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Chapter 1 : Algebra preliminaries

Algebraic number theory, as the name suggests, employs a fair amount of results from abstract algebra
far beyond the scope of one or two introductory courses on algebra. In this chapter I highlight some of
the more advanced topics in algebra, that will prove useful during the rest of the course. The reader may,
however, start wondering: “Where are my numbers?” True! We will eventually study numbers in latter
chapters. This chapter is merely a collection of auxiliary results. I could have taken the approach: “Discuss
algebra whenever needed”. But this compilation of algebraic techniques is useful elsewhere in mathematics
too. Having all these results at one place is expected to aid the reader not only by making referencing
easy later but also by decoupling algebra from number theory to emphasize the independence (and yet the
interdependence) of these two branches of mathematics.

Fortunately enough, throughout this course (as well as in the most part of the study of algebraic number
theory) we don’t have to dirty our hands by attempting to deal with non-commutativity. In fact, very little is
known in non-commutative algebra which turns out to be a very difficult branch of mathematics. But here
we start with the following glorious assumption:

1.1 Assumption By a r i n g we will always mean a commutative ring with identity.

Many results discussed in this chapter are valid for non-commutative rings too. But we won’t even bother
classifying the results based on their generalities. We will mostly study a special class of subrings of

�
, the

field of complex numbers, and all these rings naturally inherit commutativity from
�

.

1.1 Divisibility in rings

The concept of divisibility naturally extends from � to a general ring (i.e., a commutative ring with identity).
However, one may not have unique factorization in all rings. � is, indeed, a very well-mannered algebraic
structure. Or perhaps I would better say that our notions of algebraic etiquette stem from studies of � and
other instances of rings that occurred ‘naturally’ to our mathematical ancestors.

1.2 Definition Let � be a ring.

� An element ����� is said to d i v i d e an element �	��� , if there exists 
���� such that �
����
 . In this
case, we write ����� . If no such 
 exists, we write ������� .� An element ����� is called a u n i t (of � ), if ����� , i.e., if there exists ����� with ����� � . All the
units of � form a group under the multiplication of � . This group is called the g r o u p o f u n i t s
of � and is denoted by �"! . � is a f i e l d , if and only if �#��%$'&)( and �*!+�,�.-	$'&)( . If �/��� is a
unit and �0�1�%� , we often write �1�2�4365 and �7�8�0365 and say that � (resp. � ) is the i n v e r s e of �
(resp. � ).� Two non-zero elements ��9:���;� are called a s s o c i a t e s , denoted by �=<2� , if �>����� for some unit� of � . Clearly, < is an equivalence relation on �?-	$'&)( .� A non-zero non-unit @��?� is called a p r i m e , if whenever @A���)� (with �09:�1�?� ), we have either@B��� or @B��� .� A non-zero non-unit � is called i r r e d u c i b l e , if any factorization �7�%�C
 (with �D9E
F��� ) implies
that either � or 
 is a unit.
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1.3 Example All the concepts introduced in Definition 1.2 pertain to the underlying ring � . If �G��� , the
only units we have are HI� and, therefore, �1<,� , if and only if �1�JH"� . The primes are the prime numbersK 9:L)9:M)9ON�9QPQPQP and the negatives of them.

If, on the other hand, we take �R�%S , every nonzero element of � becomes a unit and hence associate to
one another. The ‘integers’ H KUT ��9OH+L T ��9OH"M T ��9QPQPQP are, in particular, units too and hence are neither prime
nor irreducible. In fact, S (or any field) contains no primes or irreducible elements. Also note that

K �V�WL in� , but
K �UL in S , since L*�YX�L T�KUZ\[;K and L T�K is a rational number but not an integer.

An integer @ is prime (in � ) if and only if @ is irreducible (in � ). This is, in fact, true for more general classes
of rings as we will see below. We can now prove a partial result in this direction.

1.4 Proposition Let � be an integral domain and @ a prime in � . Then @ is irreducible.

Proof Let us write @����]� . We will show that either � or � is a unit. Clearly, @����]� and hence @��^� or @��_�
by definition. If @B�_� , we write �F���U@ for some ���7� . But then @;�����`@ , i.e., XW�ba���� Z @��2& . Since � is
an integral domain and @/���& , we must have �ca����
��& , i.e., ���
�J� , i.e., � is a unit. Similarly, @���� implies� is a unit. d
The converse of this proposition is not true for a general integral domain. Consider the ring �+egf abMDh	�$'�Fij�kf abM.�l�09:�B�j�	( . (It is easy to verify that �+eVf abMDh is indeed a ring.) �+e�f abMDh , being a subring
of
�

, is clearly an integral domain. We have two essentially different factorizations of mG� K�[ LG�XW�li f abM Z XW�na f abM Z . Thus
K �]XW�oi f abM Z XW�
a f abM Z , but

K �p�WXW�li f aqM Z and
K ���rXW�na f abM Z , i.e.,

K
is not

a prime. In order to show that
K

is irreducible let us write
K �sXt�+iu� f aqM Z Xt
vi?w f abM Z with ��9:�D9E
D9Ewx�7� ,

so that y;�zXt�]{niAM_�C{ Z Xt
k{
i�M�w�{ Z . It is easy to see that the Diophantine equation |}{
i.M^~]{=� K does not
have a solution in integer values of | and ~ . Therefore, we must have � { i�M_� { ��� or 
 { i.M�w { ��� , i.e.,�=�8HI��9:�\��& or 

�2HI��9Ew>��& , i.e., either �vi���f aqM or 
�i7w]f abM is a unit in �+e�f abMDh . It can be similarly
proved that each of L , �vi.f aqM and �vi�f abM is also irreducible, but neither is a prime.

Thus �+e�f abM^h is an example of a ring where unique factorization fails in some sense. On the other hand, we
know that each non-zero integer can be written uniquely as a product of prime integers (the f u n d a m e n t a l
t h e o r e m o f a r i t h m e t i c ). In order to make these concepts rigid, we introduce the following definition.

1.5 Definition An integral domain � is called a u n i q u e f a c t o r i z a t i o n d o m a i n or a U F D for
short, if every non-zero element ���;� can be written as a product �F�8�U@ 5��Q�Q� @0� of primes @ 5 9QPQPQP'9t@0� and
a unit � , where the primes @�� (not necessarily all distinct or all non-associate) are uniquely determined by �
upto multiplications by units and upto permutations of the indexes ��9QPQPQPD9r� .
By the fundamental theorem of arithmetic � is a UFD. So also is the ring �ue �;h of polynomials over a field� in one indeterminate � . We will later prove both these statements in a rather indirect way. The readers
may look at more direct proofs elsewhere. The ring �+e f abMDh , on the other hand, is not a UFD, since the
element m is itself non-zero, non-unit and non-prime and does not admit a factorization into primes. In fact,�+e�f aqMDh contains irreducible elements which are not primes. In any UFD this is not possible.

1.6 Proposition Let � be a UFD and @7�;� . Then @ is prime, if and only if @ is irreducible.

Proof Since a UFD is by definition an integral domain, every prime in � is irreducible by Proposition 1.4.
For the converse let @ be irreducible and let @?�]�]� with �09:�I��� . We have to show that @?�]� or @?��� . We
have �]�F�Y@�
 for some 
;�A� . Consider the unique factorization of 
1� ��@ 5��Q�Q� @0� with � a unit and @��
primes in � . Let us write ���1�p�%��365:� and �k�F�p��� . Then �)���C�=�2@U@ 56�Q�Q� @0� . Now @ 5 is a prime dividing�)�k�C� . Hence we must have @ 5 �0�)� or @ 5 ���C� . If @ 5 ����� , let us write �]�=�2@ 5 � 5 and � 5 ���C� , whereas if
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@ 5 ���C� , let us write � 5 �2��� and �C�q�u@ 5 � 5 . In both cases canceling (This is allowed, since � is an integral
domain.) @ 5 gives � 5 � 5 �J@U@ { �Q�Q� @0� . Continuing this procedure for @ { 9QPQPQP'9t@0� gives �)�k�O�1�Y@ . But @ is
irreducible by hypothesis. Therefore, either ��� or �O� is a unit. If �)� is a unit �O�F����365� @ , i.e., @2�6�O� . By
construction �C�+�_�O� 365 , �O� 365 ���O� 3 { , PQPQP , � 5 �_�C� and �k�*��� , i.e., @��U� . Similarly, if �k� is a unit, then @B��� . d
Similar (i.e., associate) primes can be grouped together in the factorization of a non-zero element � of a
UFD � and we can write �F�2�U@��)�5 �Q�Q� @ �_�� , where � is a unit, @ 5 9QPQPQPD9t@0� are pairwise non-associate primes
and � � are positive (or nonnegative) integers. Unique factorization means that the primes @ � and the integers�}� are uniquely determined by � (where two associate primes are identified in the notion of uniqueness).
This leads us to the following important definitions.

1.7 Definition Let � be a UFD and let �09:���B��-"$'&)( admit factorizations of the form ���j��@ � �5 �Q�Q� @ �_��
and ���J�'@0� �5 �Q�Q� @ � �� , where � and � are units, @ 5 9QPQPQP�9t@0� are pairwise non-associate primes and �c��9r��� are
nonnegative integers. A g r e a t e s t c o m m o n d i v i s o r or a g c d of � and � is defined as

�U�Q� Xt�09:� Z �p��� ��� � 5 @0¡£¢¥¤D¦ �_§©¨ � § ª� 9
where � is any unit of � . Thus �U�Q� Xt��9:� Z is an element of � which is unique upto multiplication by units.
In a similar vein a l e a s t c o m m o n m u l t i p l e or an l c m of � and � is defined as

« �Q¬ Xt�09:� Z �p���b­ ��� � 5 @0¡l®�¯�¦ �_§�¨ � § ª�
for any unit � ­ of � . Thus

« �Q¬ Xt�09:� Z is again uniquely determined by � and � upto multiplication by units.

It is often convenient to define �U�Q� Xt��9E& Z to be an associate of � for every non-zero �J�%� . However,�U�Q� Xt&]9E& Z and
« �Q¬ Xt��9E& Z are left undefined.

If �Y�J� , the primes of � occurring in the factorizations of nonzero ����� are conventionally taken to be
the positive primes. Similarly the positive gcd (resp. lcm) of � and � is usually called the gcd (resp. lcm) of� and � . In �ue ��h too one often makes the gcd and lcm unique by considering the monic gcd or lcm of two
non-zero polynomials.

1.8 Proposition Let � be a UFD, &7��8�09:�"�7� , w a gcd of � and � and ° an lcm of � and � . If w ­ �_� andw ­ ��� , then w ­ �^w . Similarly, if ����° ­ and ���D° ­ , then °±�^° ­ .
Proof This is easy to verify. One may start by showing that if � has a factorization as in Definition 1.7,
then all the divisors of � are � ­ @�² �5 �Q�Q� @ ² �� , where � ­ is a unit and ³ � are integers satisfying &=´�³ � ´�� � . d
The gcd and lcm of two elements of � have alternate definitions for a special class of UFDs.

1.9 Definition An integral domain � is called a p r i n c i p a l i d e a l d o m a i n or a P I D in short, if every
ideal of � is principal (i.e., generated by a single element).

Again the concepts of prime and irreducible elements in a PID are equivalent.

1.10 Proposition Let � be a PID and @7��� . Then @ is prime, if and only if @ is irreducible.
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Proof The ‘only if’ part is immediate from Proposition 1.4. For the converse let @��A� be irreducible,
but not prime. Then there are ��9:�x��� such that �G��2µp@�¶ and �B��2µp@�¶ , but �]���jµp@�¶ . Consider the ideal· �¸µ��c¶+�¸µp@6¶4iJµt��¶ . Since @.�2µ��c¶ , we have @?��
Q� for some 
x��¹ . By hypothesis @ is irreducible,
so that either 
 or � is a unit. If 
 is a unit, µp@�¶"�ºµ��4¶*�¸µp@�¶ciJµt�]¶ , that is, ���8µp@�¶ , a contradiction. So� is a unit. Then µp@�¶ciJµt��¶"��� which implies that there are elements �}9r���u� such that �U@»i����B�#� .
Similarly there are elements � ­ 9r� ­ �G� such that � ­ @�i�� ­ �»�¼� . Multiplying these two equations givesX½�0� ­ @�i8�0� ­ �	iG� ­ �)� Z @7i�X½��� ­ Z �)���¾� . Now �]���¿µp@�¶ , so that �)���À�l@ for some �Á�J� . But thenX½�0� ­ @Ii��0� ­ �£i�� ­ ���"i���� ­ � Z @x�J� , which shows that @ is a unit, a contradiction. d
As claimed earlier, PIDs are UFDs. Proving this requires the following lemma. In Chapter 2 we will
generalize and extend it considerably for Noetherian rings. For the time being, the following result is all we
need.

1.11 Lemma Let � be a PID. Then we can not have a strictly ascending infinite chain of ideals in � , i.e.,
we can not have ideals · 5 9 · { 9QPQPQP of � with · 5bÂ · { ÂG�Q�Q� .
Proof Assume that such a chain exists. · �p�YÃ	Ä�Å� 5 · � is clearly an ideal of � and is principal by hypothesis.
Let · �%µt�]¶ . Thus ��� · , i.e., �x� · � for some Æ . But then for all Ç�ÈAÆ we have ·IÉj·�ÊËÉ2· , i.e., ·kÊ � · , a
contradiction. d
1.12 Theorem A PID is a UFD.

