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Chapter 2 : Commutative algebra

Broadly speaking commutative algebra is the study of commutative rings (with identity). It constitutes the
basic building block for some other areas of mathematics like algebraic geometry and algebraic number
theory. In fact the ‘local’ approach in these branches of mathematics owes a great deal to commutative
algebra or more precisely to the study of the prime spectra of rings. However, for this course I plan to
remain more ‘global’ than ‘local’ (for the sake of simplicity!) and this immediately reduces the requirements
in the usage of commutative algebra tools. Nonetheless, some concepts from commutative algebra will be
deployed in the rest of the course and it is expedient to compile these concepts in a convenient form. Of
course, my selection of topics in this chapter needed for the global treatment of number fields and number
rings would fail to provide the reader the proper flavor of commutative algebra. That does not matter, in
particular, in a one-semester course with rather modest requirements on the part of the participants.

Once again let me iterate that within the framework of this course a r i n g always means a commutative ring
with identity. Also a ring homomorphism

�����
is always assumed to map ��� to �	� .

2.1 Localization

I planned to stay global and still start with localization. Don’t worry! You may perhaps read the section
heading as ‘Rings of fractions’. I will not very deeply discuss the local issues in rings of fractions.

The concept of formation of fractions of integers to give the rationals can be applied in a more general setup.
Instead of having any non-zero element in the denominator of a fraction we may allow only elements from
a specific subset. All we require to make the collection of fractions a ring is that the allowed denominators
should be closed under multiplication. This leads us to the following definition:

2.1 Definition Let
�

be a ring. A non-empty subset 
 of
�

is called m u l t i p l i c a t i v e l y c l o s e d or
simply m u l t i p l i c a t i v e , if ���
 and for any �������
 we have ������
 .

2.2 Example (1) For a non-zero ring
�

the subset
�����	���

is multiplicatively closed, if and only if
�

is an
integral domain. For a general non-zero ring

�
the set of all elements ��� � such that � is not a zero-divisor

is a multiplicative subset of
�

.

(2) Let
�

be a ring and � a proper ideal of
�

. Then the set
��� � is multiplicatively closed, if and only if �

is a prime ideal of
�

.

(3) For a ring
�

and an element  !� � the set
� �"�# $�# &%"�# (')�+*+*+* �-,�� is multiplicatively closed.

Let
�

be a ring and 
 a multiplicative subset of
�

. We define a relation . on
�0/ 
 as 12�3�#�)45.61879����4 , if and

only if :;12�<�>=?7@�"4>A � for some :!�
 . (If
�

is an integral domain, one may take :BA6� in the definition of
. .) It is easy to check that . is an equivalence relation on

�C/ 
 . The set of equivalence classes of
�C/ 


under . is denoted by 
�DFE � , whereas the equivalence class of 12�3�#�)4-� �G/ 
 is denoted as �IH"� (instead
of as JK12�L�#�"4NM ). For �OH"�P�#7+H9�Q�R
 DFE � define 12�IH"�"4;S�187+H9��4UTVAW12�<�XSY7Z�"4�HI18���[4 and 12�OH"�)4Z187+H9�[4\TVAW12��7+4�HI18�	��4 .
It is easy to check that these operations are well-defined and make 
 DFE � a ring with identity �	H�� , in which
each �"H�� , ���]
 , is invertible. There is a canonical ring homomorphism ^_T �`� 
UDFE � taking ��a� �OH�� .
In general, ^ is not injective. However, if

�
is an integral domain and

��b�R
 , then the injectivity of ^ can be
proved easily (Exercise 2.1.2) and we say that the ring

�
is canonically embedded in the ring 
QDFE � .

2.3 Definition Let
�

be a ring and 
 a multiplicative subset of
�

. The ring 
 DFE � constructed as above is
called the l o c a l i z a t i o n o f

�
a w a y f r o m 
 or the r i n g o f f r a c t i o n s of

�
with respect to 
 .
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2.4 Example (1) Let
�

be an integral domain and let 
]A �Y�\�	��� . Then 
 DFE � is called the q u o t i e n t
f i e l d or the f i e l d o f f r a c t i o n s of

�
and is denoted as cd1 � 4 . If

�
is already a field, then cd1 � 4 .A � .

Other examples include ce12f_4gAih and cj12klJ mnMo4pAikl1omq4 , k a field, where kl1omq4 denotes the field of
rational functions over k in one indeterminate m .

More generally, if
�

is any ring and 
 is the set of all non-zero-divisors of
�

, then 
QDFE � is called the t o t a l
q u o t i e n t r i n g of

�
and is again denoted by cj1 � 4 . It is, in general, not a field. If

�
is an integral domain,

then 
rA �Y�U�	��� and the usage of c 1 � 4 remains consistent.

(2) Let
�

be a ring, s a prime ideal of
�

and 
]TVA �l� s . Then 
 DFE � is called the l o c a l i z a t i o n o f
�

a t s and is usually denoted by
�\t

.

(3) Let
�

be a ring,  q� � and 
�A � �"�# $�# % �# ' �+*+*+* � . In this case 
�DFE � is conventionally denoted by
�-u

.

