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Chapter 2 : Commutative algebra

Broadly speaking commutative algebra is the study of commutative rings (with identity). It constitutes the
basic building block for some other areas of mathematics like algebraic geometry and algebraic number
theory. In fact the *local’ approach in these branches of mathematics owes a great deal to commutative
algebra or more precisely to the study of the prime spectra of rings. However, for this course | plan to
remain more ‘global’ than “local’ (for the sake of simplicity!) and this immediately reduces the requirements
in the usage of commutative algebra tools. Nonetheless, some concepts from commutative algebra will be
deployed in the rest of the course and it is expedient to compile these concepts in a convenient form. Of
course, my selection of topics in this chapter needed for the global treatment of number fields and number
rings would fail to provide the reader the proper flavor of commutative algebra. That does not matter, in
particular, in a one-semester course with rather modest requirements on the part of the participants.

Once again let me iterate that within the framework of this course a ring always means a commutative ring
with identity. Also a ring homomorphism A — B is always assumed to map 1 4 to 1.

2.1 Localization

I planned to stay global and still start with localization. Don’t worry! You may perhaps read the section
heading as ‘Rings of fractions’. | will not very deeply discuss the local issues in rings of fractions.

The concept of formation of fractions of integers to give the rationals can be applied in a more general setup.
Instead of having any non-zero element in the denominator of a fraction we may allow only elements from
a specific subset. All we require to make the collection of fractions a ring is that the allowed denominators
should be closed under multiplication. This leads us to the following definition:

2.1 Definition Let A be aring. A non-empty subset S of A is called multiplicatively closed or
simply multiplicative,if1 € Sandforany s,z € S we have st € S.

2.2 Example (1) For a non-zero ring A the subset A\ {0} is multiplicatively closed, if and only if A is an
integral domain. For a general non-zero ring A the set of all elements a € A such that a is not a zero-divisor
is a multiplicative subset of A.

(2) Let A be aring and a a proper ideal of A. Then the set A \ a is multiplicatively closed, if and only if a
is a prime ideal of A.

(3) Foraring A and an element f € A the set {1, f, f2, f3,...} C A is multiplicatively closed.

Let A be aring and S a multiplicative subset of A. We define a relation ~ on A x S as (a, s) ~ (b,t), if and
only if u(at — bs) = 0 for some u € S. (If A is an integral domain, one may take u = 1 in the definition of
~.) It is easy to check that ~ is an equivalence relation on A x S. The set of equivalence classes of A x S
under ~ is denoted by S~ A, whereas the equivalence class of (a,s) € A x S is denoted as a/s (instead
of as [(a, 5)]). For a/s,b/t € S—1A define (a/s) + (b/t) := (at + bs)/(st) and (a/s)(b/t) := (ab)/(st).
It is easy to check that these operations are well-defined and make S~ A a ring with identity 1/1, in which
each s/1, s € S, is invertible. There is a canonical ring homomorphism 2 : A — S~!A taking a ~ a/1.
In general, 2 is not injective. However, if A is an integral domain and 0 ¢ S, then the injectivity of 2 can be
proved easily (Exercise 2.1.2) and we say that the ring A is canonically embedded in the ring S ! A.

2.3 Definition Let A be aring and S a multiplicative subset of A. The ring S ~' A constructed as above is
called the localization of A away from Sorthe ring of fractions of A with respectto S.
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2.4 Example (1) Let A be an integral domain and let S = A\ {0}. Then S~ A is called the quotient
field orthe field of fractions of A and is denoted as Q(A). If A is already a field, then Q(A) = A.
Other examples include Q(Z) = Q and Q(K[X]) = K(X), K a field, where K (X) denotes the field of
rational functions over K in one indeterminate X .

More generally, if A is any ring and S is the set of all non-zero-divisors of A, then S~ A is called the total
quotient ring of A and is again denoted by Q(A). Itis, in general, not a field. If A is an integral domain,
then S = A\ {0} and the usage of Q(A) remains consistent.

(2) Let A be aring, p a prime ideal of A and S := A\ p. Then S~'A is called the localization of A
at p and is usually denoted by A,.

(3) Let Abearing, f € Aand S = {1, f, f2, f3,...}. Inthis case S~ A is conventionally denoted by A .