Proof Let � be a PID and &/��Y�B��� . We first show that � can be written as a product of finitely many
primes. If � is a unit or a prime, we are done. Otherwise, � is not irreducible (Proposition 1.6) and we
write ���¸� 5 � 5 with both � 5 and � 5 non-units. If � 5 is prime, it is a prime divisor of � . Otherwise, � 5
is also reducible and we can write � 5 ��� { � { with both � { and � { non-units. If � { is prime, it is a prime
divisor of � , else we write � { �%�)Ì��OÌ with both �]Ì and �kÌ non-units. This process must stop after finitely
many steps, i.e., some �]� must be prime, since otherwise we will get an infinite strictly ascending chainµt��¶ Â µt� 5 ¶ Â µt� { ¶ ÂR�Q�Q� . Thus � has one prime divisor; call it @ 5 and write ���A@ 5 
 5 . If 
 5 is a unit, we
have produced a prime factorization of � . If 
 5 is a non-unit, we find as before a prime divisor @ { of 
 5 and
write 
 5 �/@ { 
 { . If 
 { is a unit, we have the factorization �I��@ 5 @ { 
 { , otherwise we write 
 { �/@�Ìk
kÌ with @�Ì
prime. Again this process must stop after finitely many steps, i.e., some 
 Ê has to be a unit, since otherwise
we will be able to generate an infinite ascending chain µt��¶ Â µt
 5 ¶ Â µt
 { ¶ ÂG�Q�Q� .
Let �G�¼��@ 56�Q�Q� @����¼�)Í 56�Q�Q� Í'Î be two factorizations of � (with ��9:� units and @6��9EÍ Ê primes). We will
show that �u�¼Ï and @���<±Í�Ð ¦ � ª for some permutation Ñ of $���9 K 9QPQPQP^9r��( . We proceed by induction onÒ �p� ¬>Ó Ô X½�^9:Ï Z . If

Ò �z& , either ���z& or Ï;�z& . If ���z& , � is a unit and hence we must have Ï;�z& .
Similarly, if Ï��º& , we have �B�º& . In both these cases, the unique factorization of � is obvious. Now
assume that the result holds for

Ò a7� . Since @6� is a prime, @��+��Í Ê for some Ç . After rearranging, if necessary,
we may take @����\Í'Î , i.e., Í'Î��º@��Ow . But ÍDÎ is prime and hence irreducible, whereas @6� is not a unit.
Therefore, w must be a unit, i.e., @��Ë<sÍDÎ . But then � ­ �p�R� T @����Y��@ 56�Q�Q� @0� 365 �zX½��w Z Í 5��Q�Q� Í'Î 365 . By the
induction hypothesis, �
a��	�GÏoa�� , i.e., �*�GÏ , and @���<�Í Ð ¦ � ª for some permutation Ñ of $���9 K 9QPQPQP�9r�
a��^( .
This completes the proof. d
The converse of the last theorem is, however, not true in general. In the exercises we will see that if � is
a UFD, so is the polynomial ring ��e �;h and, in general, the polynomial rings ��e � 5 9QPQPQP�9r�=Õ�h . However, ifÖ È K , then ��e � 5 9QPQPQP'9r� Õ h is not a PID, since the ideal µ½� 5 9QPQPQPD9r� Õ ¶ is clearly not principal.

We are now ready to demonstrate the equivalent characterizations of gcd and lcm in a PID.
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1.13 Proposition Let � be a PID and ��9:�G�#� not both zero. Let w be a gcd of � and � . Thenµtw)¶F�×µt�]¶visµ��Q¶ . In particular, there exist �Ø9r�A�2� such that wu�z���Fi��)� ( B é z o u t ’ s r e l a t i o n ).
If � and � are both non-zero and if ° is an lcm of � and � , then µ½°7¶l�Yµt��¶�ÙBµ��Q¶ .
Proof Let µt�]¶
i�µ��Q¶��Úµt
�¶ . We show that 
 and w are associates. There exist � ­ 9r� ­ ��� such that� ­ �+i�� ­ �\��
 . Since w»��� and w���� , we have w»��
 . On the other hand, �1��µt
�¶ , so that 
*��� . Similarly 
*��� .
Proposition 1.8 then implies that 
*�^w . The characterization of ° is similar and left to the reader. d
It is, however, not usual (or even efficient) to factorize two integers (or polynomials) for computing their
gcd. One uses the so-called Euclidean gcd loop instead. Thus � or �ue ��h are UFDs in which we have
something like a E u c l i d e a n d i v i s i o n a l g o r i t h m . This is formalized in the following definition.

1.14 Definition An integral domain � is called a E u c l i d e a n d o m a i n or an E D for brevity, if there
exists a map Û��U��-b$'&)(+ÜÝ�bÞ satisfying the following two conditions:

(1) Û�Xt� Z ´�Û�Xt�]� Z for all ��9:�����u-q$'&)( .
(2) For every �09:���B� with �1��,& there exist (not necessarily unique) Í)9r�»�B� such that �»�,Í_�oi�� with�*��& or Û�X½� Znß Û}X�� Z .
In this case the map Û is often called a E u c l i d e a n d e g r e e f u n c t i o n . We call Í and � respectively
a q u o t i e n t and a r e m a i n d e r of Euclidean division of � by � and denote this as ÍB�#�Ëà)á�â_ãv� and�*���qäEå ¬ � .
1.15 Example � is an ED with Û}Xt� Z �¿� �6� for �/��,& . For �1��,& the remainder �F�p�J��ä:å ¬ � (and hence
the quotient also) can be made unique by choosing � to be non-negative. The polynomial ring �ue ��h over a
field � is an ED with Û�Xt� Z � � å � � for �����& . In this case the remainder �	äEå ¬ � and the quotient �qà)á�â_ãØ�
are always uniquely determined by � and � .
1.16 Theorem An ED is a PID.

Proof Let � be an ED with Euclidean degree function Û . Obviously the zero ideal of � is principal. Let ·
be a non-zero ideal of � . Choose � to be a non-zero element of · such that Û�X�� Z È�Û}Xt� Z for every �	� · -�$'&)( .
We will show that · �¸µt��¶ . Clearly µt�]¶ É�· . For the converse take any ��� · . By definition there existÍ)9r�=��� with �\��Í��vi;� and �*��& or Û�X½� Znß Û�Xt� Z . Then �*�G��a�Í��1� · and the minimality of Û�Xt� Z forces�*��& , i.e., �
��Í��»��µt��¶ . d
Theorems 1.12 and 1.16 in conjunction with Example 1.15 show that � and �?e �;h (where � is a field) are
both PIDs and hence both UFDs. But note that every PID is not necessarily an ED. For example, the ringæ �+iu�
ç 5 Þ6è 365`é{ ê �^�09:�����*ë is a PID but not an ED.

The following theorem is at the heart of the E u c l i d e a n g c d a l g o r i t h m .

1.17 Theorem Let � be an ED, &;����09:�	��� and �I�p���qäEå ¬ � . Then �U�Q� Xt�09:� Z < �U�Q� X��D9r� Z .
Proof We will show that µt��¶liYµ��Q¶I�Àµ��Q¶liYµ½��¶ . Let �/�zÍ_�
iA� . Then ���Yµ��Q¶liYµ½��¶ and, therefore,µt��¶�iGµ��Q¶ É µ��Q¶�iGµ½��¶ . Conversely, �+�G�Ëa�Í_�	��µt��¶�iGµ��Q¶ and it follows that µ��Q¶�iGµ½��¶ É µt��¶�iGµ��Q¶ . d
The reader is requested to fill out the details on how this theorem can be used to prove the correctness of the
traditional Euclidean gcd algorithm in an ED.
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The central object of study in this course is the class of rings called number rings. Number rings are not
necessarily unique factorization domains (or PIDs or EDs obviously). However, they are all examples of
Dedekind domains which are rings where we have unique factorization of ideals. We will study these topics
in detail later during this course. The simpler cases of UFDs, PIDS and EDs discussed so far should be the
first step of generalizing the notion of unique factorization. Moreover, number rings can be UFDs, PIDs and
even EDs. Cool! But it is high time now that we concentrate on ideals in a ring. This is what we do next.
Unique factorization is important and if preserving it requires us to play at the ideal-level (instead of the
element-level), we will do that.

Exercises for Section 1.1

1. Let ì be a ring and í)î�ïQîñðQîñò0î`óËô�ì . Show that:

(a) í�õ�ï , if and only if ögí�÷£ø�ö½ïE÷ . (In the notation of ideals “divides” means “contains”.)

(b) íËõ�ï and ïnõQí , if and only if öùí_÷}úuö½ïE÷ . Furthermore, if ì is an integral domain, then íËõ'ï and ïvõ'í , if and only ifí	û/ï .
(c) If íËõ�ï and ïvõ'ð , then í�õQð .
(d) If íËõ�ï and í�õQð , then íËõUügïWò	ý;ðróUþ .

2. Let ì and ÿ be two rings. Show that üùì��Iÿqþ � úBì � �Iÿ � .
3. (a) Let ì be an integral domain. Show that üùì � ��� þ � ú�ì � .

(b) Demonstrate by an example that the result of Part (a) may not hold, if ì is not an integral domain.

4. Let ì be a UFD and �	�ú�í)îWïkîñðvô=ì . Show that:

(a) 
���
�ügí)î�ïEþ��������Iügí)î�ïEþ�û�í_ï .
(b) If íËõ�ïrð and 
���
0üùí)îñð:þ is a unit, then íËõ'ï .

5. [ P o l y n o m i a l s o v e r a U F D ] Let ì be a UFD. For a nonzero polynomial ��ü � þØô=ì � ���
a gcd of the coefficients

of ��ü � þ is called a c o n t e n t of ��ü � þ and is denoted by ����������ü � þ . One can then write ��ü � þ6ú�ü�����������ü � þ`þ�� �kü � þ ,
where ���Qü � þ
ô�ì � ���

with �������!���Qü � þnô;ì � . ����ü � þ is called a p r i m i t i v e p a r t of ��ü � þ and is often denoted
as "#"$��ü � þ . It is clear that �������%��ü � þ and "#"$��ü � þ are unique upto multiplication by units of ì . If for a non-zero
polynomial ��ü � þ
ô�ì � �&�

the content �������%��ü � þnôxì � (or, equivalently, if � and "#"$��ü � þ are associates in ì � ���
),

then ��ü � þ is called a p r i m i t i v e p o l y n o m i a l .

Prove G a u s s ’ s l e m m a : For two non-zero polynomials ��ü � þEî('�ü � þcô1ì � ���
the elements �������Cü)��ü � þ*']ü � þ`þ andü�����������ü � þ`þ:ü�������� ']ü � þ`þ are associates in ì . In particular, the product of two primitive polynomials is again primitive.

6. Let + be a non-zero integer which is not a perfect square. Define � �-, + �/. ú10kí�ýIï , +�õQí)î�ïoôI�32 . Prove the following
assertions:

(a) � �4, + � is an integral domain.

(b) � � , + � ûú � � ����5 ö �7698 +�÷ .
(c) üù� � , 8;:!� þ � ú10=< : î>< , 8;: 2 .
(d) If +@? 8;:

, then üg� �4, + � þ � ú10A< : 2 .
* (e) If +CBD� and � �4, + � has a unit other than < :

, then � �E, + � has infinitely many units. (Hint: Such a unit must be
of infinite order.)

* (f) For +	ú 8$F î 8;: î F îHG the ring � �4, + � is an ED with Euclidean degree function I�ügí4ý1ï , +^þØú�õ í 6J8 +�ï 6 õ , í)î�ïvôI� ,
not both � .

* (g) If +@?K� , then � �4, + � is an ED, if and only if +qú 8;:
or

8$F
. (Hint: If +@? 8$F

, you may prove that
F

is irreducible
but not prime in � � , + � . This implies that � � , + � is not a UFD, hence not a PID and hence not an ED. Note thatF õ=+)ü�+ 8L: þ�úuü�+ný , +�þEüM+ 8N, +^þ .)

7. [ E x t e n d e d E u c l i d e a n g c d a l g o r i t h m ] Let ì be an ED, �C�ú�í)î�ï ô>ì and let + . úD
���
�üùí)îWïEþ . Since ì is
also a PID, there exist O�î�P+ôIì such that +qúQO)ínýRP_ï . Modify the Euclidean gcd algorithm so that it returns all of + ,O and P .
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1.2 Ideals in a ring

Ideals play a very crucial role in the study of rings (commutative with identity). The concept of ideals was
introduced by Ernst Eduard Kummer (1810–1893) and later formalized by Richard Dedekind (1831–1916)
in his famous work “Über die Theorie der ganzen algebraischen Zahlen”. As before I will use lower-
case Gothic letters · 9ASU9UTO9HVF9>W�9YX09UZ (respectively, ��9:�D9E
D9r°B9 Ö 9t@Ø9EÍ ) to designate ideals. On some specific
occasions I will also use the upper-case Gothic letters [49>\�9>] and ^ ( _�9�`;9�a and b ) to denote certain
ideals. Mathematicians always run out of symbols and many believe that if it is Gothic, it looks ideal.

We start with some basic operations on ideals.