This example illustrates a typical way of exploiting the use of different scripts for designating different kinds
of objects. Having said nothing else, it becomes questionable how to distinguish between the meanings of�_t

and
�Qu

. But our convention is to use Gothic letters (like s ) for ideals and italicized Roman letters (like  )
for elements of rings (and some other things too, but for these other things no object with the notation

�vu
is

defined). This should remove all confusions that may crop up while using similar notations for two different
(and yet similar) kinds of things.

It is important to look at the prime ideals in rings of fractions (though it leads us to the local zone). For a
treatment of general ideals in localizations we refer the reader to Exercise 2.1.4.

2.5 Proposition Let
�

be a non-zero ring, 
 a multiplicative subset of
�

and
� TVA�
 DFE � . Then the prime

ideals of
�

are in one-to-one inclusion-preserving correspondence with the prime ideals of
�

that do not
meet 
 .

Proof Let w E denote the set of prime ideals of
�

and w % the set of prime ideals of
�

that do not meet

 . We first define a map  �T>w E

� w % by xya� slTVAz^{DFE91ox�4 , where ^|T �}� �
is the canonical ring

homomorphism. Clearly s is a prime ideal of
�

(since for any ring homomorphism the inverse image of a
prime ideal is always prime). In order to show that s does not meet 
 (i.e.,  is well-defined), we assume
otherwise, i.e., let �~��sQ��
 . Since ^�1�sO4�A�^�1o^[DFE)1ox�4�4 , x , it follows that �)H��|�nx . But �"H�� is a unit in

�
and hence x is the unit ideal, a contradiction.

Conversely, we define a map ��T&w %
� w E by sqa� xyTVA�
 DFE s�TVA � �OH"7n�(���]sL�#7��0
 � . Clearly x is

an ideal of
�

. We claim that x is a proper ideal of
�

, for if not, �OH"7jA��	H�� for some ���]s and 7���
 .
But then :;12�v=l7+4QA �

for some :Y�Y
 . Since s|�q
�Ai� , it follows that : b�rs and �v=l7 b�rs , but their
product (i.e.,

�
) is in s , a contradiction to the fact that s is prime. Now let �OH"79�[��H)� b�qx , i.e., �L�[� b�qs and

79�[���q
 . Since s is prime, �<� b�ns , and since 
 is multiplicatively closed, 7����R
 . One can then check that
12�OH"7Z4Z12��H)�I4�A612����4�HI187@��4 b��x . Thus x is a prime ideal of

�
, i.e., � is well-defined.

Checking that  and � are inverses of one another is left to the reader as an easy exercise. It is also clear that
this correspondence is inclusion-preserving. �
All number rings are instances of a particular kind of rings known as Dedekind domains in which non-zero
ideals admit unique factorization (in some sense). One possible way to define Dedekind domains is to use
the theory of localizations. This is, however, the local definition. We will later provide a global definition
and prove that these two definitions are actually equivalent. We start by giving a series of definitions.

2.6 Definition A (non-zero) ring
�

with a unique maximal ideal � is called a l o c a l r i n g . In that case
the field

� H�� is called the r e s i d u e f i e l d of
�

.

The next example gives a justification for these terms.
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2.7 Example Let
�

be ring and s a prime ideal of
�

. It follows from Proposition 2.5 that the localization�_t
is a local ring with the unique maximal ideal s �Qt generated by elements �OH"7 , �B��s , 7 b�ns . The residue

field
�_t H	s �gt is canonically isomorphic to the quotient field cj1 � H	sI4 of the integral domain

� H	s under the
ring homomorphism 12�OH"7Z4;SYs �Ut a� 12�|S]sO4�HI187�SlsI4 , �� � , 7j� ��� s . In particular, if � is a maximal
ideal of

�
, then the fields

� H�� and
�Q� H�� �_� are isomorphic.

2.8 Definition A ring
�

is called a d i s c r e t e v a l u a t i o n r i n g (DVR) or a d i s c r e t e v a l u a t i o n
d o m a i n (DVD), if

�
is a local principal ideal domain.

Some immediate properties of DVRs are explored in Exercise 2.1.7. Let me now furnish the local definition
of Dedekind domains. Unfortunately, however, I have to use a term – ‘Noetherian’ – that is not defined yet.
In Section 3 of this chapter we will see three equivalent ways of defining a Noetherian ring.

2.9 Definition A ring
�

is called a D e d e k i n d d o m a i n , if
�

is a Noetherian integral domain such that
the localization

�Ut
is a DVR for every non-zero prime ideal s of

�
.

I will, however, make little use of Definition 2.9 while dealing with number rings. It’s, however, not a bad
idea to tell the readers the different avenues to reach the same location.

Exercises for Section 2.1

1. Let � be a ring and � a multiplicatively closed subset of � . Show that if �Q�j� , then �5�O��� is the zero ring.

2. Let � be a ring, ��q� multiplicative and �F�9����� �O� � the canonical ring homomorphism �\��W�P��� . Show that:

(a) �{ �¡Z¢ is invertible in �£�¤��� for every ¡¥�d� .

(b) �¦ §��¢©¨�� , if and only if ��¡�¨?� for some ¡g�d� .

(c) � is injective, if and only if � is contained in the set of non-zero-divisors of � .