This example illustrates a typical way of exploiting the use of different scripts for designating different kinds
of objects. Having said nothing else, it becomes questionable how to distinguish between the meanings of
Ay and Ay. Butour convention is to use Gothic letters (like p) for ideals and italicized Roman letters (like f)
for elements of rings (and some other things too, but for these other things no object with the notation A ; is
defined). This should remove all confusions that may crop up while using similar notations for two different
(and yet similar) kinds of things.

It is important to look at the prime ideals in rings of fractions (though it leads us to the local zone). For a
treatment of general ideals in localizations we refer the reader to Exercise 2.1.4.

2.5 Proposition Let A be a non-zero ring, S a multiplicative subset of A and B := S~!A. Then the prime
ideals of B are in one-to-one inclusion-preserving correspondence with the prime ideals of A that do not
meet S.

Proof Let P, denote the set of prime ideals of B and P, the set of prime ideals of A that do not meet
S. We first defineamap f : P, — P, by B — p := 17 1(*B), where « : A — B is the canonical ring
homomorphism. Clearly p is a prime ideal of A (since for any ring homomorphism the inverse image of a
prime ideal is always prime). In order to show that p does not meet S (i.e., f is well-defined), we assume
otherwise, i.e., let s € p N S. Since 1(p) = 2(a~1(P)) C B, it follows that s/1 € P. But s/1 is a unit in B
and hence ‘3 is the unit ideal, a contradiction.

Conversely, we defineamap g : P, — Prbyp — B := S~'p := {a/b| a € p,b € S}. Clearly P is
an ideal of B. We claim that ‘B is a proper ideal of B, for if not, a/b = 1/1 for somea € pand b € S.
But then u(a — b) = 0 for some v € S. Since p NS = O, it follows that w ¢ p and a — b & p, but their
product (i.e., 0) is in p, a contradiction to the fact that p is prime. Now let a/b,c/d & B, i.e., a,c & p and
b,d € S. Since p is prime, ac ¢ p, and since S is multiplicatively closed, bd € S. One can then check that
(a/b)(c/d) = (ac)/(bd) ¢ B. Thus P is a prime ideal of B, i.e., g is well-defined.

Checking that f and g are inverses of one another is left to the reader as an easy exercise. It is also clear that
this correspondence is inclusion-preserving. |

All number rings are instances of a particular kind of rings known as Dedekind domains in which non-zero
ideals admit unique factorization (in some sense). One possible way to define Dedekind domains is to use
the theory of localizations. This is, however, the local definition. We will later provide a global definition
and prove that these two definitions are actually equivalent. We start by giving a series of definitions.

2.6 Definition A (non-zero) ring A with a unique maximal ideal m is called a local ring. In that case
the field A/m is called the residue field of A.

The next example gives a justification for these terms.

Department of Mathematics Indian Institute of Technology, Kanpur, India



Chapter 2: Commutative algebra Page 3 of 10

2.7 Example Let A be ring and p a prime ideal of A. It follows from Proposition 2.5 that the localization
A, is alocal ring with the unique maximal ideal p A, generated by elements a/b, a € p, b € p. The residue
field A, /pA, is canonically isomorphic to the quotient field Q(A/p) of the integral domain A/p under the
ring homomorphism (a/b) + pA, — (a +p)/(b+p),a € A, b€ A\ p. In particular, if m is a maximal
ideal of A, then the fields A/m and A.,/mA,, are isomorphic.

2.8 Definition Aring Aiscalleda discrete valuation ring (DVR)ora discrete valuation
domain (DVD), if A is a local principal ideal domain.

Some immediate properties of DVRs are explored in Exercise 2.1.7. Let me now furnish the local definition
of Dedekind domains. Unfortunately, however, | have to use a term — “‘Noetherian’ — that is not defined yet.
In Section 3 of this chapter we will see three equivalent ways of defining a Noetherian ring.

2.9 Definition Aring Aiscalleda Dedekind domain, if A isa Noetherian integral domain such that
the localization Ay is a DVR for every non-zero prime ideal p of A.

I will, however, make little use of Definition 2.9 while dealing with number rings. It’s, however, not a bad
idea to tell the readers the different avenues to reach the same location.

Exercisesfor Section 2.1
. Let A bearingand S a multiplicatively closed subset of A. Show that if 0 € S, then S—! A4 is the zero ring.