1.18 Definition Let � be a ring and let · � , Æv�Nc , be a family (not necessarily finite) of ideals in � .

� The set-theoretic i n t e r s e c t i o n d �)egf · � is evidently an ideal in � .� The s u m of the family · � is the idealh
�)e�f · � �p� i h

�Megf | � ��| � � · � and | � ��& except for finitely many Æv�NckjFP
Two ideals · and S of � are said to be r e l a t i v e l y p r i m e or c o p r i m e , if · ilS��±� , or
equivalently if there exist �1� · and ���mS with �+iu�
�J� .� If c���$���9 K 9QPQPQPD9 Ö ( is finite, the p r o d u c t · 5 · { �Q�Q� · Õ is the ideal generated by all elements of the
form | 5 | { �Q�Q� | Õ with |��4� · � for all Æc�J��9QPQPQPD9 Ö . It is easy to see that

· 5 · { �Q�Q� · Õ �onp q �hÊ � 5 | Ê ¨ 5 | Ê ¨ { �Q�Q� | Ê ¨ Õ �^�I��� Þ 9r| Ê ¨ �c� · �Ur st P
If · 5 � · { � �Q�Q� � · Õ � · , the product · 5 · { �Q�Q� · Õ is often denoted as · Õ .

It is easy to see that the operations intersection, sum and product on ideals in a ring are associative and
commutative.

1.19 Theorem [ C h i n e s e r e m a i n d e r t h e o r e m ( C R T ) ] Let � be a ring and Ö �vu . Let · 5 9QPQPQP'9 · Õ
be ideals in � such that for all Æ , Ç , Æq���Ç , the ideals · � and ·kÊ are relatively prime. Then � T X · 5 Ù �Q�Q� Ù · Õ Z
is isomorphic to the direct product � T · 5 [ �Q�Q� [ � T · Õ .
Proof The assertion is obvious for Ö �J� . So assume that Ö È K and define the map w/�U� T X · 5 Ù �Q�Q� Ù · Õ Z Ü� T · 5 [ �Q�Q� [ � T · Õ by �qiAX · 5 Ù �Q�Q� Ù · Õ ZyxÜ Xt�qi · 5 9QPQPQP'9E�qi · Õ Z for all �1��� . Since · 5 Ù �Q�Q� Ù · Õ É�· �
for all Æ , the map is well-defined. It is easy to see that w is a ring homomorphism. In order to show that w
is injective, we let w Xt�Ëi2X · 5 Ù �Q�Q� Ù · Õ ZrZ �,& . This means that �+i · � �,& , that is, �;� · � for all Æ . Then�»� · 5 Ù �Q�Q� Ù · Õ , that is, �"iGX · 5 Ù �Q�Q� Ù · Õ Z �G& .
The trickier part is to prove that w is surjective. Let � 5 9QPQPQP'9E� Õ �Á� . Let us consider the idealsS��F�p� · 5 Ù �Q�Q� Ù · � 365 Ù · � Þ 5 Ù �Q�Q� Ù · Õ for each Æ . For a given Æ there exist for each ÇY��ÀÆ elements� Ê � · � and � Ê � ·CÊ such that � Ê i.� Ê � � . Multiplying these equations shows that we have a ³0�"� · �
such that ³)�li{zC�;� � , where zC���p�¾� 5��Q�Q� ��� 365 �0� Þ 5��Q�Q� � Õ �|S'� . (This shows that · �£i}S���� � for
all Æ .) Now consider the element �Y�p��~ Õ� � 5 z � � � . It follows that ��� � � X ¬ â � · � Z for all Æ , that is,w Xt�+iGX · 5 Ù �Q�Q� Ù · Õ ZrZ �YXt� 5 i · 5 9QPQPQPD9E� Õ i · Õ Z . d
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Note that in the proof of the last theorem w is injective unconditionally, i.e., for any ideals · 5 9QPQPQPD9 · Õ . The
pairwise coprimality of these ideals has been needed only to prove the surjectivity of w .

1.20 Corollary Let ° 5 9QPQPQP'9r° Õ �Du be pairwise relatively prime moduli. Then for integers � 5 9QPQPQP'9E� Õ
there exists an integer � unique modulo ° 56�Q�Q� ° Õ such that �&���)�cX ¬ â � °x� Z for all Æ£�J��9QPQPQP'9 Ö . d
Two particular types of ideals are very important in algebra.

1.21 Definition Let � be a ring.

� An ideal X of � is called a p r i m e i d e a l , if X7���� and if �]���vX implies �»�vX or �	�vX for ��9:�q�;� .
The second condition is equivalent to saying that if ����vX and �I��vX , then the product �]�I���X .� An ideal V of � is called a m a x i m a l i d e a l , if V#���� and if for any ideal · satisfying V ÉG·ËÉ �
we have · ��V or · ��� . The second condition means that there are no non-unit ideals of � properly
containing V .

1.22 Example For @��N� the principal ideal µp@�¶ of � is prime. On the other hand, for a composite integerÖ the ideal µ Ö ¶ of � is not prime. For example,
K ���µ�mU¶ and Lx��/µ�mU¶ , but the product

KI[ L=��µ�mU¶ .
The ideal µp@6¶ of � for a prime @ is also maximal, for if µp@�¶ Â ·xÉ � ( · an ideal in � ), then · contains an
integer � which is not a multiple of and hence is coprime to @ . By Bézout’s theorem there exist integers �}9r�
with ��@Ii��)�=�Y� implying that �+� · , i.e., · ��� .

Next consider the polynomial ring � � �+e �;h and the principal ideal µ½��¶ of � . It is easy to see thatµ½��¶ Â µ½�;9 K ¶ Â � . Thus µ½�B¶ is not maximal.

Prime and maximal ideals can be characterized by the following equivalent criteria.

1.23 Proposition Let � be a ring and · an ideal of � .

(1) · is a prime ideal of � , if and only if � T · is an integral domain. In particular, � is an integral domain,
if and only if the zero ideal of � is prime.

(2) · is a maximal ideal of � , if and only if � T · is a field.

Proof (1) Let �09:�B�,� be arbitrary. Then · is prime �7� �)��� · implies �8� · or ��� · �&��]�ci · �YXt�+i · Z X��£i · Z �G& implies ��i · ��& or �£i · ��&��&� � T · is an integral domain.

(2) Let · be a maximal ideal. Choose �qi · ��À&�i · . Then ���� · . Consider the ideal S?�p� · iRµ��Q¶ .
Since · is maximal, we must have S>�s� . This means that ��i�
Q�Ë��� for some �B� · and 
F��� . ThenXt
oi · Z X��£i · Z �J�oi · which implies that �£i · is a unit in � T · . That is, � T · is a field.

Conversely, let � T · be a field. Consider any ideal S of � with · Â S É � . Choose any �>��Sq- · . Then�£i · ��8&qi · . By hypothesis there exists 
+��¹ such that X��li · Z Xt
oi · Z �J� i · , that is, �C

a��Ë� ·�É S .
Hence �*�mS , that is, S���� . d
Since fields are integral domains, we immediately have the following important corollary.

1.24 Corollary Maximal ideals are prime. d
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A question that naturally arises is whether there exist prime and maximal ideals in every ring. The answer
is affirmative as long as the ring is non-zero. The following proof is an interesting application of Zorn’s
lemma1.

1.25 Proposition Every non-zero ring � has at least one maximal (and hence at least one prime) ideal.

Proof Let � denote the set of all proper ideals of � . � is non-empty, since the zero ideal of � is a proper
ideal of �����& . � is clearly a partially ordered set under the relation É (inclusion). Now let ���j$ · �o�DÆv�Rc�(
be a chain in � . Consider · �p� Ã �)egf · � and take ��9:�Ë� · . Then ��� · � and �+� ·kÊ for some ÆE9`Ç;�Lc . Since
either · � É8·CÊ or ·kÊ*É8· � , it follows that both � and � belong to either · � or ·CÊ and, therefore, �"H�� , 
k� (for
any 
Ë��� ) are in either · � or ·kÊ and hence in · . Thus · is an ideal of � . Furthermore, ���� · � for all Æb�Kc
and hence ���� · , i.e., · ��� . Thus the chain � has an upper bound in � . By Zorn’s lemma, � has at least
one maximal element. d
The last proof can be easily modified to derive the following more general result. Alternatively, one may
use Proposition 1.25 on � T · and the one-to-one correspondence between the ideals in � T · and those of �
containing · .
1.26 Proposition Let � be a ring and · a proper ideal of � . Then there exists at least one maximal (and
hence at least one prime) ideal of � containing · . In particular, for every non-unit � of � there exists a
maximal (and hence a prime) ideal of � containing � . d
The set of all prime ideals in � is called the (p r ime) spec t rum of � and is denoted by ����å � � . Similarly,
the set of all maximal ideals of � is called the m a x i m a l s p e c t r u m of � and denoted by ��� ¬ � . We
have ��� ¬ � É ����å � � . Furthermore, if � is non-zero, both these sets are non-empty. In modern algebra
these two sets play an extremely useful role for the study of the ring � . For example, one can define a
topology (the so-called Z a r i s k i t o p o l o g y ) on ����å � � and ��� ¬ � naturally inherits its share from����å � � . Grothendieck’s language of schemes exploits the structures of these sets and provides a unifying
ground for algebraic geometry and algebraic number theory. But these modern languages of mathematics
are little too abstract and advanced to be included in a simple-minded course like this. Interested students
may study these topics later in their careers.

In what follows I will use the Gothic letters X09UZU9>]�9Y^ to denote prime ideals, and the letter V to denote
maximal ideals.

1.27 Definition Let � be a non-zero ring. The n i l r a d i c a l of � is defined to be the ideal\����p� �� eJ���A��� � Xb9
i.e., to be the intersection of all prime ideals of � . Similarly, the J a c o b s o n r a d i c a l [ � is the intersection
of all maximal ideals of � , or in other words, it is the ideal defined by[ � �p� �� e���� ¡ � V�P

1Let � be a non-empty set partially ordered by the relation ´ . A c h a i n of � is a subset � of � such that for any � �*���C�
we have either �+´�� or �n´�� . An u p p e r b o u n d of a subset � of � is an element �$��� satisfying �+´�� for all � �¡� . A
m a x i m a l e l e m e n t of � is an element ¢£�	� such that ¢ ´¤� for some �3�	� implies that �¦¥§¢ . Z o r n ’ s l e m m a states
that if every chain of � has an upper bound in � , then � contains at least one maximal element. Zorn’s lemma can not be proved
independently, but can be shown to be equivalent to the other axioms of mathematics, like the well-ordering principle or the axiom
of choice.
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Clearly, \ � É [ � . When no confusions are likely, we may drop the prefix � from \ � and [ � . If � is the
zero ring, it is customary to define \ � ��[ � ��& .
Jacobson radical is named after Nathan Jacobson (1910–1999) who contributed greatly to the study of rings,
Lie algebras and Jordan algebras. The name ‘nilradical’ comes from the following consideration. Recall the
an element � in a ring � is called n i l p o t e n t , if � � �j& for some �F�Lu . Clearly, & is a nilpotent element
in any ring. An example of a non-zero nilpotent element is e K h(¨ in the ring �;¨ . The following result gives a
connection between the nilpotent elements and the nilradical. It is left to the reader as an exercise to prove
that the set of all nilpotent elements in a ring � is an ideal in � . (Also look at Exercise 1.2.9.)

1.28 Proposition Let � be a ring. Then \ � is the set of all nilpotent elements of � .

Proof The result is obvious for �R�R& . So assume that � is a non-zero ring and let W � denote the set of
all nilpotent elements of � . We will show that W � �©\ � . First note that if ���QW � , then � � �J& for some�=�Ru , i.e., � � �vX for every X»�L����å � � . Since all such X are prime, it follows that �1�vX for all X1�ª����å � � ,
i.e., �1�N\ � , so that W � É \ � .

For proving the reverse inclusion take any �B��LW � . Let � be the set of all proper ideals of � not containing
any power � Õ , Ö �Ku , of � . Since � is not nilpotent, the zero ideal belongs to � , i.e., � is nonempty. Also� is partially ordered under inclusion É . As in the proof of Proposition 1.25 one can show that � has a
maximal element, say, X . If we can show that X�������å � � , we will have ����D\N� , since by construction X
does not contain any power of � and, in particular, � itself. So take �D9E
���DX . Then the ideals XËiJµ��Q¶ andX�i2µt
Q¶ are strict supersets of X and hence by the maximality of X are not in � , i.e., contain some powers of� . Let �%«j�vXoi�µ��Q¶ and � Õ �vXoi�µt
�¶ , i.e., �%«G�A�bix� ­ � and � Õ �.�vi�� ­ 
 for some �}9r����X and � ­ 9r� ­ ��� .
But then � « Þ�Õ �YX½�0�\i��0� ­ 
�i�� ­ �]� Z iuX½� ­ � ­ Z �C
"��Xniuµ��C
�¶ , i.e., X
iuµ��C
Q¶"��L� , i.e., �C
I��vX . Thus X is prime,
as desired. d
A similar characterization of the Jacobson radical [ � is covered in Exercise 1.2.11.

Exercises for Section 1.2

1. (a) Let · be an ideal in a ring ì . Show that · ú�ì , if and only if · contains a unit. In particular, if · Â ì (i.e., if · is
a proper ideal of ì ), then · consists only of non-units. (Remark: This is why ì�ú�ö : ÷ is called the u n i t i d e a l .)

(b) Show that the only ideals in a field are the zero ideal and the unit ideal.

2. Let ì be a ring and · î¬SUî�T ideals in ì . Prove that:

(a) · ü�SvýmT�þ�ú · Soý · T .
(b) · S ­ ·$® S . Furthermore, if · ýDSbúBì , then · S
ú ·$® S .

(c) More generally, show that if · �kî�¯�¯�¯Eî ·�° are pairwise relatively prime ideals of ì , then · ������� ·�° ú · � ® ����� ®1·�° .
(Hint: Induction on ± .)