3. [ U n i v e r s a l p r o p e r t y o f r i n g s o f f r a c t i o n s ] Let � , � and � be as in Exercise 2.1.2. Further suppose
that ªl�¤���¬« is a ring homomorphism such that ª£ �¡Z¢\�«� for all ¡j�q� . Show that there exists a unique ring
homomorphism ®R�9�£�O�[���W« satisfying ª�¨?®°¯X� .

4. Let � be a ring, � a multiplicative subset of � , «±�²¨0�>�O�[� and �>�<�0�}« the canonical homomorphism. For any
subset ³ of � we use the notation � �¤� ³��²¨l´�µ¦�	¡g¶�¡g�j�(·¦µX�j³¥¸ .
(a) Let � be an ideal of � . Show that the extended ideal �P¹ in « is the ideal �£�O�Z� .
(b) Show that every ideal in « is an extended ideal.

5. Let � be a ring (not necessarily an integral domain) and let º\ §��¢ denote (as usual) the total quotient ring of � . Show
that every element of ºU §�»¢ is either a zero-divisor or a unit.

6. A multiplicative subset � of a ring � is called s a t u r a t e d , if ��¼��v� (with ��·{¼��d� ) implies that �|��� and ¼»�°� .
Show that � is a saturated multiplicative subset of � , if and only if �?½5� is a union of prime ideals (of � ). (Hint:
For proving the “only if” part let ¾ denote the set of all prime ideals of � contained in ��½�� . One can show that�!½¿�!¨YÀ t+Á	Â s as follows. Clearly À t+Á	Â s°���q½>� . For the converse take any ÃB�°�q½>� . First show that ÃO�"� is
not a unit is �;�¤�Ä� . Then ÃI�"� is contained in a maximal ideal �>�O�Äs of �;�O�[� for some sj�e¾ . Prove that Ãd�|s .)

7. Let � be a DVR with maximal ideal �Å¨YÆÈÇIÉ . Prove the following assertions:

(a) � is a UFD.

(b) The only primes in � are the associates of Ç . (Hint: In a PID non-zero prime ideals are maximal.)

(c) Every non-zero element of � can be written as Ê9Ç¤Ë , where Ê is a unit of � and Ìn�jfgÍ .

(d) Every non-zero ideal of � is of the form ÆÈÇOË<É for some Ì��ef Í .
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(e) � has only one non-zero prime ideal (namely, � ).

(Remark: The prime Ç of � is called a u n i f o r m i z i n g p a r a m e t e r or a u n i f o r m i z e r for � and is unique up
to multiplication by units.

The map Î|�	��½¿´@�P¸¿�Ïf Í taking Ê9ÇIËp��WÌ is called a d i s c r e t e v a l u a t i o n of � and can be naturally extended
to a group homomorphism Î°�PÐ�»�Ñf by defining ÎO §�P�	¼[¢¿�È¨YÎ¤ §��¢©ÒnÎO o¼[¢ , where ��·{¼g�°� , ¼�Ó¨l� and ÐÏ¨�ºU ���¢
is the quotient field of � . It is often convenient to define ÎO §�)¢>�È¨lÔ¥Õ . It follows that �]¨l´@Ãv�vÐz¶9ÎO §Ã�¢�ÖY��¸ and�×¨]´@Ãe�~Ð�¶�Î¤ ØÃ�¢>Ù!�P¸ .)

8. [ P o l y n o m i a l r i n g s o v e r a U F D ] Let � be a UFD and Ði�È¨rº\ ���¢ .
(a) Show that every non-zero Ú( ØÛ°¢p�?Ð�Ü ÛeÝ can be written as Ú( §Û°¢_¨CÌ(Ú �  ØÛ°¢ for some Ì���ÐB and for some
primitive polynomial Ú �  ØÛ°¢»���UÜ ÛeÝ . Show further that Ì and Ú � are uniquely determined by Ú up to multiplication
by units of � .

(b) Let Ú( ØÛ°¢X�e�_Ü ÛeÝ be a non-constant polynomial. Prove that Ú is irreducible over � , if and only if Ú is irreducible
over Ð . (Hint: Use Part (a) and Exercise 1.1.5.) In particular, the irreducible elements of �UÜ ÛeÝ are those of � and the
primitive polynomials in �_Ü ÛeÝ that are irreducible in ÐÜ ÛeÝ .

* (c) Deduce that �_Ü ÛeÝ is a UFD and so also are the domains �UÜ Û � ·�Þ#Þ#Þ#·NÛ�ß)Ý for all à°�já .

2.2 Integral dependence

The concept of integral dependence is at the heart of defining the number rings in an attempt to generalize
the notion of ‘integers’. Recall that if k ,Yâ

is a field extension, then an element ã�� â is called algebraic
over k , if ã is a root of a non-zero polynomial  ���klJ mnM . Since k is a field, the polynomial  can be
divided by its leading coefficient, thereby giving a monic polynomial in klJ mnM of which ã is a root. However,
if k and

â
are general rings (i.e., not fields), division by the leading coefficient is not always permissible.

This leads us to the following definition.

2.10 Definition Let
�i,Å�

be an extension of rings. An element ã0� � is said to be i n t e g r a l o v e r�
, if ã satisfies1 (i.e., is a root of) a monic (and hence non-zero) polynomial  q� � J m�M . An equation of the

form  >18ã£4¿A � ,  q� � J mnM monic, is called an equation of i n t e g r a l d e p e n d e n c e of ã over
�

.