. Let Abearing, S C A multiplicative ands : A — S~ A the canonical ring homomorphism a ~ a/1. Show that:
(@) o(s) is invertible in S—1 A for every s € S.

(b) +(a) =0, ifand only if as = 0 forsome s € S.

(c) « isinjective, if and only if S is contained in the set of non-zero-divisors of A.

. [Universal property of rings of fractions] Let A, S and be as in Exercise 2.1.2. Further suppose
that ¢ : A — B is a ring homomorphism such that p(s) € B* for all s € S. Show that there exists a unique ring
homomorphism ) : S~1 A — B satisfying ¢ = ¢ 0.

. Let A be aring, S a multiplicative subset of A, B := S~'A and : A — B the canonical homomorphism. For any
subset T' of A we use the notation S—'7":= {t/s | s € S,t € T}.

(@) Let a be an ideal of A. Show that the extended ideal a¢ in B is the ideal S—1a.
(b) Show that every ideal in B is an extended ideal.

. Let A be a ring (not necessarily an integral domain) and let Q(A) denote (as usual) the total quotient ring of A. Show
that every element of Q(A) is either a zero-divisor or a unit.

. A multiplicative subset S of aring A is called saturated, ifab € S (with a,b € A) impliesthata € Sandb € S.
Show that S is a saturated multiplicative subset of A, if and only if A \ S is a union of prime ideals (of A). (Hint:
For proving the “only if” part let P denote the set of all prime ideals of A contained in A \ S. One can show that
A\ S =Upeph as follows. Clearly (J,cpp C A\ S. For the converse take any z € A \ S. First show that z/1 is

nota unitis S—1A. Then z/1 is contained in a maximal ideal S—1p of S~ A for some p € P. Provethatz € p.)

. Let A be a DVR with maximal ideal m = (p). Prove the following assertions:

(@) AisaUFD.

(b) The only primes in A are the associates of p. (Hint: In a PID non-zero prime ideals are maximal.)
(c) Every non-zero element of A can be written as up®, where v isa unitof Aand o € Z .

(d) Every non-zero ideal of A is of the form (p®) for some a € Z..
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(e) A has only one non-zero prime ideal (namely, m).

(Remark: The prime p of Aiscalleda uniformizing parameter orauniformizer for A and is unique up
to multiplication by units.

Themapv: A\ {0} — Z, taking up® — aiscalleda discrete valuation of A and can be naturally extended
to a group homomorphism v : K* — Z by defining v(a/b) := v(a) — v(b), where a,b € A, b # 0 and K = Q(A)
is the quotient field of A. It is often convenient to define »(0) := +o0. It follows that A = {z € K | v(z) > 0} and
m={z € K |v(z) >0})

. [Polynomial rings over a UFD] Let AbeaUFDand K := Q(A).

*

(a) Show that every non-zero f(X) € K[X] can be written as f(X) = af1(X) for some o € K* and for some
primitive polynomial f1(X) € A[X]. Show further that o and f; are uniquely determined by f up to multiplication
by units of A.

(b) Let f(X) € A[X] be a non-constant polynomial. Prove that f is irreducible over A, if and only if f is irreducible
over K. (Hint: Use Part (a) and Exercise 1.1.5.) In particular, the irreducible elements of A[X] are those of A and the
primitive polynomials in A[X] that are irreducible in K[X].

(c) Deduce that A[X] is a UFD and so also are the domains A[X4,...,X,] foralln € N.

2.2 Integral dependence

The concept of integral dependence is at the heart of defining the number rings in an attempt to generalize
the notion of ‘integers’. Recall that if K C L is a field extension, then an element « € L is called algebraic
over K, if a is a root of a non-zero polynomial f € K[X]. Since K is a field, the polynomial f can be
divided by its leading coefficient, thereby giving a monic polynomial in K[X] of which « is a root. However,
if K and L are general rings (i.e., not fields), division by the leading coefficient is not always permissible.
This leads us to the following definition.

2.10 Definition Let A C B be an extension of rings. An element « € B is said to be integral over
A, if o satisfies? (i.e., is a root of) a monic (and hence non-zero) polynomial f € A[X]. An equation of the
form f(a) =0, f € A[X] monic, is called an equation of integral dependence of « over A.