3. Let ì be a ring and í*ôIì . Show that í is prime, if and only if the principal ideal ögí�÷ of ì is prime.

4. Let � .�²1³µ´
be a homomorphism of fields. Show that � is injective.

5. Show that a finite integral domain is a field.

6. Let � . ì ³ ÿ be a ring homomorphism.

(a) Let S be an ideal in ÿ and · . ú1�9¶ � ü·SDþ . ú¸0kí*ô>ì�õ���ügí_þ£ôNS 2 . Show that · is an ideal in ì . Show further that
if S is prime, then · is also prime, but if S is maximal, then · need not be maximal. (Remark: The ideal · is called
the c o n t r a c t i o n of S and is denoted by · ú¹Sgº .)
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(b) Let · be an ideal of ì . Show that ��ü · þ . ú»0U��üùí_þvõ�íËô · 2 is not necessarily an ideal in ÿ . (Remark: The ideal
generated by the elements of ��ü · þ is called the e x t e n s i o n of · and is denoted by ·½¼ .)
(c) Let · be an ideal of ì and S an ideal of ÿ . Show that: · ­ · ¼ º , S�ø¤S�º ¼ , ·�¼ ú ·�¼ º ¼ and S�º4ú¹S�º ¼ º .

7. (a) Show that the set \ of nilpotent elements in a ring ì is an ideal of ì .

(b) Prove that the ring ì 5 \ does not contain non-zero nilpotent elements. (Remark: One often calls the ring ì 5 \
the r e d u c t i o n of ì and denote this ring as ì¿¾ÁÀ*Â . If \�ú�� , then ìy¾�À*Âqú�ì and we call ì to be a r e d u c e d ring.
In particular, the reduction ì¿¾ÁÀ*Â of any ring ì is reduced.)

(c) Conclude that an integral domain is reduced. Give an example of a reduced ring that is not an integral domain.

8. (a) Show that all non-zero prime ideals in a PID are maximal. (Hint: Example 1.22.)

(b) Demonstrate by an example that a prime ideal in a UFD need not be maximal.

9. Let ì be a ring and · ­�ì an ideal. Consider the set, · . ú10kí"ô=ì�õQígÃ*ô · for some Ä1ô�u�2�¯
Show that

, · is an ideal of ì . It is called the r a d i c a l or r o o t of · . If
, · ú · , then · is called a r a d i c a l i d e a l

or a r o o t i d e a l . For arbitrary ideals · and S of ì prove the following assertions.

(a) · ­ , · .
(b) Å , · ú , · .
(c) If · ­1S , then

, · ­ , S .

(d) If · is a prime ideal, then
, · ú · .

(e)
, · ú�ì , if and only if · ú�ì .

(f)
, · ýQSbú¹Æ , · ý , S .

(g)
, ·¿® Sbú , ·$® , S .

(h) The nilradical \�Ç»ú , � .

10. [ T h e p r i m e a v o i d a n c e l e m m a ] Let ì be a ring, X/�kî�¯�¯�¯Oî(X Ã prime ideals in ì and · an ideal of ì with· ­�Ã ÃÈ�É � X È . Show that · ­NX È for some ÊØô70 : î�¯�¯�¯Eî·Ä92 . (Hint: Prove the contrapositive by induction on Ä .)

11. Let ì be a ring and [ the Jacobson radical of ì . Show that í+ô¡[ , if and only if
:Ë8 í_ïlôIì � for all ïoôIì .

1.3 Modules and algebras

Vector spaces and linear transformations between them are the central objects of study in linear algebra.
We now generalize the concept of vector spaces to get a more powerful class of objects called modules. A
module which also carries a (compatible) ring structure is referred to as an algebra. Algebras over fields (or
more generally over rings) play an important role in commutative algebra, algebraic geometry and algebraic
number theory.

Recall that a vector space over a field � is an Abelian group Ì together with a scalar multiplication map� �U� [ Ì,ÜÍÌ enjoying certain properties (loosely speaking, the linearity properties). If we simply assume
that � is a general ring (i.e., not necessarily a field) and keep the other parts of the definition (of a vector
space) intact, we get a � -module. Now � being a ring, it is not expected in general that every non-zero
element in � is invertible. This means that all the properties of vector spaces do not straightaway carry over
to modules. But that does not deter us from going for the generalization.

1.29 Definition Let � be a ring. A m o d u l e o v e r � (or an � - m o d u l e , in short) is an (additively
written) Abelian group Î together with a s c a l a r m u l t i p l i c a t i o n m a p � ��� [ Î ÜÏÎ with the
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following properties. Conventionally we denote � Xt��9r| Z as � � | or simply as ��| . For every �09:�1�u� and|}9r~��§Î the scalar multiplication map must satisfy:

��X½|>i�~ Z � ��|=i?��~�9Xt�+iu� Z | � ��|=iu�O|}9� � | � |}9��X��O| Z � Xt�)� Z |Ø9
where �]� denotes the product of � and � in the ring � .

1.30 Example (1) When � is a field, an � -module is a vector space over � .

(2) Ideals of � are modules over � with the ring multiplication taken as the scalar multiplication map.

(3) Every Abelian group Ð is a � -module under the scalar multiplication map defined as

Ö |7�p� np q & if Ö ��&|Ii �Q�Q� i/| ( Ö times) if ÖmÑ &a
|1a �Q�Q� aB| ( a Ö times) if Ö ß & .

(4) The polynomial rings ��e �;h and ��e � 5 9QPQPQP'9r� Õ h are modules over � .

(5) Let � É¹Ò be any extension of rings. Then Ò is an � -module with the scalar multiplication map defined
as the multiplication of the ring Ò .

(6) Let Î/� , Æo�Nc , be a family of � -modules. The d i r e c t p r o d u c t Ó �Megf Î�� of Î�� is defined as the set of
all tuples X½| � Z �)e�f with | � �§Î � . The d i r e c t s u m Ô �Megf Î � is the subset of the Cartesian product Ó �)egf Î �
consisting only of the tuples Xt��� Z �)e�f for which ���v�s& except for a finite number of Æ��Dc . Both the direct
product and the direct sum are � -modules under component-wise addition and scalar multiplication.

If Î��}��Î for all Æ �Nc , we denote the direct product of Î?� , Æv�Nc , as Î f and the direct sum of Î�� , Æ �Nc ,
as Î ¦ f ª . When c is of finite cardinality Ö , these two modules are naturally the same and we use the notationÎ Õ to designate Î f ��Î ¦ f ª in this case.

The above example shows that all vector spaces. ideals and Abelian groups are modules. This means that
any result we prove for modules holds for all these three kinds of algebraic structures. This is one of the
reasons why modules call for specific attention in mathematics.

1.31 Proposition Let Î be an � -module. Then for every �»�x� and |��§Î we have: & � |���& , � � &Ë�G& ,XWa\� Z |x�G��XWa
| Z �Ja*Xt��| Z and XWa\� Z XWa
| Z �A��| .
Proof Easy verification. d
An � - s u b m o d u l e of an � -module Î is a subgroup ` of Î that is closed under the scalar multiplication
of Î . For an arbitrary subset � É Î the set of all finite linear combinations of the form � 5 | 5 i �Q�Q� i;� Õ | Õ ,Ö ��� Þ , ���4�;� , |��4�ª� , is an � -submodule ` of Î and is denoted by �@� or ~mÕ e Ö �b| . We say that ` is
g e n e r a t e d b y � (or by elements of � ). If � is finite, then ` is said to be f i n i t e l y g e n e r a t e d . A
(sub)module generated by a single element is called c y c l i c .

It is important to note that unlike vector spaces the cardinality of a minimal generating set of a module is not
necessarily unique. (See Exercise 1.3.1 for an example.) It is also true that given a minimal generating set �
for Î there may be several different ways of writing a given element of Î as finite linear combinations of
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elements of � . (For example, if Î �����G� and ���j$ K 9:L�( , then �q�YXWa*� Z � K iA� � L+� K � K i�XWa+� Z � L .)
It follows that the nice theory of dimensions enjoyed by vector spaces does not generalize to modules.

If Î is an � -module and ` a submodule of Î , then the Abelian group Î T ` can be made to an � -module
by defining the scalar multiplication map ��X½|xi»` Z �p����|xi»` . This module (still denoted as Î T ` ) is
called the q u o t i e n t m o d u l e of Î by ` . (Note that Î is by definition an Abelian group, so that any
subgroup ` of Î is normal in Î and the quotient group Î T ` is necessarily defined.)

For � -modules Î and ` an � - l i n e a r m a p or an � - m o d u l e h o m o m o r p h i s m (from Î to` ) is defined as a map ×¿�¡Î Ü ` satisfying ×£Xt��|�iJ�O~ Z �¾�!×£X½| Z iJ�U×£X½~ Z for all ��9:�A��� and|}9r~8�©Î (or equivalently satisfying ×£X½|xi8~ Z �Ø×£X½| Z i�×£X½~ Z and ×£Xt��| Z �¸�!×£X½| Z for all ���2� and|}9r~/�¤Î ). An i s o m o r p h i s m of modules is a bijective homomorphism. If Î �Ù` , then an � -linear
map ×B�ÚÎ ÜÛÎ is also called an e n d o m o r p h i s m of Î . Finally, an a u t o m o r p h i s m is a bijective
endomorphism. The set of all ( � -module) homomorphisms Î ÜÛ` is denoted by Übâ ¬ � X*Î29�` Z and the
set of all ( � -module) endomorphisms of Î is denoted by Ý Ô�� �	Î . These sets are again � -modules under
the definitions: X*×1i¹Þ Z X½| Z �p�ß×£X½| Z i1Þ�X½| Z and Xt��× Z X½| Z �p�R�!×£X½| Z for all �B�/� and |u�¤Î (and ×�9YÞ inÜqâ ¬ � X*Î29�` Z or Ý Ô�� � Î ).

For an � -linear map ×7�%Î Üà` the k e r n e l and i m a g e of × are defined respectively as the setsá åQäâ×��p�j$�|��NÎ �g×£X½| Z ��&)( É Î
and ã

¬ ×��p�j$�~��N`×�^~>��×£X½| Z for some |7�§Îs( É `%P
Like groups, rings and vector spaces, we have the isomorphism theorem for modules.

1.32 Theorem [ I s o m o r p h i s m t h e o r e m ] For an � -module homomorphism ×��/Î Üä` the setsá åQäâ× and

ã
¬ × are submodules of Î and ` respectively and Î T á åQäâ× <� ã

¬ × . d
Certain specific � -modules behave like vector spaces in the sense that they have bases over � . These
modules are worth investigating, because the number rings are � -modules of this type.

1.33 Definition A f r e e m o d u l e Î over a ring � is defined to be a direct sum Ô �)e�f Î�� of � -modulesÎ�� with each Î/� <� � as an � -module. Thus a free � -module Î is isomorphic to � ¦ f ª for some index setc . If c is of finite cardinality Ö , then Î <� � Õ .
For example, any vector space over a field � , being isomorphic to � ¦ f ª for some index set c , is a free� -module. In particular, every � -vector space of finite dimension Ö is isomorphic to � Õ . On the other
hand, every finitely generated � -module need not be isomorphic to a free module � Õ for some Ö �åu .
For example, consider an integer ° È K and the cyclic � -module � « which has cardinality ° . The free� -modules � � have cardinalities � or infinity. Hence � « can not be a free � -module. We, however, have
the following result:

1.34 Theorem [S t ruc tu r e theo rem for f in i t e ly gene ra t e d modu le s ] Let Î be an � -module.
Then Î is finitely generated (as an � -module), if and only if Î is the quotient of a free module � Õ for
some Ö �;� Þ .
Proof [if] The free � -module � Õ has a generating set $�æ 5 9�æ { 9QPQPQP'9�æ Õ ( , where æ��c�%Xt&]9QPQPQP^9E&]9���9E&]9QPQPQP�9E& Z
( � in the Æ -th position). If Î ��� Õ T ` for some � -submodule ` of � Õ , the equivalence classes æD��i�` ,Æc�Y��9QPQPQP'9 Ö , clearly constitute a finite (but not necessarily minimal) set of generators of Î .
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[only if] If | 5 9QPQPQP'9r| Õ generate Î , then the � -linear map ×#�+� Õ Ü Î defined by Xt� 5 9QPQPQP'9E� Õ ZmxÜ� 5 | 5 i �Q�Q� i?� Õ | Õ is surjective. Hence by the isomorphism theorem Î <� � Õ T á åQäâ× . d
As in the case of vector spaces, a subset � of an � -module Î is called l i n e a r l y i n d e p e n d e n t
over � , if an arbitrary finite � -linear combination ~ Õ� � 5 ���½|�� (with ���*��� and |��*�å� ) is zero only for� 5 � �Q�Q� ��� Õ ��& . A subset � of Î is called an � - b a s i s of Î , if � is linearly independent over �
and generates Î as an � -module. It is easy to see that � É Î is an � -basis of Î , if and only if every|��QÎ can be written uniquely as an � -linear combination |��,� 5 | 5 i �Q�Q� iu� Õ | Õ with Ö �B� Þ , ���v�B�
and |��c�L� .

1.35 Proposition Let Î be an � -module. Then Î has an � -basis, if and only if Î is a free � -module.

Proof [if] Let ×7��� ¦ f ª ÜçÎ be an isomorphism for some index set c . For each Æ �Rc define æ��c�p�YX*zC� Ê Z Ê egf ,
where zk� Ê is the Dirac delta. It is easy to see that æ^� , Æ	�Dc , form an � -basis of � ¦ f ª . It follows that ×£X*æ'� Z ,Æv�Rc , form an � -basis of Î .