2.11 Example (1) If both
�

and
�

are fields, the concepts of “integral” and “algebraic” elements are the
same. (See the argument preceding Definition 2.10.)

(2) Take
� TVAäf and

� TVAäh and let �OH"7���h , åPæ+ç&12�3�#7+4�A � , be integral over f . Let 12�IH"7+4[ènS
ã è�DFE 12�OH"7Z4 è<DFE S`é+é+é$SGã E 12�OH"7Z4_S6ã&ê , ã&ëq�Ïf , be an equation of integral dependence of �OH"7 over f .
Multiplication by 7 è gives � è A±=_7"18ã è<DFE � è<DFE S�é+é+éìS�ã E �I7 è<D %<S�ã ê 7 è<DFE 4 , i.e., 7��"� è . Since åPæ+ç&12�L�#7+4�A±� ,
this forces 7¥A�íe� , i.e., �OH"7Q��f . This is, in general, true for any UFD

�
and its field of fractions

� A`ce1 � 4
(See Exercise 2.2.1).

(3) Every element ãr� � is integral over
�

, since it satisfies the monic polynomial m}=�ãr� � J m�M .
Now let

�6,��
be an extension of rings and let î consist of all the elements of

�
that are integral over

�
.

Clearly
�±, î ,�� . But what algebraic structure does î actually have? It turns out that î is again a ring.

This result is not at all immediate from the definition of integral elements. We prove this fact by using the
following lemma which sort of generalizes Theorem 1.62.

1Strictly speaking ï being a root of ð�ñKòpó is equivalent to ï satisfying the polynomial equation ð�ñKï¤óFôqõ . But often the term
‘equation’ is dropped in this context – a harmless colloquial contraction.
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2.12 Lemma For a ring extension
�±,Y�

and for ãr� � the following conditions are equivalent:

(a) ã is integral over
�

.

(b)
� J²ã©M is a finitely generated

�
-module.

(c)
� J²ã©M , î for some subring î of

�
with î being a finitely generated

�
-module.

Proof [(a) ö (b)] Let ã è S!� è�DFE ã è<DFE Sré+é+é#S!� E ã|S!��êgA
�
, �<ë;� � , be an equation of integral dependence

of ã over
�

.
� J²ã©MFA �  >18ã£4g�" >1omq4¥� � J m�M � is generated as an

�
-module by �"�#ã5�#ã % �+*+*+* . In order to show

that only the elements �"�#ã5�+*+*+*)�#ã è<DFE generate
� J²ã©M as an

�
-module, it is sufficient to show that each ã5÷ , øB�

fgù , is an
�

-linear combination of �"�#ã5�+*+*+*9�#ã è�DFE . We proceed by induction on ø . The assertion certainly
holds for øvA � �+*+*+*9��ú�=]� , whereas for øBÖYú we write ã ÷ A±=|12� è<DFE ã ÷ DFE©Slé+é+é	S�� E ã ÷ D¤è ù E(Sr��ê+ã ÷ D¤èI4 ,
whence induction completes the proof.

[(b) ö (c)] Take î±TVA � J²ã©M .
[(c) ö (a)] Let û E �+*+*+*��Äû è �î generate î as an

�
-module. Since

� J²ãFM , î and, in particular, ã���î , for allü A6�"�+*+*+*	��ú we can write ãFûIë&A�ý èþ@ÿ E ��ë þ û þ for some ��ë þ � � . Let � denote the matrix 18ã��+ë þ =-�<ë þ 4 E�� ë�� þ �¤è ,
where �Zë þ is the Kronecker delta. Then �~1�û E �+*+*+*	�Äû è 4��°A�1 � �+*+*+*	� � 4	� . Multiplication (on the left) by the
adjoint of � shows that 12ç�
���Q4Nû ë A � for all

ü A �"�+*+*+*9��ú . Since �~�?î , we have �QA ý èë ÿ E 7 ë û ë for some
7�ë>� � , so that 12ç�
���Q4Xé<�\A � , i.e., ç�
��� A � . But ç�
��� is a monic polynomial in ã of degree ú and with
coefficients from

�
. �

2.13 Proposition For an extension
�C,Y�

of rings the set

î6TVA � ã�� � ��ã is integral over
�-�

is a subring of
�

containing
�

.

Proof Clearly
�C, î ,Y� as sets. To show that î is a ring let ã¿���]�î . By Condition (b) of Lemma 2.12� J²ãFM is a finitely generated

�
-module. Now � being integral over

�
is also integral over

� J²ãFM , so that again
by 2.12(b)

� J²ã©M¦J �FM is a finitely generated
� J²ã©M -module. It is then easy to check that

� J²ã5���FM�A � J²ã©M¦J �FM is
a finitely generated

�
-module. Since ã�í�� and ã�� are in

� J²ã¿���FM , by condition 2.12(c) these elements are
integral over

�
, i.e., belong to î . Thus î is a ring. �

This proposition leads us to the following important definitions.

2.14 Definition The ring î of Proposition 2.13 is called the i n t e g r a l c l o s u r e of
�

in
�

.
�

is called
i n t e g r a l l y c l o s e d in

�
, if îÑA �

. On the other hand, if î�A �
, we say that

�
is an i n t e g r a l

e x t e n s i o n of
�

or that
�

is i n t e g r a l over
�

.