2.11 Example (1) If both A and B are fields, the concepts of “integral” and “algebraic” elements are the
same. (See the argument preceding Definition 2.10.)

(2) Take A := Z and B := Q and let a/b € Q, ged(a,b) = 1, be integral over Z. Let (a/b)"™ +
an_1(a/b)" "t + .-+ + a1(a/b) + ag, a; € Z, be an equation of integral dependence of a/b over Z.
Multiplication by b™ gives a™ = —b(ap_1a" 1+ -+ a1ab” 2+ b 1), i.e., b | a™. Since ged(a,b) = 1,
this forces b = +1, i.e., a/b € Z. This is, in general, true for any UFD A and its field of fractions B = Q(A)
(See Exercise 2.2.1).

(3) Every element « € A is integral over A, since it satisfies the monic polynomial X — a € A[X].

Now let A C B be an extension of rings and let C consist of all the elements of B that are integral over A.
Clearly A C C' C B. But what algebraic structure does C' actually have? It turns out that C' is again a ring.
This result is not at all immediate from the definition of integral elements. We prove this fact by using the
following lemma which sort of generalizes Theorem 1.62.

IStrictly speaking o being a root of f(X) is equivalent to « satisfying the polynomial equation f(a:) = 0. But often the term
‘equation’ is dropped in this context — a harmless colloquial contraction.
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2.12 Lemma For aring extension A C B and for o € B the following conditions are equivalent:
(@) a is integral over A.

(b) A[«] is a finitely generated A-module.

(c) A[a] C C for some subring C of B with C being a finitely generated A-module.

Proof [(a)=(b)] Let " + ap_10™ L +---+aia+ag =0, a; € A, be an equation of integral dependence
of aover A. Ala] = {f(a) | f(X) € A[X]} is generated as an A-module by 1, o, @, ... . In order to show
that only the elements 1, o, . . . , o™~ ! generate A[c] as an A-module, it is sufficient to show that each o*, k €
Z., is an A-linear combination of 1, «, ..., o™ !. We proceed by induction on k. The assertion certainly
holds for k = 0,...,n — 1, whereas for k > n we write o = —(ap_1*71 4+ -+ + a1aF "1 4+ gpaf ™),
whence induction completes the proof.

[(b)=(c)] Take C := A[q].

[(€)=(a)] Let~1,-..,vn € C generate C as an A-module. Since A[a] C C and, in particular, a € C, for all
i=1,...,nwecanwrite ay; = 337 a;;7y; forsome a;; € A. Let2 denote the matrix (adi; —aij)1<i,j<n.
where 4;; is the Kronecker delta. Then 2(v1,...,7,)" = (0,...,0)*. Multiplication (on the left) by the
adjoint of 2( shows that (det2()y; = 0 foralls =1,...,n. Since1l € C,we have 1 = 3% , b;~y; for some
b; € A, sothat (det®) -1 =0, i.e., det 2 = 0. But det 2 is a monic polynomial in « of degree » and with
coefficients from A. |

2.13 Proposition For an extension A C B of rings the set
C :={a € B | aisintegral over A}

is a subring of B containing A.

Proof Clearly A C C C B assets. To show that C'isaring let «, 8 € C. By Condition (b) of Lemma 2.12
Ala] is afinitely generated A-module. Now 3 being integral over A is also integral over A[a], so that again
by 2.12(b) A[«][B] is a finitely generated A[«]-module. It is then easy to check that A[a, 8] = Al«][f] is
a finitely generated A-module. Since o &+ g and o are in Ala, 8], by condition 2.12(c) these elements are
integral over A, i.e., belong to C. Thus C'is aring. |

This proposition leads us to the following important definitions.

2.14 Definition The ring C of Proposition 2.13 is called the integral closure of Ain B. A is called
integrally closed in B, if C = A. On the other hand, if C = B, we say that B is an integral
extension of Aorthat Bis integral over A.

An integral domain A is called integrally closed (without specific mention of the ring in which it is
s0), if A is integrally closed in its quotient field Q(A). An integrally closed integral domain is sometimes
alsotermeda normal domain (ND).

2.15 Example (1) Z (or more generally any UFD) is an ND.

(2) Z is not integrally closed in R or C, since, for example, v/2 € R\Z is integral over Z. The integral closure
of Z in C is often denoted by A. Elements of A are called algebraic integers. (See Exercise 1.4.8.)