[only if] Let |�� , ÆI�¹c , be an � -basis of Î . Define ×A�4� ¦ f ª Ü Î by Xt��� Z �)e�f xÜ ~ �)egf ���½|0� . First note
that elements of � ¦ f ª are c -tuples Xt�)� Z �)e�f with only finitely many �)� non-zero. Therefore, ×£XrXt�)� Z �)e�f Z is
well-defined (i.e., a finite sum). It is easy to check that × is an � -linear map. Also × is surjective, since | � ,ÆË�¸c , is a generating set for Î . Furthermore, × is injective, because |}� , Æ��¹c , are linearly independent
over � . Therefore, × is an isomorphism. d
That free modules have bases does not immediately imply that any two bases of a free module will have to
have the same cardinality. This is, however, true, though proving this requires some care. We start with the
following lemma the (easy) verification of which is left to the reader.

1.36 Lemma For an ideal · of � and an � -module Î the set · Î consisting of all finite � -linear
combinations ~ Õ� � 5 ���t|0� with Ö ��� Þ , ���b� · and |��\�1Î is an � -submodule of Î . Î T · Î is an � T · -
module. Moreover, if Î is a free � -module with a basis |�� , Æ
�Kc , then Î T · Î is also a free � T · -module
with basis èlX½|�� Z , Æv�Nc , where è��%Î ÜçÎ T · Î is the canonical projection map. d
Now we can state and prove the d i m e n s i o n t h e o r e m f o r f r e e m o d u l e s .

1.37 Theorem Let � be a non-zero ring and Î a free � -module. Then every � -basis of Î has the same
cardinality.

Proof Let | � , Æ��ßc , constitute an � -basis of Î and let · be a maximal ideal of � . (Such an ideal
exists by Proposition 1.25.) By the last lemma Î T · Î is a free � T · -module with basis èlX½|Ø� Z , Æ��lc ,
where èJ�¿Î Ü Î T · Î is the canonical projection map. But · is a maximal ideal of � and hence by
Proposition 1.23 � �p�%� T · is a field, that is, Î T · Î is a � -vector space. By the dimension theorem for
vector spaces we have � c��U� �0Ó ¬�é X*Î T · Î Z . d
The cardinality of any basis of a free � -module Î is called the r a n k of Î and is denoted by êìë Ôîí � Î
or simply by êïë ÔÚí Î (if � is understood from the context). This terminology may be a bit confusing,
because when vector spaces are concerned we prefer to call dimension instead of rank. On the other hand,
we associate the term rank with a linear transformation (or matrix). Note that a vector space can not have
that rank which is defined for linear transformations. Thus whenever we say rank of a � -vector space Ì ,
we mean the rank of Ì as a � -module, i.e., ��Ó ¬vé Ì .

Next we prove a result which turns out to be very useful one.
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1.38 Proposition [ N a k a y a m a ’ s l e m m a ] Let Î be a finitely generated � -module and · an ideal of� contained in the Jacobson radical [ � of � . If · Î �åÎ , then Î ��& .
Proof We prove this by contradiction. Assume that Î ��Á& and let | 5 9QPQPQPD9r| Õ constitute a minimal
set of generators of Î . Obviously, Ö È � , since Î ��Ý& . Now | 5 �lÎ � · Î can be written as a
linear combination | 5 �#� 5 ~ 5 i �Q�Q� iG���C~_� for some � 5 9QPQPQP�9E����� · and ~ 5 9QPQPQP�9r~_���åÎ . Each ~_� , on
the other hand, is an � -linear combination of | 5 9QPQPQP'9r| Õ and, therefore, since · is an ideal, we can write| 5 �8� 5 | 5 i �Q�Q� i�� Õ | Õ for some � 5 9QPQPQPD9:� Õ � · . This can be rewritten as XW�oa�� 5 Z | 5 �G� { | { i �Q�Q� i�� Õ | Õ .
But � 5 �ª[ � and hence by the characterization of elements of [ � (See Exercise 1.2.11) �qa?� 5 is a unit in� . Thus | 5 �ºXW�"au� 5 Z 365O� { | { i �Q�Q� i,XW�"a�� 5 Z 365O�OÕ�|0Õ . If Ö �#� , then | 5 ��& , whereas if Ö�Ñ � , then| 5 �ª~ Õ� � { �b|�� . In both these cases the minimality of the generating set $�| 5 9QPQPQP�9r| Õ ( is contradicted. d
So far we have treated modules just as additive Abelian groups with scalar multiplication maps. The additive
group of any ring ¹ is an Abelian group. If we can give ¹ an � -module structure (for some ring � ) such
that the multiplication of ¹ is compatible with the scalar multiplication map � [ ¹ Ü ¹ , ¹ is called an
algebra over � .

Let w �
�±Ü ¹ be a homomorphism of rings. Then the ring ¹ possesses an � -module structure with
the scalar multiplication map ��|J�p�Øw Xt� Z | for ���j� and |Y�2¹ . Furthermore, the ring structure and
the � -module structure of ¹ are compatible in the sense that for every ��9:���8� and |}9r~G�8¹ we haveXt��| Z X��O~ Z �JXt�)� Z X½|�~ Z .
Conversely if a ring ¹ has an � -module structure with Xt��| Z X��O~ Z � Xt�)� Z X½|�~ Z for every ��9:�.��� and|}9r~?�u¹ , then there is a unique ring homomorphism w2����Ü ¹ taking � xÜ � � � (where � denotes the
identity of ¹ and � denotes scalar multiplication). This motivates us to define the following.

1.39 Definition Let � be a ring. An a l g e b r a o v e r � or an � - a l g e b r a is a ring ¹ together with a
ring homomorphism w��)�2ÜÁ¹ . The homomorphism w is called the s t r u c t u r e h o m o m o r p h i s m of
the � -algebra ¹ . If ¹ and � are � -algebras with structure homomorphisms wA���RÜ ¹ and ð,���RÜñ� ,
then an � - a l g e b r a h o m o m o r p h i s m (from ¹ to � ) is a ring homomorphism ò���¹�Üó� such thatð��»ò@ôïw .

1.40 Example Let � be a ring.

(1) The polynomial ring �Ie � 5 9QPQPQPD9r� Õ h (for indeterminates � 5 9QPQPQPD9r� Õ ) is an � -algebra with the canonical
inclusion as the structure homomorphism and is called a p o l y n o m i a l a l g e b r a over � .

(2) If · is an ideal of � , then the canonical surjection �8ÜÝ� T · makes � T · an � -algebra.

(3) If ¹ is an � -algebra with the structure homomorphism w2��� Ü ¹ and if � is an ¹ -algebra with the
structure homomorphism ð.��¹2Üõ� , then � is an � -algebra with the structure homomorphism ðQô¦w .

(4) Combining (2) and (3) one can show that if ¹ is an � -algebra and · an ideal of ¹ , then the ring ¹ T · is
an � -algebra. This is called the q u o t i e n t a l g e b r a of ¹ by · .
Let | 5 9QPQPQP'9r| Õ belong to an � -algebra ¹ . Because of the � -module structure of ¹ we can talk about the� -linear combinations of |�� . Now ¹ being a ring, it also makes sense to talk about the products |Ø�)�5 �Q�Q� | � öÕ
for non-negative integers � � and to investigate what all these products generate as an � -module. This leads
to the concept of algebra generators.

1.41 Definition Let ¹ be an � -algebra with the structure homomorphism w.�0�RÜ ¹ . A subset � of ¹
is said to generate ¹ as an � -algebra, if every element |.��¹ can be written as a polynomial expression
in finitely many elements of � with coefficients from � (i.e., from wvXt� Z ). We write this as ¹±�¸�IeE�Øh .
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If ��� $�| 5 9QPQPQP�9r| Õ ( is finite, we write �Ie | 5 9QPQPQP'9r| Õ h in place of ��eE�4h and say that ¹ is a f i n i t e l y
g e n e r a t e d � -algebra and that the homomorphism w?�]�jÜÁ¹ is o f f i n i t e t y p e . On the other hand,
if ¹ is finitely generated as an � -module, then we say that ¹ is a f i n i t e � -algebra.

It is important that the reader understands the distinction between the concepts of ¹ generated as an � -
algebra and ¹ generated as an � -module. Since every � -linear combination is also a polynomial expression
with coefficients from � , it follows that a generating set of ¹ as an � -module is also a generating set of ¹
as an � -algebra. In particular, finite � -algebras are also finitely generated � -algebras. The converse of this
is, however, not true in general.

1.42 Example (1) The polynomial algebra �Ie � 5 9QPQPQP'9r� Õ h , Ö Ès� , over � is not finitely generated as an� -module, but is finitely generated as an � -algebra. In fact, �Ie � 5 9QPQPQPD9r� Õ h is a free � -module generated
by the monomials ���)�5 �Q�Q� � � öÕ for all X�� 5 9QPQPQP�9:� Õ Z �;� Õ Þ .
(2) For an ideal · of ��e � 5 9QPQPQP'9r� Õ h the ring ¹#�p���Ie � 5 9QPQPQPD9r� Õ h T · is generated as an � -algebra by the
equivalence classes | � �p�º� � i · , �B´¿ÆF´ Ö . Thus we have ¹À�º�Ie | 5 9QPQPQP'9r|0Õ�h . If · is not the zero
ideal, then ¹ is not, in general, (isomorphic to) a polynomial algebra over � . In fact | 5 9QPQPQPD9r| Õ are not
indeterminates (over � ) in the sense that they satisfy non-zero polynomial equations ×£X½| 5 9QPQPQP'9r| Õ Z ��& for
every ×B� · -q$'&)( . (In this case we also say that | 5 9QPQPQPD9r| Õ are a l g e b r a i c a l l y d e p e n d e n t .) In other
words, the notation ��eVPQPQP¥h is a generalization of the notation to denote polynomial algebras. In what follows
I will usually denote polynomial algebras by �Ie � 5 9QPQPQP'9r�=Õ�h with upper-case letters as algebra generators,
whereas for an arbitrary finitely generated � -algebra I use lower-case letters for the algebra generators as in�Ie | 5 9QPQPQP�9r|�Õ�h .
One may proceed to define kernels and images of � -algebra homomorphisms and frame and prove the
isomorphism theorem for � -algebras. The details are left to the reader. Let me only mention here that
algebra homomorphisms (and isomorphisms etc.) are essentially ring homomorphisms with the added
condition of commutativity with the structure homomorphisms.

1.43 Theorem Let � be a ring. Then a ring ¹ is a finitely generated � -algebra, if and only if ¹ is a
quotient of a polynomial algebra over � .

Proof [if] Immediate from Example 1.42.

[only if] Let ¹ �¾��e | 5 9QPQPQP'9r| Õ h . Then the map ò%�+��e � 5 9QPQPQP'9r� Õ h»Ü ¹ taking ×£X½� 5 9QPQPQP'9r� Õ ZmxÜ×£X½| 5 9QPQPQPD9r| Õ Z is a surjective � -algebra homomorphism. By the isomorphism theorem one then has the
isomorphism ¹ <� ��e � 5 9QPQPQP'9r�=Õ�h T á åQäâò of � -algebras. d
This theorem shows that for the study of finitely generated algebras it is sufficient to investigate the
polynomial algebras and the quotients of the polynomial algebras.

Exercises for Section 1.3

1. Show that for every Ä1ô�u there are integers í½�Qî�¯�¯�¯Eî�í Ã that constitute a minimal set of generators for the unit ideal in� . (Hint: Take any Ä distinct primes ÷Ú�kî�¯�¯�¯Oî�÷ Ã . Define í . ú Ó ÃÈ�É � ÷ È and take í È . ú�í 5 ÷ È for Ê�ú : î�¯�¯�¯:î·Ä .)

2. Let ì be a ring. Prove or disprove:

* (a) Every ì -submodule of a free ì -module is again free.

(b) Every ì -submodule of a non-free ì -module is again non-free.

3. Prove Lemma 1.36.
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4. Let ø be a finitely generated ì -module. Defineù Çcü)øuþ . úm� ú-�/0�õ ûlõ_õAø is generated by ûk2�¯
Show that if ü is a submodule of ø , then ù Ç üMøuþ�´ ù Ç ü�üFþ£ý ù Ç üMø 5 üFþ . Give an example where the strict
inequality holds.

5. Let ø be an ì -module and ü an ì -submodule of ø . Define

ü)ø . üFþ . ú�0Cí*ô�ì�õ�ígøõ­Küv2;­�ìR¯
(a) Show that ü)ø . üFþ is an ideal of ì . In particular, for ü�ú1� the ideal ü)ø . �Dþ is called the ( ì -) a n n i h i l a t o r
of ø and is denoted as ý$�#�%Ç ø (or as ýy�½�$ø ).

(b) Let · ­Øý$�#�¿ø be an ideal of ì . Show that ø is an ì 5 · -module under the scalar multiplication mapüùí*ý · þ�ò . ú íDò . (Remark: It is only necessary to check that this map is well-defined, that is, the definition is
independent of the choice of the representative í of the equivalence class í
ý · .)

6. Let ø be an ì -module. An element ò>ô�ø is called a t o r s i o n e l e m e n t of ø , if ýy�½�lìlòR�úD� , that is, if there is
an í+ôIìLþy0¬� 2 with í^òËúD� . The set of all torsion elements of ø is denoted by ÿâ�����½ø (or ÿ/�����YÇ ø if the ring ì is
to be highlighted). ø is called t o r s i o n - f r e e , if ÿâ�����½ø±úD� , and a t o r s i o n m o d u l e , if ÿâ�����½ø±ú�ø .