An integral domain
�

is called i n t e g r a l l y c l o s e d (without specific mention of the ring in which it is
so), if

�
is integrally closed in its quotient field c 1 � 4 . An integrally closed integral domain is sometimes

also termed a n o r m a l d o m a i n ( N D ).

2.15 Example (1) f (or more generally any UFD) is an ND.

(2) f is not integrally closed in � or � , since, for example, � �d��� � f is integral over f . The integral closure
of f in � is often denoted by � . Elements of � are called a l g e b r a i c i n t e g e r s . (See Exercise 1.4.8.)

After much ado we are finally in a position to define the basic objects of study in this course.
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2.16 Definition A n u m b e r f i e l d k is defined to be a finite (and hence algebraic) extension of the field
h of rational numbers. Clearly h , k , � with J k¬T�hQM finite.

Note that there exist considerable controversies among mathematicians in accepting this definition of
number fields. Some insist that any field k satisfying h , k , � should be called a number field.
Some others restrict the definition by further demanding that one must have k algebraic over h . However,
the fields k with infinite extension degree J k TphQM are allowed. We restrict the definition further by
imposing the condition that J k T�hpM has to be finite. Our restricted definition is seemingly the most widely
accepted one. Whether or not this is the case is rather immaterial. We will study only the number fields of
Definition 2.16 and accepting this definition would at the minimum save us from writing huge expressions
like ‘algebraic number fields of finite extension degree over h ’ to denote ‘number fields’.

For number fields the notion of integral closure leads to the following definition.

2.17 Definition Let k be a number field. Then k contains h and hence f . The integral closure of f in k
is called the r i n g o f i n t e g e r s of k and is denoted by ��� . ( � is the Gothic ‘O’.) Clearly f , ��� , k
and � � is an integral domain. We also have � � A��p�_k . A number r ing is a ring which is (isomorphic
to) the ring of integers of a number field.

Other notations commonly used for ��� are f�� and � � , where � is the upper case ‘O’ in the calligraphic
script. The use of the letter ‘O’ is attributed to Gauss who coined the term order to denote some related
objects. Students may use any of the notations � � , f � or � � interchangeably to denote number rings. But
if one deals with curves (like elliptic curves), the point at infinity is also denoted by � . It is, therefore, safer
to avoid using the calligraphic style � � in the context of number rings.

By Example 2.11(2) the ring of integers of the number field h is f , i.e., ��!!A f . It is, therefore, customary
to call the elements of f r a t i o n a l i n t e g e r s . Since f is naturally embedded in �"� for any number
field k , it is important to notice the distinction between the integers of k (i.e., the elements of � � ) and the
rational integers of k (i.e., the images of the canonical inclusion f$# � k ).

Some simple properties of number rings are listed below.

2.18 Proposition Let k be a number field. Then the following statements hold:

(1) ���]�Bh×A f .

(2) For ã��Rk there exists a rational integer ��?f such that �Iã��%� � . In particular, the quotient field of� � is k .

(3) � � is integrally closed in k A×cd1&� � 4 , i.e., � � is a normal domain.

Proof (1) follows immediately from Example 2.11(2). (2) follows from Exercise 1.4.8 of Chapter 1. Finally
(3) follows from Exercise 2.2.2(b). �

The rest of the course is devoted to investigating some other properties of the number rings � � . Let us now
continue our study of commutative algebra.

Exercises for Section 2.2

1. Show that every UFD is an ND. (Hint: Imitate the case of f as described in Example 2.11(2).)

2. (a) If �Y�« and « �"' are integral extensions of rings, show that �]�"' is also an integral extension.

(b) Let �l�« be an extension of rings. Show that the integral closure of � in « is integrally closed in « .
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(c) Let � ��« be an integral extension of rings, ( an ideal of « and ��²¨C�*)%( . (Note that � is an ideal of � .
Moreover, if ( is prime in « , then � is also prime in � .) Show that «\�+( is an integral extension of �»�"� .

3. Let �×��« be an extension of integral domains, � a finitely generated non-zero ideal of � and ,R��« . If ,$�°��� ,
show that , is integral over � . (Hint: Let ��¨C�¿Ã � Ô.-/-�-)ÔR�5Ã<ß , Ã10_�]� . For each 2 write ,�Ã10¥¨ ý ß354 � �60 3 Ã 3 ,�60 3 �e� . But then 798/:+�0¨R� , where �0¨l ;,�<�0 3 Ò��60 3 ¢ � � 0;= 3 � ß , </0 3 being the Kronecker delta.)

4. (a) Let �]�!« be an integral extension of integral domains. Show that � is a field, if and only if « is a field.

(b) Let �l�R« be an integral extension of rings, > a prime ideal of « and sd�È¨r��)?> . Show that s is maximal in � ,
if and only if > is maximal in « . (Hint: Use (a) and Exercise 2.2.2(c).)

(c) Let � , « , s and > be as in (b). Further let >A@ be another prime ideal of « with sd¨]�B)C>A@ . Show that if >-�.>D@ ,
then >_¨E> @ . (Hint: Let ��È¨?�v½Ls . By Exercise 2.2.5 below « t �²¨r�;�¤��« is integral over � t ¨r�;�O��� . Let � be the
ideal generated by s in � t and let F and F @ be the ideals of « t generated respectively by > and > @ . Now use Part (b).)