After much ado we are finally in a position to define the basic objects of study in this course.
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2.16 Definition A number field K is defined to be a finite (and hence algebraic) extension of the field
Q of rational numbers. Clearly @ C K C C with [K : Q] finite.

Note that there exist considerable controversies among mathematicians in accepting this definition of
number fields. Some insist that any field K satisfying Q@ € K C C should be called a number field.
Some others restrict the definition by further demanding that one must have K algebraic over (9. However,
the fields K with infinite extension degree [K : Q] are allowed. We restrict the definition further by
imposing the condition that [K : Q] has to be finite. Our restricted definition is seemingly the most widely
accepted one. Whether or not this is the case is rather immaterial. We will study only the number fields of
Definition 2.16 and accepting this definition would at the minimum save us from writing huge expressions
like *algebraic number fields of finite extension degree over (Q’ to denote ‘number fields’.

For number fields the notion of integral closure leads to the following definition.

2.17 Definition Let K be a number field. Then K contains Q and hence Z. The integral closure of Z in K
iscalled the ring of integers of K and is denoted by O k. (O is the Gothic ‘O’.) Clearly Z C O C K
and O is an integral domain. We also have O ¢ = ANK. A number ring isaring which is (isomorphic
to) the ring of integers of a number field.

Other notations commonly used for O k are Z i and O, where O is the upper case ‘O’ in the calligraphic
script. The use of the letter ‘O’ is attributed to Gauss who coined the term order to denote some related
objects. Students may use any of the notations O g, Z i or O interchangeably to denote number rings. But
if one deals with curves (like elliptic curves), the point at infinity is also denoted by O. It is, therefore, safer
to avoid using the calligraphic style O in the context of number rings.

By Example 2.11(2) the ring of integers of the number field Qis Z, i.e., O g = Z. Itis, therefore, customary
to call the elements of Z rational integers. Since Z is naturally embedded in O g for any number
field K, it is important to notice the distinction between the integers of K (i.e., the elements of O g) and the
rational integers of K (i.e., the images of the canonical inclusion Z — K).

Some simple properties of number rings are listed below.

2.18 Proposition Let K be a number field. Then the following statements hold:
DOxkNQ=2Z.

(2) For a € K there exists a rational integer a € Z such that ac € O k. In particular, the quotient field of
DK is K.

(3) Ok isintegrally closed in K = Q(Ok), i.e., Ok is a normal domain.
Proof (1) follows immediately from Example 2.11(2). (2) follows from Exercise 1.4.8 of Chapter 1. Finally
(3) follows from Exercise 2.2.2(b). <

The rest of the course is devoted to investigating some other properties of the number rings O x. Let us now
continue our study of commutative algebra.

Exercisesfor Section 2.2

. Show that every UFD is an ND. (Hint: Imitate the case of Z as described in Example 2.11(2).)

. (@ If AC Band B C C are integral extensions of rings, show that A C C is also an integral extension.
(b) Let A C B be an extension of rings. Show that the integral closure of A in B is integrally closed in B.
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(c) Let A C B be an integral extension of rings, b an ideal of B and a := A N b. (Note that a is an ideal of A.
Moreover, if b is prime in B, then a is also prime in A.) Show that B/b is an integral extension of 4/a.

. Let A C B be an extension of integral domains, a a finitely generated non-zero ideal of A andy € B. If yva C a,
show that -~y is integral over A. (Hint: Leta = Azy + --- + Az,, z; € a. For each i write vx; = Z;’Zl ai;x;,

ai; € A. Butthen detd = 0, where 2 = (vd3; — a5)1<i,j<n 0ij being the Kronecker delta.)

. (@) Let A C B be an integral extension of integral domains. Show that A is a field, if and only if B is a field.

(b) Let A C B be an integral extension of rings, ¢ a prime ideal of B and p := A N ¢. Show that p is maximal in A,
if and only if ¢ is maximal in B. (Hint: Use (a) and Exercise 2.2.2(c).)

(c) Let A, B, p and g be as in (b). Further let g’ be another prime ideal of B with p = A N q’. Show thatif g C ¢,
then g = ¢'. (Hint: Let S := A\ p. By Exercise 2.2.5 below By := S~'B is integral over A, = S~ A. Let m be the
ideal generated by p in Ay and let n and n’ be the ideals of By, generated respectively by ¢ and q’. Now use Part (b).)