(a) Show that ÿ/�����½ø is a submodule of ø .

(b) Show that ÿ/�����%ø is a torsion module (called the t o r s i o n s u b m o d u l e of ø ) and that ø 5 ÿ/�����#ø is
torsion-free.

(c) If ì is an integral domain, show that every free module over ì is torsion-free. In particular, every vector space is
torsion-free.

7. Show that:

(a) S is not finitely generated as a � -module. (Hint: If ü is the � -submodule of S generated by í È 5 ï È , Ê�ú : î�¯�¯�¯Oî�Ä ,
with 
���
�ügí È îWï È þ�ú :

, then for any prime ÷ that does not divide ï � �����ñï Ã we have
:=5 ÷��ô�ü .)

(b) S is not a free � -module. (Hint: Any two distinct elements of S are linearly dependent over � .)

(c) S is a torsion-free � -module. (Remark: This shows that the converse of Exercise 1.3.6(c) is not true in general,
that is, for an integral domain ì every torsion-free ì -module need not be free. However, if ì is a PID and if ø is a
finitely generated torsion-free ì -module, then ø is free. The proof of this last statement is not that easy.)

8. Let ì be a non-zero ring and
� î � î�� indeterminates (over ì ). Demonstrate the following ring (actually ì -algebra)

isomorphisms:

(a) ì � �&� ûú ì � � � ûú ì � � � .
(b) ì � � î � � ûú ì � ���*� � �

.

(c) ì � � î � ��5 ö � ÷ ûú ì � � � .
(d) ì � � î � �Á5 ö � î � ÷ ûú ì .

(e) ì � ���Á5 í�ì � ��� ûú ügì 5 í^ì þ � ���
for any í+ôIì .

(f) ì � ����5 ·�¼ ûú ügì 5 · þ � ���
, where · is an ideal of ì and where · ¼ is the extension of · in ì � ���

.

(g) ì � � î � ��5 ö � 8 � ÷ ûú ì � � � .
* (h) ì � � î � ��5 ögí � 8 ï � ÷ ûú ì � � � , where ì is a PID and ���úBí)î�ïvôIìLþ4ì � are relatively prime.

1.4 Field extensions

With groups, rings, modules etc. it is often useful to investigate a smaller structure (subgroup, subring or
submodule) sitting inside a bigger one. With fields, however, the usual practice is the converse. That is,
if we have a field that is lacking some desirable properties, we extend the field to get superfields (more
commonly designated as f i e l d e x t e n s i o n s ) that possess those properties. For example, we get the field�

as an extension of S in an attempt to make it ‘complete’ in the sense that every Cauchy sequence in
�

converges in
�

. Once completion is achieved, our journey does not stop, because we see that
�

is still not
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big enough so that every polynomial with real coefficients will have a real root. So we adjoin the fictitious
element Ó �Jf a+� to

�
in order to get the field

�
of complex numbers. It turns out that

�
is both complete

(in terms of convergence of Cauchy sequences) and algebraically closed (in the sense that every polynomial
with complex coefficients has a complex root). Thus we should now keep ourselves rather happy with

�
and make no further attempts to extend

�
, unless there is an (esoteric) need to do so.

In this section I will reserve the (Roman) letters 	
9E�79�
 to designate fields. I start with some basic properties
of roots of polynomials.

1.44 Definition Let ×£X½� Z �x�ue �;h . An element � in � (or in any extension of � ) is said to be a r o o t of× , if ×£Xt� Z ��& .
1.45 Proposition Let ×£X½� Z � �ue ��h and �R��� . Then ×£X½� Z � X½� aG� Z Í�X½� Z i ×£Xt� Z for someÍ�X½� Z �;�?e �;h . In particular, � is a root of ×£X½� Z , if and only if �#a�� divides ×£X½� Z (in �?e �;h ).
Proof Recall that �ue ��h is an ED. Euclidean division of ×£X½� Z by �Aa+� gives ×£X½� Z �YX½�.a+� Z Í�X½� Z i���X½� Z
with � å � ��X½� Z*ß � å � X½�Àa/� Z �¿� . Thus ��X½� Z is a constant polynomial. Let us denote ��X½� Z by �;��� .
Substituting � ��� gives ×£Xt� Z �¿� , whence the first result follows. The last statement is an immediate
consequence of this. d
1.46 Proposition Let × be a non-zero polynomial of �?e �;h with w��p� � å � × . Then × can have at most w
roots in � .

Proof We proceed by induction on w . The result clearly holds for wx�Y& . So assume that w7È�� and that
the proposition holds for all polynomials in �?e �;h of degree wFaG� . If × has no roots in � , we are done.
So assume that × has a root, say, ���u� . By Proposition 1.45 we have ×£X½� Z �¸X½�±au� Z Þ�X½� Z for someÞ�X½� Z ���ue ��h . Now � å � Þ=��wna�� and so by the induction hypothesis Þ has at most wna7� roots in � . Since� is a field (and hence does not contain non-zero zero divisors), it follows that the roots of × are precisely� and the roots of Þ . This establishes the induction step. d
It is easy to see that Proposition 1.46 continues to remain valid, if � is any integral domain (not necessarily
a field). However, if � is not an integral domain, the proposition does not necessarily hold. For example, if�]�n�G& with &������9:����� , ����G� , then the polynomial � { i�X�� aB� Z � has at least three roots, namely, & , �
and ��a�� .
For a field extension � É 
 and for a polynomial ×����ue ��h we can talk about the roots of × in 
 , since×���
qe �;h too. Clearly all the roots of × in � are also roots of × in 
 . However, the converse is not true in
general. For example, the only roots of � ¨ a?� in

�
are HI� , whereas the roots of the same polynomial in

�
are H=��9OH Ó . Indeed we have the following important result.

1.47 Proposition Let ×����ue �;h be a non-constant polynomial. Then there exists a field extension 
 of �
such that × has a root in 
 .

Proof If × has a root in � , taking 
A�,� proves the proposition. So we assume that × has no root in �
(which implies that every irreducible factor of × has degree È K ). In principle we do not require × to be
irreducible. But if we consider a non-constant factor Þ of × , irreducible over � , we see that the roots of Þ
in any extension 
 of � are roots of × in 
 too. Thus we may replace × by Þ and assume without loss of
generality that × itself is irreducible. We then construct the field extension2 
��p���ue ��h T µ*×�¶ and denote the
equivalence class of � in 
 by � . (One also writes | , 
� or e ��h to denote this equivalence class.) It is clear
that ×£X�� Z ��&=��
 , that is, � is a root of ×£X½� Z in 
 . d

2Since ��� ��� is a PID, ����� is a maximal ideal of ��� ��� and hence � is indeed a field. Also � is canonically embedded in � .
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We say that the field 
 in the proof of the last proposition is obtained by a d j o i n i n g t h e r o o t � of × and
denote this as 
����uX�� Z . We write ×£X½� Z �YX½�Ya1� Z × 5 X½� Z , where × 5 X½� Z ��
	e ��h and � å � × 5 � � å � ×�a;� .
Now there is a field extension 
 ­ of 
 , where × 5 has a root. Proceeding in this way one can prove the
following result.

1.48 Proposition Let × be a non-constant polynomial in �ue ��h with � å � ×��jw . Then there exists a field
extension 
 of � such that × has w roots (not necessarily all distinct) in 
 .

If a polynomial ×B���ue ��h of degree wxÈ,� has all its roots � 5 9QPQPQPD9:��� in 
 , then we have the factorization×£X½� Z ����X½�Ýa�� 5 Z �Q�Q� X½�±a���� Z for some �?��
 (actually �?��� ). In this case we say that × s p l i t s
(completely or into linear factors) over 
 .

1.49 Definition Let ×��7�?e �;h be a non-constant polynomial. A minimal (with respect to inclusion) field
extension of � over which × splits completely is called a s p l i t t i n g f i e l d of × over � . This is a minimal
field which contains � and all the roots of × .

From the above discussion it is clear that every non-constant polynomial ×����ue ��h has a splitting field 
 .
Quite importantly the field 
 is unique in some sense. This allows us to call the splitting field of × instead
of a splitting field of × . I will discuss these topics again later. For the time being let me mention that the
phrase ‘over � ’ is necessary in the definition of splitting fields. For example, the splitting field of � { i2�
over S is not the same as that of the same polynomial over

�
.

1.50 Definition Let × be a non-constant polynomial in �ue ��h and let � be a root of × (in some extension
of � ). The largest natural number Ö for which X½�ºa�� Z Õ ��×£X½� Z is called the m u l t i p l i c i t y of the root� (in × ). If Ö �Y� (resp. ÖDÑ � ), then � is called a s i m p l e (resp. m u l t i p l e ) root of × . If all the roots of× are simple, then we call × a s q u a r e - f r e e polynomial. It is easy to see that × is square-free, only if ×
is not divisible by the square of a non-constant polynomial in �ue ��h . The reverse implication also holds, if�! ë�ä�� ��& or if � is a finite field.

The notion of multiplicity can be extended to a non-root � of × by setting the multiplicity of � to zero.

Now for a while let us assume that � É 
 is a field extension.

1.51 Definition An element �Y�"
 is said to be a l g e b r a i c o v e r � , if there exists a non-constant
polynomial ×£X½� Z ���ue ��h with ×£X�� Z �8& . If an element ����
 is not algebraic over � , then we say that �
is t r a n s c e n d e n t a l o v e r � . Thus a transcendental (over � ) element ����
 is a root of no polynomial in�ue ��h . The field extension � É 
 is called an a l g e b r a i c e x t e n s i o n , if every element of 
 is algebraic
over � . A non-algebraic extension is also often called a t r a n s c e n d e n t a l e x t e n s i o n . If � É 
 is a
transcendental extension, there exists at least one element ����
 which is transcendental (i.e., not algebraic)
over � .

1.52 Example (1) Every element �¸�R� is algebraic over � , since it is a root of the non-constant
polynomial �ºa������ue ��h .
(2) The element �/�p�$#Æ K i f L=� � is algebraic over S , since � is a root of the polynomial X½� Ì a KUZ { a*L+��&%
a�y_� Ì iA�+�;S+e �;h .
(3) The well-known real numbers æ and è are transcendental over S . (We are not going to prove this.)
Note that the concepts of algebraic and transcendental elements are heavily dependent on the field � . For
example, æ and è , being elements of

�
, are algebraic over

�
.
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(4) Let 'º�p� ��i Ó �s� � , where Ó �p� f a+� and ��9:�%� �
. Then ' is a root of the polynomialX½� aA� Z {"ij�O{��±��{*a K ���ÝiRXt�){�ij�C{ Z � � e �;h . It, therefore, follows that every complex number

is algebraic over
�

. In other words, the field extension
� É � is algebraic.

(5) The extension S É � is transcendental, since
�

contains elements (like æ and è ) that are transcendental
over S . Therefore, the extension S É � is also transcendental.

1.53 Definition Let ����
 be algebraic over � . A non-constant polynomial ×��;�ue �;h of least (positive)
degree with ×£X�� Z �G& is called a m i n i m a l p o l y n o m i a l of � over � .

1.54 Proposition Let �2�(
 be algebraic over � . A minimal polynomial × of � over � is irreducible
over � . If )��B�ue �;h is a polynomial with )}X�� Z �J& , then ×��*) in �?e �;h . In particular, any two minimal
polynomials × and Þ of � satisfy Þ�X½� Z ��
=×£X½� Z for some 
"��� ! .
Proof If × is reducible over � , then ×B� × 5 × { for some non-constant polynomials × 5 9�× { �B�ue ��h . Since� is a field and &>� ×£X�� Z � × 5 X�� Z × { X�� Z , we have × 5 X�� Z �,& or × { X�� Z �,& . But �=´ � å � × 5 ß � å � × and�+´ � å � × { ß � å � × , a contradiction to the choice of × .

Using polynomial division one can write )ØX½� Z �,Í�X½� Z ×£X½� Z iu��X½� Z for some polynomials Í)9r���B�?e �;h .
Now )}X�� Z �G& implies ��X�� Z �G& . Since � å � � ß � å � × , the choice of × forces ��X½� Z ��& , i.e., ×��+) .

Finally if × and Þ are two minimal polynomials of � over � , then ×?� Þ and Þ���× , i.e., Þ�X½� Z �2
=×£X½� Z for
some unit 
 of �ue ��h . But the units of �ue ��h are precisely the non-zero elements of � . d
If × is a monic minimal polynomial of � over � , then by the last proposition × is uniquely determined
by � and � . It is, therefore, customary to define the minimal polynomial of � over � to be this (unique)
monic polynomial. Unless otherwise stated we will also stick to this revised definition and use the symbol¬>Ó Ô ��â «-, �)¨ é X½� Z �?�?e �;h to denote the minimal polynomial of � over � . If � is clear from the context,
we may simply write ¬>Ó Ô ��â «., � X½� Z .
1.55 Example (1) The minimal polynomial of ����� over � is the linear polynomial �ºa����;�?e �;h .
(2) A complex number 'I���
i Ó � , �09:�	� � , �I���& , is not a root of a linear polynomial over

�
. On the other

hand, ' is a root of the quadratic polynomial ×£X½� Z �2��{\a K ����i8Xt�){vi��O{ Z � � e ��h . It follows that × is
the minimal polynomial of ' over

�
and thus × is irreducible in

� e �7h .
1.56 Proposition For a field � the following conditions are equivalent:

(a) Every proper field extension � Â 
 is transcendental, i.e., � has no algebraic extension other than itself.

(b) Every non-constant polynomial in �?e �;h has a root in � .