5. Let �l�« be a ring extension and let ' be the integral closure of � in « . Show that for any multiplicative set � of �
(and hence of « and ' ) the integral closure of �>�¤��� in �;�O�[« is �;�¤�G' . In particular, if � is integrally closed in « ,
then so is �£�O�[� in �;�O�Ä« .

6. Let � be an integral domain. Show that the following conditions are equivalent:
(1) � is integrally closed.
(2) � t is integrally closed for every prime ideal s of � .
(3) � � is integrally closed for every maximal ideal � of � .

(Hint: For proving “(1) H (2)” use Exercise 2.2.5. For proving “(3) H (1)” show first that �r¨�I �;ÁDJGK�LNM � � .)

7. A q u a d r a t i c n u m b e r f i e l d is a number field Ð with Ü ÐW�	hQÝ©¨PO .
(a) Show that every quadratic number field Ð can be represented as ÐRQ¨ h� �S T|¢ for a square-free integer T`Ó¨?�P·#� .

* (b) Let ÐW�²¨�h� �S T|¢ for some square-free integer T`Ó¨��P·�� . Show that:

�VUWQ¨ XY Z f\[ � Í^] _`ba Q¨ f�Ü ÛdÝØ�PÆØÛ ` Ò�Û�Ô ��� _c É if TedY�g ;fhg97ji)¢ ,
f�ÜkS T!Ý Q¨ f�Ü ÛeÝ§��Æ§Û ` ÒVT|É if Ted$O�·mlQ ;fhg97ni"¢ .

(In particular, the ring of integers of h� 5o8¢»¨�´Z�;Ô�oì¼»¶��<·Ä¼¿�eh\¸ is the ring f�Üpo�ÝP¨]´Z�;Ô�oì¼»¶��<·Ä¼��~f\¸ of G a u s s i a n
i n t e g e r s .)

2.3 Noetherian rings

Recall that a PID is a ring (integral domain) in which every ideal is principal, i.e., generated by a single
element. We may now be a bit more general and demand every ideal to be finitely generated. If a ring
meets our demand, we call it a Noetherian ring. As we now see, there are other equivalent ways of
defining Noetherian rings. These rings are named after Emmy Noether (1882–1935) who was one of
the most celebrated lady mathematicians of all ages and whose work on Noetherian rings has been very
fundamental and deep in the branch of algebra. Emmy’s father Max Noether (1844 –1921) was also an
eminent mathematician.

2.19 Definition Let
�

be a ring and let � E
, � %

, � '
, é+é+é be an a s c e n d i n g c h a i n of ideals of

�
.

This chain is called s t a t i o n a r y , if there is an ú]�!á such that � è A6� è ù E A6� è ù % A é+é+é . The ring
�

is
said to satisfy the a s c e n d i n g c h a i n c o n d i t i o n or the A C C , if every ascending chain of ideals in

�
is

stationary, or in other words, if there does not exist any infinite strictly ascending chain � E�q � % q � ' q é+é+é
of ideals in

�
.
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2.20 Proposition For a ring
�

the following conditions are equivalent:

(a) Every ideal of
�

is finitely generated.

(b)
�

satisfies the ascending chain condition.

(c) Every non-empty set of ideals of
�

contains a maximal element.

Proof [(a) ö (b)] Let � E
, � %

, é+é+é be an ascending chain of ideals of
�

. Consider the ideal �-TVA À èsrut � è
which is finitely generated by hypothesis. Let � E �+*+*+*9�[�wv be a set of generators of � . Each �Oë>�R� , i.e., there
exists x ë �lá such that � ë ���Dy{z and hence � ë ��� è for every ú�Ö|x ë . Take xäTVAR}�~A�&1�x E �+*+*+*9��x v 4 .
Then for every ú?Ö.x we have � , � è , i.e., �QAC� è .

[(b) ö (c)] Let 
 be a non-empty set of ideals of
�

. Order 
 by inclusion. The ACC implies that every chain
in 
 has an upper bound in 
 . By Zorn’s lemma 
 has a maximal element.

[(c) ö (a)] Let � be an ideal of
�

. Consider the set 
 of all finitely generated ideals of
�

contained in � . 
 is
non-empty, since it contains the zero ideal. By condition (c) 
 has a maximal element, say, ( . If ( q � , take
���R� � ( . Then (¥Se�2��� is finitely generated (since ( is so), properly contains ( and is contained in � . This
contradicts the maximality of ( in 
 . Thus we must have ��A|( , i.e., � is finitely generated. �
2.21 Definition A ring

�
is called N o e t h e r i a n , if

�
satisfies (one and hence all of) the equivalent

conditions of Proposition 2.20.

2.22 Example (1) All PIDs are Noetherian, since principal ideals are obviously finitely generated. In
particular, f and klJ mnM ( k a field) are Noetherian.

(2) If
�

is Noetherian and � an ideal of
�

, then
� H�� is Noetherian, since the ideals of

� H�� are in one-to-one
inclusion-preserving correspondence with the ideals of

�
containing � and hence satisfy the ACC.

