � d � 2  z�N`�/k� d � 2 ��æQ`)/�� d � 2 � db� ç

Department of Mathematics Indian Institute of Technology, Kanpur, India



Page 14 of 14 MTH 617 Algebraic number theory

(Hint: Let � be a root of ���h^>� . Then
l �&�x�i�£�N`�/k� d m d � 2 o 4,7x× �h M� , where  >��� x ���=� . First show that �%� � d��� ��m d � 2 o�� ,

so that �������Q�4���h M� , i.e., u�á
¨����S�smpo�s�qnr � v - ��^>�O�y��æ . From �����=���¥� compute the minimal polynomial and hence
the norm of   .)

8. (a) Let 9 :¢��������� , where � is a root of ����^>�a:¢�ß^ 5  ~^  �/ . (Argue that � is irreducible over � .) Computel �&�x�T� l �N/.I8�iI8�M7k� and conclude that � � ��6�P �ªR . (Hint: Corollary 3.25.)

(b) Repeat Part (a) with ���h^>�6:<�j^>5y`�^ `#/ .
(c) Repeat Part (a) with ���h^>�6:<�j^��y`�^ `#/ .

9. Let
l 2 and

l 7 be two square-free rational integers r�'�JI
/ and let 9 2 :¢�·��� " l 2 � and 9 7 :<�l��� " l 7 � . Show that9 2 �~9 7 , if and only if
l 2 � l 7 .

10. ( B a c h e t ’ s e q u a t i o n ) In this exercise one derives that the only (rational) integer solutions of Equation (3.19) (i.e.,
of � 7 ��� 5 `«- ) are �]�~� , �S�cÚY$ .
(a) Show that (3.19) has no solutions with � or � even. (Hint: Reduce modulo � .)
Let �h�MIO�J� be a solution of (3.19) with both � and � odd. Then � 5 admits a factorization in 6�P " `!-MR as � 5 ��h�� " `!-.���h�a` " `!-.� .
(b) Let 9�:<�j��� " `!-*� . Show that � � �j6�P " `!-kR and that � � is a UFD. Also the only units of � � are Úa/ .
(c) Show that ¨3©}uª���Y " `!-�I,� ` " `!-.�i��/ . (Hint: Let �Y 1� " `!- V �>� divide this gcd. Then �� 1� " `!- divides-�� and - " `!- . Take norms.)

(d) Because of unique factorization one can write �a " `!-]�¸Ú���|y jæ " `!-*�N5 for |�I,æ>V�6 . Expand the cube and
equate the real and imaginary parts to conclude that we must have ���¥ÚY$ , so that �¦��� .

11. Show that the only (rational) integer solutions of �À7!����5�`>� are �h�MIO�J�i����-�I�ÚY-.��I
��$JI�Úa/w/�� .
12. We have seen that the discriminant of a non-constant irreducible polynomial in ��P ^[R can be obtained by calculating

the norm of a certain element. Here is an alternative way to proceed.

Let ����^>�a:¢�¸�:�(^ �  ��
�}�w j� 2 ^  j��� and zº��^>�Q:<� � _ ^�_� ¥�
�}�w z� 2 ^  ~��� be non-constant polynomials with
rational coefficients. The S y l v e s t e r m a t r i x associated to �4��I�zJ� is defined as the �h¡  «UL�y�%�h¡  «UL� matrix:

� r�qÑ�&��I�z��6:<�
ÇÈÈÈÈÈÈÈÈÈÈÈÉ
�:� �:� � 2 �
�}� �}�
� � 2 ��� � � �}�}� �� �:� �:� � 2 �}�
� �
�}� � 2 ��� � �}�}� �

. . .
. . .� �
�}� � � � � � � 2 �}�}� �}�}� �}�}�@� 2 � �� _ � _ � 2 �
�}� �}�
� �
�}� � 2 � � � �}�}� �� � _ � _ � 2 �}�
� �
�}� �}�}� � 2 ��� �}�}� �

. . .
. . .� �
�}� � _ � _ � 2 �
�}� �}�}� �}�}� �}�}� � 2 � �

Ë ÌÌÌÌÌÌÌÌÌÌÌÍ
The r e s u l t a n t of � and z is defined as:� á����&��I�zJ�6:<�~u�áZk�� � r:q��4��I�zJ�O��ç
(a) Show that

� á��
�&��I�zJ�0�c� , if and only if � and z have a common root in � (or equivalently, if and only if � and z
admit a nonconstant common divisor in ��P ^[R .) (Hint: Argue that � and z have a common root, if and only if there
exist polynomials ~=��^>��I�����^>�6V ��P ^[R (or in ��P ^[R ) with u�á}¨_~�÷¥U]`#/ and u�á}¨��¶÷�¡ `1/ such that ~��� ���zS�z� .
An attempt to solve for the ¡¸ 1U unknown coefficients of ~ and � gives a linear system. Look at the determinant of
this system.)

** (b) Let � 2 I}ç}ç
ç}I8��� be the roots of � and   2 I}ç}ç
ç�IO  _ the roots of z . Show that

� á����&��I�zJ�T�z� _� � �_ �üE�é 2 _ü
 é 2 ��� E `� �
��T�z� _� �üEné 2 zx��� E �T�£�N`�/k� � _ � �_ _ü
 é 2 ���h p
��ºç
(c) Let ����^>�0Vø��P ^[R be irreducible, monic and of degree æ � / . Deduce that

l �&�x�T�£�N`�/k� d m d � 2 o 487 � á��}�4��I}� x � .
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