. Let A C B be aring extension and let C be the integral closure of A in B. Show that for any multiplicative set S of A

*

(and hence of B and C) the integral closure of S~ A in S~'Bis S~1C. In particular, if A is integrally closed in B,
thensois S~'Ain S—!B.

Let A be an integral domain. Show that the following conditions are equivalent:
(1) A is integrally closed.

(2) Ay is integrally closed for every prime ideal p of A.

(3) A is integrally closed for every maximal ideal m of A.

(Hint: For proving “(1)=-(2)” use Exercise 2.2.5. For proving “(3)=>(1)" show first that A = ﬂmespmA Am.)

A quadratic number field isanumber field K with [K : Q] = 2.
(a) Show that every quadratic number field & can be represented as K = Q(+/D) for a square-free integer D # 0, 1.
(b) Let K := Q(+/D) for some square-free integer D # 0, 1. Show that:

o, = {Z [#] > ZIX]/{X?- X +152) ifD=1(mod4),

Z[|VD] = Z[X]/(X? - D) if D = 2,3 (mod 4).

(In particular, the ring of integers of Q(i) = {a+ib| a,b € Q} isthering Z[i] = {a+ib | a,b € Z} of Gaussian
integers.)

2.3 Noetherian rings

Recall that a PID is a ring (integral domain) in which every ideal is principal, i.e., generated by a single
element. We may now be a bit more general and demand every ideal to be finitely generated. If a ring
meets our demand, we call it a Noetherian ring. As we now see, there are other equivalent ways of
defining Noetherian rings. These rings are named after Emmy Noether (1882-1935) who was one of
the most celebrated lady mathematicians of all ages and whose work on Noetherian rings has been very
fundamental and deep in the branch of algebra. Emmy’s father Max Noether (1844-1921) was also an
eminent mathematician.

2.19 Definition Let Abearingandleta; Cay Cag C---bean ascending chain of ideals of A.
This chain is called stationary, if there is an n € N such that a,, = ap11 = ap42 = ---. Thering A is
said to satisfy the ascending chain condition orthe ACC, if every ascending chain of ideals in A4 is
s:caF(ijone;lry, o;lin other words, if there does not exist any infinite strictly ascending chaina; G as Gaz G ---
of ideals in A.
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2.20 Proposition For aring A the following conditions are equivalent:
(a) Every ideal of A is finitely generated.
(b) A satisfies the ascending chain condition.

(c) Every non-empty set of ideals of A contains a maximal element.

Proof [(a)=>(b)] Leta; C as C --- be an ascending chain of ideals of A. Consider the ideal a := |J,,cy an
which is finitely generated by hypothesis. Let a1, ..., a, be a set of generators of a. Each a; € g, i.e., there
exists m; € N such that a; € ay,; and hence a; € a,, for every n > m,;. Take m := max(m1,...,my).
Then for every n > m we have a C a,,, i.e., a = a,,.

[(b)=-(c)] Let S be a non-empty set of ideals of A. Order S by inclusion. The ACC implies that every chain
in S has an upper bound in S. By Zorn’s lemma S has a maximal element.

[(c)=-(a)] Let a be an ideal of A. Consider the set S of all finitely generated ideals of A contained in a. S'is
non-empty, since it contains the zero ideal. By condition (c) S has a maximal element, say, b. If b g a, take
a € a\ b. Then b + (a) is finitely generated (since b is so), properly contains b and is contained in a. This
contradicts the maximality of b in S. Thus we must have a = b, i.e., a is finitely generated. <

2.21 Definition Arring A is called Noetherian, if A satisfies (one and hence all of) the equivalent
conditions of Proposition 2.20.

2.22 Example (1) All PIDs are Noetherian, since principal ideals are obviously finitely generated. In
particular, Z and K[X] (K a field) are Noetherian.

(2) If A is Noetherian and a an ideal of A, then A/a is Noetherian, since the ideals of A/a are in one-to-one
inclusion-preserving correspondence with the ideals of A containing a and hence satisfy the ACC.