(3) Let
�

be a Noetherian ring and 
 a multiplicative subset of
�

. Then the localization
� TVA�
QDFE � is also

Noetherian. To prove this fact let ( be an ideal in
�

. By Exercise 2.1.4(b) (vAW
 DFE � for some ideal � of�
. Since

�
is Noetherian, � is finitely generated, say, ��A��2� E �+*+*+*��[�wvD� . It is now (almost) obvious that ( is

generated by � E H��"�+*+*+*	�[�sv	H�� . A particular case is that if
�

is Noetherian and s a prime ideal of
�

, then the
localization

� t
is also Noetherian.

(4) We will later prove that all number rings ��� are Noetherian.

(5) The ring
� TVA fpJ m E ��m % ��m ' �+*+*+* M of polynomials with infinitely many indeterminates m E ��m % ��m ' �+*+*+* is

not Noetherian. This is because the ideal �om E ��m % ��m ' �+*+*+*�� is not finitely generated, or alternatively because
we can produce the infinite strictly ascending chain of ideals: �om E � q �om E ��m % � q �om E ��m % ��m ' � q é+é+é ,
or because the set 
ÏTVA � �om E ���D�om E ��m % ���D�om E ��m % ��m ' ���+*+*+* � of ideals in

�
does not contain a maximal

element.

In a similar manner one may define the d e s c e n d i n g c h a i n c o n d i t i o n ( D C C ) on ideals. A ring
satisfying the DCC is called A r t i n i a n (after Emil Artin). An Artinian ring is always Noetherian, but not
conversely. We will not study Artinian rings in this course.

We have seen that if
�

is a PID, the polynomial ring
� J m�M need not be a PID. However, the property of

being Noetherian is preserved during the passage from
�

to
� J mnM .

2.23 Theorem [ H i l b e r t ’ s b a s i s t h e o r e m ] If
�

is a Noetherian ring, then so is the polynomial
ring

� J m E �+*+*+*	��m è M for ú]�!á . In particular, the rings fpJ m E �+*+*+*9��m è M and k]J m E �+*+*+*	��m è M are Noetherian,
where k is a field.

Proof Using induction on ú and the fact that
� J m E �+*+*+*9��m è M|A

� J m E �+*+*+*���m è<DFE M¦J m è M we can reduce
the proof to the case of ú�A � , that is, it is sufficient to prove that if

�
is Noetherian, then

� J mnM is also
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Noetherian. Let � be a non-zero ideal of
� J mnM . Assume that � is not finitely generated. Then we can

inductively choose non-zero polynomials  E �# % �# ' �+*+*+* from � such that for each
ü ��á the polynomial  Pë is

one having the smallest degree in � � �8 E �+*+*+*��# )ë DFE � . Let ��ë�TVA±ç�
+å» )ë . Then � E�� � % � � ' � é+é+é . Let �<ë
denote the leading coefficient of  Pë . Consider the ideal (dTVA��2�Ië_� ü �Rá�� in

�
. By hypothesis ( is finitely

generated, say, (~A��2� E �+*+*+*	�[�sv� . This, in particular, implies that ��v ù E A ý vë ÿ E û<ë2��ë for some û�ë�� � . But
then the polynomial �vTVAÅ v ù E = ý vë ÿ E û ë m%�G����� D � z  ë belongs to � � �8 E �+*+*+*��# v � (since  v ù E b�$�8 E �+*+*+*9�# v � ),
is non-zero, in particular, and has degree �`��v ù E , a contradiction to the choice of  +v ù E . Thus � must be
finitely generated. �

Now we give an alternative definition of Dedekind domains.

2.24 Definition An integral domain
�

is called a D e d e k i n d d o m a i n , if it satisfies all of the following
three conditions:

(1)
�

is Noetherian.

(2) Every non-zero prime ideal of
�

is maximal.

(3)
�

is integrally closed (in its quotient field k¬TVA±ce1 � 4 ).
I will now show that the two definitions 2.9 and 2.24 are equivalent. But before this is done, we need to
distinguish between the two classes of rings introduced in these two definitions. Let us call a Dedekind
domain as per Definition 2.9 a DD E and a Dedekind domain as per Definition 2.24 a DD % .
2.25 Proposition Let

�
be a ring which is not a field. Then

�
is a DD E , if and only if

�
is a DD % .

Proving this proposition requires the following lemma.

2.26 Lemma Let
�

be a local Noetherian integral domain which is not a field. Assume further that the
maximal ideal � bA � of

�
is the only non-zero prime ideal of

�
. Then

�
is a DVR (i.e., a PID), if and only

if
�

is integrally closed.

Proof [if] Choose any �R�!� , � bA � . For each 7j� � the set �9�QTVA ��� � � � � 7j� � � � is an ideal of
�

containing the ideal
� � . Since

�
is Noetherian, the (non-empty) set 
×TVA � �s�v�(7 b� � � � has a maximal

element, say �6� (Proposition 2.20). Then �6� bA � , since �A� contains the non-zero ideal
� � . Also �+� bA � , since

� b�q� � . Now let �����q� � with � b�R� � . Then �3� b� � � and �u� � �
 contains both � � and � . By the maximality
of � � in 
 we then have �B�q� � . Thus � � is prime and hence, by hypothesis, � � A0� , i.e., �|� ,Y� � . This, in
turn, implies that each �	� , �?��� , is a multiple of � . Then 12��H)�O4ì�`A � 12��H)�I45�l�6�?�n� �j,�� is an ideal of�

. We claim that 12��H)�O4ì�WA � . For the proof assume otherwise, i.e., 12�+H)�O4ì� , � .
�

is Noetherian and so
by Exercise 2.2.3 ��H)� is integral over

�
. By hypothesis

�
is integrally closed, so that ��H)�B� � , i.e., �Q� � � ,

a contradiction. Thus 12�+H)�O4ì�GA � , i.e., 12��H)�I4Äã�AC� for some ã���� , i.e., �±A � ã is principal.