(c) Every non-constant polynomial in �?e �;h splits in � .

(d) Every non-constant irreducible polynomial in �?e �;h is of degree � .
Proof [(a) � (b)] Consider a non-constant irreducible polynomial ×£X½� Z �.�?e �;h and the field extension

G�p�J�ue �;h T µ*×�¶ of � . We have seen that 
 contains a root of × . We will prove later (Corollary 1.64) that
this extension � É 
 is algebraic. Hence (a) implies that 
��G� , that is, � contains a root of × .

[(b) � (c)] Let ×Ý�±�ue ��h be a non-constant polynomial. By (b) × has a root, say, � 5 in � . Thus×£X½� Z ��X½� a�� 5 Z × 5 X½� Z for some × 5 �B�ue ��h with � å � × 5 � � å � X*× Z a.� . If × 5 is a constant polynomial,
we are done. Otherwise, we find as above � { ��� and × { �x�ue �;h with × 5 X½� Z �YX½�¿a�� { Z × { X½� Z and with� å � × { � � å � X*× 5 Z a��q� � å � X*× Z a K . Proceeding in this way proves (c).

[(c) � (d)] Obvious.
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[(d) � (a)] Let � É 
 be an algebraic extension, �A�/
 and ×£X½� Z �p� ¬FÓ Ô ��â «., �)¨ é X½� Z ���ue ��h . Since ×
is irreducible over � , by (d) we have � å � ×��À� , i.e., ×£X½� Z ���±a.� , i.e., �Y�.� . Thus 
 É � , i.e.,

��G� . d
1.57 Definition A field � satisfying one (and hence all) of the equivalent conditions of Proposition 1.56
is called an a l g e b r a i c a l l y c l o s e d field. For any arbitrary field � a minimal algebraically closed field
containing � is called an a l g e b r a i c c l o s u r e of � and is denoted by 
� . If 
 is an algebraically closed
field containing � , there exists a field � ­ with � É � ­ É 
 such that � ­ is an algebraic closure of � . We
call � ­ an algebraic closure of � in 
 .

We will see soon that an algebraic closure of every field exists and is unique in some sense. The algebraic
closure of an algebraically closed field � is � itself. The following is a very well-known result. I will not
prove the theorem here. Interested students may consult Exercise 1.4.1.

1.58 Theorem [ F u n d a m e n t a l t h e o r e m o f a l g e b r a ] The field
�

of complex numbers is
algebraically closed.

�
is not algebraically closed, since the proper extension

�
of
�

is algebraic (Example 1.52). Indeed
�

is
the algebraic closure of

�
. The algebraic closure 
S of S in

�
is a proper subfield of

�
(Exercise 1.4.8(d)).

I now introduce an important quantity associated with a field extension. Recall that if 	 É � is a field
extension, then � is a vector space over 	 .

1.59 Definition For a field extension 	 É � the cardinality of any 	 -basis of � is called the d e g r e e
o f e x t e n s i o n or the e x t e n s i o n d e g r e e of � over 	 and is usually denoted by e � �0	"h . Thuse � �1	�h � ��Ó ¬32 � . If e � �4	�h is finite, we say that � is a f i n i t e e x t e n s i o n of 	 . Otherwise, the
extension is said to be i n f i n i t e .

1.60 Example Let ×£X½� Z ��	Fe ��h be irreducible (over 	 ) of degree w»È8� . Then �¼�p�5	1e ��h T µ*×£X½� Z ¶ is a
field extension of 	 . One can easily check that the equivalence classes of ��9r�79QPQPQPD9r� � 365 form an 	 -basis
of � . Thus e �¼�6	�h���w .
1.61 Proposition Let 	 É � É 
 be a tower of field extensions. Then e 
¿�7	"h\�Ýe 
��£�7hñe � �8	�h .
In particular, the extension 	 É 
 is finite, if and only if the extensions 	 É � and � É 
 are finite.
Furthermore, if e 
.�6	�h is finite, then e 
����7h��
e 
��9	"h and e �±�:	�h��
e 
��:	�h .
Proof For an 	 -basis � of � and a � -basis � ­ of 
 consider the set �,�p�J$�|�~��_|��K� and ~x�ª� ­ ( É 
 .
It can be easily verified that � generates 
 as an 	 -vector space and that � is linearly independent over 	 .
The details are left to the reader. d
Let 	 É � be a field extension and ����� . Then we define

	1e �Uh}�p�,$�×£Xt� Z �#×£X½� Z ��	Fe �;h�(
and

	1Xt� Z �p�J$�×£Xt� ZrT Þ�Xt� Z � ×£X½� Z 9YÞ�X½� Z �;	1e ��h©9YÞ�Xt� Z ��A&)(lP
It is easy to see that 	Fe �Uh is the smallest (with respect to inclusion) of the integral domains (contained in � )
that contain 	 and � . On the other hand, 	FXt� Z is the smallest of the fields (contained in � ) that contain
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	 and � . We also have 	Fe �Uh É 	FXt� Z . Now we prove the following important characterization of algebraic
elements.

1.62 Theorem For a field extension 	 É � and an element �1�;� the following conditions are equivalent:

(a) The element � is algebraic over 	 .

(b) The extension 	FXt� Z is finite over 	 (i.e., e 	FXt� Z �6	�h ß=< ).

(c) 	1Xt� Z �>	Fe �Uh .
Proof [(a) � (b)] Let )}X½� Z �p� ¬>Ó Ô ��â «-,@? ¨ 2 X½� Z ��	Fe ��h and wF�p� � å � ) . Consider the ring homomorphismw��9	1e ��h6ÜA	FXt� Z that takes ×£X½� Z$xÜÍ×£Xt� Z . It follows from Proposition 1.54 that

á åQä9w��YµB)�¶ . Therefore,
by the isomorphism theorem we have 	Fe ��h T µB)�¶ <�

ã
¬ w . Since ) is irreducible over 	 , 	1e ��h T µB)�¶ is a field

of extension degree w over 	 . Therefore, we are done, if we can show that

ã
¬ wB�5	1Xt� Z . But since

ã
¬ w is

a field containing 	 and � (Note that w X½� Z ��� .), it is immediate that 	FXt� Z É
ã
¬ w , that is,

ã
¬ w��>	FXt� Z .

[(b) � (c)] Let w��p�¸e 	FXt� Z �C	�h . Since the wIi,� elements ��9E��9E� { 9QPQPQPD9E� � are linearly dependent over 	 ,
there exist �4��9QPQPQP'9:���7�=	 , not all & , such that �4�biG� 5 �Ii �Q�Q� i����'� � � & . This, in turn, implies that
there is an irreducible polynomial )}X½� Z �D	Fe ��h with )ØXt� Z �¾& . Now consider ×£Xt� ZrT Þ�Xt� Z �E	1Xt� Z .
Clearly )B��� Þ (because otherwise Þ�Xt� Z � & ). Since ) is irreducible, �U�Q� XMÞ09!) Z � � , i.e., there exist
polynomials �cX½� Z 9r��X½� Z �"	Fe ��h with �cX½� Z Þ�X½� Z i.��X½� Z )}X½� Z �¸� , i.e., with �cXt� Z Þ�Xt� Z �#� . But then×£Xt� ZrT Þ�Xt� Z �A�4Xt� Z ×£Xt� Z ��	Fe ��h . Thus 	1Xt� Z É 	Fe �Uh . The reverse inclusion is obvious.

[(c) � (a)] Clearly the element & is algebraic over 	 . So assume �u��Y& . Since � T ���/	FXt� Z , by hypothesis
there is a polynomial ×£X½� Z �F	Fe �;h such that � T �,�Û×£Xt� Z . But then � is a root of the non-constant
polynomial �K×£X½� Z a��+�;	Fe ��h . d
1.63 Corollary Let 	 É � be a field extension. Then the set of elements in � that are algebraic over 	
is a field.

Proof It is sufficient to show that if ��9:�1��� are algebraic over 	 , then the elements �ËH�� , �]� and � T �
(if �x��s& ) are also algebraic over 	 . By the last theorem e 	FXt� Z �G	"h is finite. Since � is algebraic over 	 ,
it is also algebraic over 	1Xt� Z . In particular, e 	FXt� Z X�� Z �C	FXt� Z h is finite. But then by Proposition 1.61 the
extension 	FXt� Z X�� Z is finite over 	 and contains ��Hu� , �]� and � T � (if �I���& ). d
The field 	FXt� Z X�� Z in the proof of the last corollary is also denoted as 	FXt��9:� Z . It is, in fact, the smallest
subfield of � that contains 	 , � and � , and it follows that 	FXt��9:� Z �H	1X��'9E� Z . More generally, for a field
extension 	 É � and for elements � 5 9QPQPQPD9E� Õ ��� each algebraic over 	 the field 	1Xt� 5 9QPQPQP'9E� Õ Z is defined
as 	1Xt� 5 Z Xt� { Z �Q�Q� Xt� Õ Z and is independent of the order in which ��� are adjoined.

1.64 Corollary Let 	 É � be a finite extension. Then � is algebraic over 	 .

Proof For any �1�;� the degree e 	1Xt� Z �:	�h divides e �¼�9	�h and hence is finite. d
The converse of the last corollary is, however, not true. That is, it is possible that an algebraic extension of
a field 	 has infinite extension degree over 	 . (See Exercise 1.4.6 as an example.)

1.65 Corollary If 	 É � and � É 
 are algebraic field extensions, then 	 É 
 is also algebraic.

Proof Let ����
 . � É 
 being algebraic, there exists ×£X½� Z �p�G� Õ � Õ iu� Õ 365 � Õ 365 i �Q�Q� iu�}�"�;�?e �;h
with ×£Xt� Z �s& . It then follows that � is algebraic over 	FX��£��9QPQPQP'9:� Õ Z . Since each �Ø� is algebraic over 	 ,e 	FX��Ø��9QPQPQP'9:� Õ Z �:	�h is finite, so that

e 	1X��}�_9QPQPQP'9:� Õ Z Xt� Z �9	�h��Ye 	FX��Ø��9QPQPQP'9:� Õ Z Xt� Z �6	1X��}��9QPQPQPD9:� Õ Z hñe 	FX��Ø��9QPQPQP'9:� Õ Z �9	"h
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is also finite and hence the extension 	FX��£��9QPQPQP�9:� Õ Z Xt� Z of 	 and, in particular, � is algebraic over 	 . d
1.66 Definition A field extension 	 É � is called s i m p l e , if � �5	FXt� Z for some �»��� . In this case �
is called a p r i m i t i v e e l e m e n t of � (over 	 ).

1.67 Proposition Let 	 be a field of characteristic & and let the elements ��9:� (belonging to some extension
of 	 ) be algebraic over 	 . Then the extension 	FXt��9:� Z is simple.

Proof Let @4X½� Z and Í�X½� Z be the respective minimal polynomials of � and � over 	 . Let w7�p� � å � @ andw ­ �p� � å � Í . The polynomials @ and Í are irreducible over 	 and hence by Exercise 1.4.3 have no multiple
roots. Let � 5 9QPQPQP�9E�:� be the roots of @ and � 5 9QPQPQP�9:�I�KJ the roots of Í with �=��� 5 and �
�G� 5 . For each Æ:9`Ç withÇ7��J� the equation � � iML0� Ê �G�
iML0� has a unique solution for L . Since 	 is infinite, we can choose N���	
which is a solution of neither of the equations just mentioned. Define 
»�p����i"N}� , so that 
��������i=N}� Ê
for all ÆE9`Ç with Ç���±� . Clearly 	FXt
 Z É 	FXt��9:� Z . To prove the reverse inclusion, note that by hypothesisÍ�X�� Z �J& . Also if we define ×£X½� Z �p�.@4Xt
qa/N6� Z �O	FXt
 Z e ��h , we see that ×£X�� Z ��@cXt� Z �Y& . By choice of
 we see that ×£X�� Ê Z ��,& for Ç����� . Finally since Í is square-free, we have �U�Q� XtÍ)9�× Z �j�ºa?�Ë�P	FXt
 Z e ��h .
This implies that �	��	FXt
 Z and so �>��
naPN}�	��	FXt
 Z . d
1.68 Corollary A finite extension 	 É � of fields of characteristic & is simple.

Proof We proceed by induction on w;�p� e � �G	�h . The result vacuously holds for wx� � . So let’s assume
that w Ñ � and that the result holds for all extensions of degree

ß w of fields of characteristic & . Choose�����À-Q	 . Then e 	FXt� Z �0	�h Ñ � , so that e � �7	1Xt� Z h	�Ýe � �8	�h T e 	FXt� Z �7	"h ß w . By the induction
hypothesis the extension 	FXt� Z É � is simple, say � �R	FXt� Z X�� Z �A	FXt�09:� Z . The result now follows
immediately from the previous proposition. d
Now we have sufficient machineries to prove the existence and uniqueness of splitting fields of polynomials.
Let × be an arbitrary non-constant polynomial of degree w in 	Fe ��h . Assume that × does not split over 	 and
consider an irreducible factor × 5 of × of degree w 5 Ñ � . 	 5 �p�S	Fe �;h T µ*× 5 ¶ is a field extension of 	 . If � 5
denotes the equivalence class of � in 	 5 , then the elements ��9:� 5 9QPQPQP�9:� � � 3655 constitute a basis of 	 5 over
	 . In particular, e 	 5 �9	�h���w 5 ´�w . Now one can write ×£XUT Z �YXUT,aB� 5 Z Þ�XUT Z for some Þ�XUT Z ��	 5 e T*h . IfÞ splits over 	 5 , then × also does so. Otherwise, choose any irreducible factor Þ 5 of Þ with � å � Þ 5 Ñ � and
consider the field extension 	 { �p�V	 5 e T*h T µMÞ 5 ¶ of 	 5 . Then e 	 { �G	 5 hl� � å � Þ 5 ´ � å � Þ7�sw>aA� , so thate 	 { �9	�h}´�w�Xtw�aË� Z . Moreover, if � { is the equivalence class of T in 	 { , then ×£XXW Z �YXXW=a	� 5 Z XXWIa�� { Z )}XXW Z
for some polynomial )ØXXW Z ��	 { eYW\h . Proceeding in this way we can prove the following result.