(3) Let A be a Noetherian ring and S a multiplicative subset of A. Then the localization B := S~ A is also
Noetherian. To prove this fact let b be an ideal in B. By Exercise 2.1.4(b) b = S 'a for some ideal a of
A. Since A is Noetherian, a is finitely generated, say, a = (a1, ..., a,). It is now (almost) obvious that b is
generated by a1 /1,...,a,/1. A particular case is that if A is Noetherian and p a prime ideal of A, then the
localization A, is also Noetherian.

(4) We will later prove that all number rings O i are Noetherian.

(5) Thering A := Z[ X1, X2, X3, . . .] of polynomials with infinitely many indeterminates X, X2, X3, ... is
not Noetherian. This is because the ideal (X, X9, X3, ...) is not finitely generated, or alternatively because
we can produce the infinite strictly ascending chain of ideals: (X1) G (X1, X2) G (X1, X0, X3) G ---,
or because the set S := {(X1), (X1, X2), (X1, X2, X3),...} of ideals in A does not contain a maximal
element.

In a similar manner one may define the descending chain condition (DCC) on ideals. A ring
satisfying the DCC is called Artinian (after Emil Artin). An Artinian ring is always Noetherian, but not
conversely. We will not study Artinian rings in this course.

We have seen that if A is a PID, the polynomial ring A[X] need not be a PID. However, the property of
being Noetherian is preserved during the passage from A to A[X].

2.23 Theorem [Hilbert’s basis theorem] If A isa Noetherian ring, then so is the polynomial
ring A[X1,...,X,] forn € N. In particular, the rings Z[X1, ..., X,] and K[X1,..., X,] are Noetherian,
where K is a field.

Proof  Using induction on n and the fact that A[X,...,X,] = A[X1,..., X,—1][X,] we can reduce
the proof to the case of n = 1, that is, it is sufficient to prove that if A is Noetherian, then A[X] is also
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Noetherian. Let a be a non-zero ideal of A[X]. Assume that a is not finitely generated. Then we can
inductively choose non-zero polynomials f1, fs, f3, - .. from a such that for each 72 € N the polynomial f; is
one having the smallest degree in a \ (f1,..., fi—1). Letd; := deg f;. Thend; < d2 < d3 < ---. Letg;
denote the leading coefficient of f;. Consider the ideal b := (a; | ¢ € N) in A. By hypothesis b is finitely
generated, say, b = (a1,...,a,). This, in particular, implies that a, 1 = Y_;_; via; for some v; € A. But
then the polynomial g := fr11—Y"_; 7 X%+1=% f; belongs to a\ (f1, ..., fr) (since fri1 & (f1,..., fr)),
is non-zero, in particular, and has degree < d,1, a contradiction to the choice of f,,;. Thus a must be
finitely generated. |

Now we give an alternative definition of Dedekind domains.

2.24 Definition An integral domain A is calleda Dedekind domain, if it satisfies all of the following
three conditions:

(1) A is Noetherian.
(2) Every non-zero prime ideal of A is maximal.
(3) A isintegrally closed (in its quotient field K := Q(A)).

I will now show that the two definitions 2.9 and 2.24 are equivalent. But before this is done, we need to
distinguish between the two classes of rings introduced in these two definitions. Let us call a Dedekind
domain as per Definition 2.9 a DD, and a Dedekind domain as per Definition 2.24 a DDs.

2.25 Proposition Let A be a ring which is not a field. Then A isa DDy, if and only if A isa DD,.
Proving this proposition requires the following lemma.

2.26 Lemma Let A be a local Noetherian integral domain which is not a field. Assume further that the
maximal ideal m # 0 of A is the only non-zero prime ideal of A. Then A is a DVR (i.e., a PID), if and only
if A is integrally closed.

Proof [if] Choose any a € m, a # 0. Foreach b € Atheseta, := {r € A | rb € Aa} is an ideal of A
containing the ideal Aa. Since A is Noetherian, the (non-empty) set S := {a; | b ¢ Aa} has a maximal
element, say a. (Proposition 2.20). Then a,. # 0, since a. contains the non-zero ideal Aa. Also a. # A, since
1 & a.. Nowletzy € a, withz & a.. Then zc € Aa and a,. € S contains both a, and y. By the maximality
of a. in S we then have y € a.. Thus a. is prime and hence, by hypothesis, a. = m, i.e., mc C Aa. This, in
turn, implies that each cz, € m, is a multiple of a. Then (¢/a)m = {(c¢/a)z | z € m} C A s an ideal of
A. We claim that (c/a)m = A. For the proof assume otherwise, i.e., (¢/a)m C m. A is Noetherian and so
by Exercise 2.2.3 ¢/a is integral over A. By hypothesis A is integrally closed, so that ¢/a € A, i.e., ¢ € Aa,
a contradiction. Thus (c/a)m = A4, i.e., (¢/a)a = 1 for some a € m, i.e.,, m = Aa is principal.