Now let � be a non-zero ideal of
�

. Consider the chain � , 1Ä�	H"ã£4#� , 1Ä�	H"ã % 4#� , é+é+é of subsets of
ce1 � 4 . Assume that 1Ä�	H"ã;÷P4#� is a subset (and hence an ideal) of

�
for each ø���f ù . Since

�
is Noetherian,

the chain must be stationary, i.e., 1Ä�	H"ã ÷ 4#��A 1Ä�	H"ã ÷ ù E@4#� for some ø , i.e., 1Ä�	H"ã;4#�]A � . Once again by
Exercise 2.2.3 this implies that �	H"ãYA6��H)� is integral over

�
, a contradiction. Thus, for some øR�?f ù we

have 1Ä�	H"ãX÷P4#� ,�� , but 1Ä�	H"ãX÷ ù E 4#� b, � . If 1Ä�	H"ãX÷�4#� is a proper ideal of
�

, then 1Ä�	H"ã;÷�4#� , �`A � ã , i.e.,
1Ä�	H"ã ÷ ù E+4#� ,Y� , a contradiction. Therefore, 1Ä�	H"ã ÷ 4#��A � , i.e., �QA � ã ÷ , i.e., � is principal.

[only if] A UFD (in particular, a PID) is integrally closed. �
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Proof of Proposition 2.25 [if] Let s bA �
be a prime ideal of

�
. Then

�pt
is clearly a Noetherian local

integral domain and is integrally closed by Exercise 2.2.6. Moreover, since each non-zero prime ideal of
�

is maximal, s �_t is the only non-zero prime ideal of
�Qt

. Then by Lemma 2.26
�\t

is a DVR.

[only if] That
�

is Noetherian follows from definition of DD E . In order to show that
�

is integrally closed
we use Exercise 2.2.6 and the fact that for each non-zero prime ideal s of

�
the localization

�|t
is a DVR (by

definition of DD E ) and hence is integrally closed (A PID is a UFD.). Finally let s be a non-zero prime ideal
of
�

. s is contained in a maximal (and hence prime) ideal s�� of
�

. By the correspondence of Proposition 2.5
s � tG� , s � � tG� are prime ideals of

� tG�
. By definition

� tG�
is a DVR and hence contains a unique non-zero

prime ideal (Exercise 2.1.7). This implies that s � tG� A0ss� � tG� , i.e., sjA0ss� . �
Henceforth, we will use the abbreviation DD to stand for Dedekind domain. Thus DD, DD E and DD % are
now the same concepts.

Exercises for Section 2.3

1. Let �l�!« be an extension of rings. Prove or disprove:

(a) If � is Noetherian, then « is necessarily Noetherian.

(b) If « is Noetherian, then � is necessarily Noetherian.

2. Let « be a finitely generated � -algebra. Prove or disprove:

(a) If � is Noetherian, then « is necessarily Noetherian.

* (b) If « is Noetherian, then � is necessarily Noetherian.

3. Let � be a ring with the property that every non-empty set of finitely generated ideals of � has a maximal element.
Show that � is Noetherian.

4. (a) Let � be a Noetherian ring, � an ideal of � and (n�²¨ S � . Show that ����(u� for some � �Rá . (Hint: Let(_¨�Æ�¼ � ·#Þ#Þ�Þ[·{¼G��É and let ¼ � �0 ��� , � 0 �já . You may take any � Ö��XÔ ý �0 4 �  ;� 0 Ò!�@¢ .)
(b) Demonstrate by an example that the result of Part (a) does not necessarily hold, if � is not Noetherian.

5. Let � be a Dedekind domain and � a multiplicative subset of � . Show that �¿�¤��� is also a Dedekind domain. (Hint:
Every prime ideal of �£�¤��� is of the form �£�O�Äs , where s is a prime ideal of � (that does not meet � ). Verify that� t Q¨  o�;�O�[��¢5¡+¢A£ t and then use Definition 2.9.)

6. Let � be a Dedekind domain.

(a) Let s � and s ` be two distinct non-zero prime ideals of � . Show that for any ¤ � ·5¤ ` �eá we have s ¹ £� Ôns ¹¦¥` ¨�� .
(Hint: Since s � and s ` are maximal, we have s � Ô�s ` ¨Y� , i.e., � � Ô!� ` ¨ � for some � � �ds � and � ` �°s ` . Now
use the fact that  §� � Ô�� ` ¢N¹ £ Í ¹¦¥»¨]� .)
(b) Let �|�È¨�s ¹ £� -/-�-�s�¹¦§� be a non-zero ideal of � with pairwise distinct prime ideals s 0 and with ¤ 0 �°á . Show that
�»�"� Q¨P¨ �0 4 �  §���@s ¹ �0 ¢ . (Hint: Use the CRT and Exercise 1.2.2.)
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