Now let a be a non-zero ideal of A. Consider the chain a C (1/a)a C (1/a?)a C --- of subsets of
Q(A). Assume that (1/a*)a is a subset (and hence an ideal) of A for each k € Z .. Since A is Noetherian,
the chain must be stationary, i.e., (1/a*)a = (1/a**!)a for some &, i.e.,, (1/a)a = a. Once again by
Exercise 2.2.3 this implies that 1/a = ¢/a is integral over A, a contradiction. Thus, for some k € Z ;. we
have (1/a*)a C A, but (1/a**1)a € A. If (1/a¥)a is a proper ideal of A, then (1/a*)a C m = Aq, ie.,
(1/a**1)a C A, a contradiction. Therefore, (1/a*)a = A, i.e., a = AoF, i.e., ais principal.

[only if] A UFD (in particular, a PID) is integrally closed. |
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Proof of Proposition 2.25 [if] Let p # 0 be a prime ideal of A. Then A, is clearly a Noetherian local
integral domain and is integrally closed by Exercise 2.2.6. Moreover, since each non-zero prime ideal of A
is maximal, p A, is the only non-zero prime ideal of A,. Then by Lemma 2.26 A, is a DVR.

[only if] That A is Noetherian follows from definition of DD;. In order to show that A is integrally closed
we use Exercise 2.2.6 and the fact that for each non-zero prime ideal p of A the localization A, isa DVR (by
definition of DD;) and hence is integrally closed (A PID is a UFD.). Finally let p be a non-zero prime ideal
of A. p is contained in a maximal (and hence prime) ideal p’ of A. By the correspondence of Proposition 2.5
pAy C p'Ay are prime ideals of A,. By definition A, is a DVR and hence contains a unique non-zero
prime ideal (Exercise 2.1.7). This implies that pA, = p' Ay, ie., p =1p'. <

Henceforth, we will use the abbreviation DD to stand for Dedekind domain. Thus DD, DD and DD, are
now the same concepts.

Exercisesfor Section 2.3

. Let A C B be an extension of rings. Prove or disprove:

(a) If Ais Noetherian, then B is necessarily Noetherian.
(b) If B is Noetherian, then A is necessarily Noetherian.

. Let B be a finitely generated A-algebra. Prove or disprove:

*

(a) If Ais Noetherian, then B is necessarily Noetherian.
(b) If B is Noetherian, then A is necessarily Noetherian.

. Let A be a ring with the property that every non-empty set of finitely generated ideals of A has a maximal element.

Show that A is Noetherian.

. (@) Let A be a Noetherian ring, a an ideal of A and b := /a. Show that a D b™ for some m € N. (Hint: Let

b= (b,...,b;)andletd]* € a,m; € N. Youmay takeanym > 1+ >, ,(m; —1).)
(b) Demonstrate by an example that the result of Part (a) does not necessarily hold, if A is not Noetherian.

. Let A be a Dedekind domain and S a multiplicative subset of A. Show that S~ A is also a Dedekind domain. (Hint:

Every prime ideal of S—1A is of the form S—1p, where p is a prime ideal of A (that does not meet S). Verify that
Ap = (871 A)g-1p and then use Definition 2.9.)

. Let A be a Dedekind domain.

(a) Letp; and p2 be two distinct non-zero prime ideals of A. Show that for any e;,e2 € N we have p7* +p52 = A
(Hint: Since p; and p, are maximal, we have p; +po = A, i.e,, a; + ax = 1 forsome a; € p; and a2 € p2. Now
use the fact that (a1 + ag)¢* 12 = 1.)

(b) Leta:=pit--- pé be anon-zero ideal of A with pairwise distinct prime ideals p; and with e; € N. Show that
Afa =T, (A/p*). (Hint: Use the CRT and Exercise 1.2.2.)
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