1.69 Proposition For a polynomial ×8�"	1e ��h of degree wuÈ#� there is a field extension � of 	 withe �¼�9	�h}´.w[Z such that × splits over � . d
That’s the existence of splitting fields. Now comes the question of uniqueness. Let NY�\	¼Ü 	 ­ be an
isomorphism of fields. Then N induces an isomorphism N ! �9	Fe ��h6ÜR	 ­ e T+h of polynomial rings defined by�@�Q� � i��@� 365 � � 365Øi �Q�Q� i/��� xÜRNoXt�:� Z T � iMNoXt�:� 365 Z T � 365}i �Q�Q� i/NoXt��� Z . Note that NØ!�Xt� Z �]NoXt� Z for all���/	 . We also see that ×?�M	Fe ��h is irreducible over 	 , if and only if Nl!_X*× Z �O	 ­ e T*h is irreducible over
	 ­ . With these notations we state the following important lemma.

1.70 Lemma Let the non-constant polynomial ×J�^	Fe ��h be irreducible over 	 . Let � and � be any
roots of × and NØ!�X*× Z respectively. Then there is an isomorphism Û��C	FX�� Z Ü 	 ­ X½� Z of fields, such thatÛ�Xt� Z �]NoXt� Z for all ���;	 and Û�X�� Z �A� .
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Proof Since 	1X�� Z �_	Fe¥�6h and 	 ­ X½� Z �A	 ­ e �6h , we define the map Û%�`	Fe¥��h1Ü 	 ­ e �6h by Þ�X�� ZKxÜXaN ! XMÞ ZrZ X½� Z for each Þ;��	Fe ��h . It is now an easy check that Û is a well-defined isomorphism of fields with
the desired properties. d
Roots of an irreducible polynomial are called c o n j u g a t e s of one another. If � and � are two roots of
a non-constant irreducible polynomial ×£X½� Z �"	Fe �;h , then the last lemma guarantees the existence of an
isomorphism b��6	1X�� Z ÜR	FX½� Z that fixes all the elements of 	 and maps � xÜ¼� .
1.71 Proposition We use the maps N and Nc! as defined above. Let ×£X½� Z �^	1e ��h be a non-constant
polynomial and let � and � ­ be some splitting fields of × and N4!�X*× Z (over 	 and 	 ­ ) respectively. Then
there is an isomorphism b���� ÜÝ� ­ of fields, such that for all ���;	 we have b�Xt� Z �]NoXt� Z .
Proof We proceed by induction on wJ�p� e � �`	"h . (By Proposition 1.69 w is finite.) If w2� � , the
polynomial × splits over 	 itself and since � is a minimal field containing 	 and all the roots of × , we
must have �À�c	 . It also follows that N ! X*× Z splits over 	 ­ and hence � ­ �>	 ­ . Thus b��>N is the desired
isomorphism.

Now assume that w Ñ � and that the result holds for all fields 
 and for all polynomials in 
qe ��h with
splitting fields (over 
 ) of extension degrees less than w . Consider an irreducible factor Þ of × with� ß � å � Þ,´ � å � × . Note that Þ also splits over � . We take any root �#�s� of Þ and consider the
intermediate field 	FX�� Z , i.e., 	 É 	FX�� Z É � . Similarly, let �/��� ­ be a root of NØ!�XMÞ Z and we consider the
tower of extensions 	 ­ É 	 ­ X½� Z É � ­ . By Lemma 1.70 there is an isomorphism Û��d	FX�� Z Üe	 ­ X½� Z withÛ�Xt� Z �fNoXt� Z for all �7�O	 and Û�X�� Z �,� . One can extend Û to Û�!Ë�g	FX�� Z e ��hlÜe	 ­ X½� Z e TËh as before. We
then clearly have Û ! X*× Z �FN ! X*× Z . Now e �Ú�4	FX�� Z h �#e � �4	�h T e 	FX�� Z �h	�hv�#e �Ú�h	�h T � å � Þ ß w . It is
evident that � and � ­ are splitting fields of × and Û�!^X*× Z over 	FX�� Z and 	 ­ X½� Z respectively. Hence by the
induction hypothesis there is an isomorphism b��U�¸Ü×� ­ with b�Xt� Z �GÛ�Xt� Z for all �1��	1X�� Z . In particular,
b�Xt� Z �]NoXt� Z for all �»��	 . d
The results pertaining to the splitting field of a polynomial can be generalized in the following way. Let� be a set of non-constant polynomials of 	1e ��h . Then a splitting field of � over 	 is a minimal field �
containing 	 over which each polynomial ×7�ª� splits. If ���j$�× 5 9QPQPQPD9�×^�'( is a finite set, then the splitting
field of � is the same as the splitting field of ×x��× 5��Q�Q� ×^� (See Exercise 1.4.4). But the situation is different,
if � is infinite. Of particular interest to us is the set � consisting of all non-constant irreducible polynomials
in 	1e ��h . In this case the splitting field of � is an algebraic closure of 	 .

We give a sketch of the proof that even when � is infinite, a splitting field for � exists. This, in particular,
establishes the existence of an algebraic closure of any field. For each ×A�¸� we define an indeterminate�ji and consider the ring �J�p�^	1e �ki��%×B�Q�Øh and the ideal · generated by ×£X½�li Z for all ×��m� . We have· ��Y� and, therefore, there is a maximal ideal V of � containing · (Proposition 1.26). Consider the field
	 5 �p�G� T V containing 	 . It follows that every polynomial ×��K� contains at least one root in 	 5 . Now we
repeat the above procedure with 	 replaced by 	 5 and � replaced by the set � 5 of all non-constant irreducible
(over 	 5 ) factors of polynomials in � to get another field 	 { containing 	 5 (and hence 	 ). We continue this
procedure (infinitely often, if necessary) getting a sequence of fields 	 É 	 5 É 	 { É 	4Ì É �Q�Q� and define� to be the field consisting of all elements of Ã Õ e�m 	ØÕ that are algebraic over 	 . Then each polynomial in� splits in � , but in no proper subfield of � . So � is a splitting field of � .

Now let � be the set of all non-constant irreducible polynomials of 	Fe ��h . We want to show that the
field � obtained as above is algebraically closed in this case. Let � É 
 be an algebraic extension.
Since the extensions 	 É � is also algebraic, so is the extension 	 É 
 . Take any �±�D
 . Then
)}X½� Z �p� ¬FÓ Ô ��â «., �)¨ 2 X½� Z �n	Fe ��h is irreducible over 	 and by the construction of � has all the roots in� . In particular, ����� , i.e., 
���� .
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It is also true that the splitting field of � is unique upto isomorphisms that fix elements of 	 . In particular,
the algebraic closure of 	 is unique upto isomorphisms that fix elements of 	 . We are not going to prove
this uniqueness here.

Exercises for Section 1.4

1. Let ��ü�o�þ be a non-constant polynomial with complex coefficients.

(a) Show that ��ü�o�þ is unbounded (i.e., õ ��ü�o�þ:õ ³qp
as õ o)õ ³rp

).

(b) Show that ��ü�o�þ has a root ots+ô � . (Hint: Assume not, i.e., ��üuo^þì�ú¸� for all o>ô � . Then '�ü�o�þ . ú :=5 ��üuo^þ is a
bounded entire function and hence by Liouville’s theorem is a constant.)

2. Show that the irreducible polynomials in
� � ���

have degrees ´ F
. (Hint: Use the fundamental theorem of algebra.)

3. Let
´

be a field and ��ü � þ�úBí Ã � Ã ýª�����Eý�í � � ý»í s ô ´§� ���
. The f o r m a l d e r i v a t i v e �wv of � is defined to be

the polynomial � v ü � þ . ú ~ Ãx É �9y í x � x ¶ � ô ´§� ���
.

(a) Let �)î('+ô ´§� ���
. Show that üM��ýv'Uþzv]úQ�*v^ýR'�v and ü)�%'_þzv�ú��*vE'nýL�%'�v .

(b) If ��{9|}� ´ úD� , show that �*v)úQ� , if and only if �=ô ´ .

(c) If ��{9|}� ´ úR÷�Bª� , then �wv�úQ� , if and only if ��ü � þ�úª'�ü �3~ þ for some polynomial '�ü � þ4ô ´L� ���
.

(d) Show that � ( �ú � ) has no multiple roots (in any extension field of
´

), i.e., � is square-free, if and only if
���
�üM�)îY�*vVþ�ú :
.

(e) Let � be a non-constant irreducible polynomial over
´

. Show that if ��{9|�� ´ ú¸� , then � has no multiple roots.
On the other hand, if ��{:|}� ´ ú�÷¹B{� , show that � has multiple roots, if and only if ��ü � þ*úl']ü �j~ þ for some'�ü � þ4ô ´L� ���

. (However, if
´ ú�� ~ , then by Fermat’s little theorem and by the binomial theorem '�ü �j~ þ}úm']ü � þ ~ ,

which contradicts the fact that ��ü ò]þ is irreducible. Therefore, � cannot have multiple roots.)

4. Let
´ ­M� be a field extension and ���Qî�¯�¯�¯EîH� Ã non-constant polynomials in

´L� ���
. Show that each � È , ÊØú : î�¯�¯�¯Oî�Ä ,

splits over � , if and only if the product ���������H� Ã splits over � .

5. Let ��ü � þËô ´§� ���
be irreducible of degree +KB F

and � the splitting field of � over
´

. Give an example when� � .�´�� úD+0� and an example when
� � .�´�� ?K+0� .

6. Show that a finite field (i.e., a field with finite cardinality) is not algebraically closed. In particular, the algebraic
closure of a finite field is infinite. (Hint: Let í � î�¯�¯�¯:î�í Ã be all the elements of a finite field

´
. Consider the polynomialü � 8 í#�Eþ!�����Oü � 8 í Ã þ0ý : ô ´L� �&�

.)

7. Let � be an algebraic closure of a field
´

. Prove that � is an algebraic extension of
´

.

8. A complex number o is called an a l g e b r a i c n u m b e r , if o is algebraic over S . An algebraic number o is called
an a l g e b r a i c i n t e g e r , if o is a root of a monic polynomial in � � ���

. Show that:

(a) If o is an algebraic number, then ��o is an algebraic integer for some �Rô	u .

(b) If í+ôIS is an algebraic integer, then í*ô�� .

(c) If oxô � is an algebraic integer, then for any integer Ä?ôB� the complex numbers Ägo and obýmÄ are algebraic
integers.

(d) The set of all algebraic numbers is countable (and infinite). (Remark: This implies that the algebraic closure �S
of S in

�
is countable. On the other hand,

�
is uncountable. Therefore, �S Â � . This last statement also follows

from Exercise 1.4.7 and Example 1.52(5).)

9. Let ��ü � þ£ô ´§� ���
be a non-constant polynomial of degree + and let � � î�¯�¯�¯:î��h� be the roots of � (in some extension

field of
´

). The quantity ��ü)��þ . ú Ó �K� È�� x � � ü�� È 8 � x þ 6 is called the d i s c r i m i n a n t of � . Prove the following
assertions:

(a) ��ü)��þ}úm� , if and only if � has a multiple root.

(b) �Ëü)��þ4ô ´ .

(c) �Ëü �76 ý;í � ý7ïEþ�ú�í 6y8�� ï .
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(d) �Ëü �j� ý;í � ý7ïEþ�ú 8 ü � í � ý F�� ï 6 þ .
10. Let

² ­ ´
be a field extension and let � be an endomorphism of

´
with �cüùí_þ}ú�í for every í+ô ² .

(a) If an irreducible polynomial ��ü � þËô ²@� ���
has a root �Gô ´

, show that �cü���þIô ´
is also a root of � . For

example, taking
² ú � ,

´ ú � and � the automorphism mapping o to its (complex) conjugate �o allows us to
conclude that if a complex number o is a root of the polynomial ��ü � þ ô � � ���

, then �o is also a root of � . A similar
result holds for the extension S©­�S"ü , �Iþ , where � is a non-square rational number.

(b) If
´

is algebraic over
²

, show that � is an automorphism. (Hint: Let the conjugates of �2ô ´
over

²
be� �vún�Øî�� 6 î�¯�¯�¯Eî�� Ã . Since � is injective, it follows from Part (a) that � makes a permutation of ���Qî�¯�¯�¯:î�� Ã . Thus �

is surjective.)

11. Prove the following assertions:

(a)
�

is an infinite extension of S . (Hint: Consider transcendental numbers.)

(b) The only automorphism of
�

that fixes all the elements of S is the identity map. (Hint: Let � be such an
automorphism. First note that if ��´?í+ô � , then �cügí�þ�ú/�cü , í_þ 6 È1� . This implies that for í�îWïlô � with í*´uï one
has �cüùí_þ£´(�cügï:þ . Now assume í¡?��4ügí_þ for some í+ô � þ4S . Choose a rational number ï with í¡?Bïy?��cüùí_þ . Then�cüùí_þ£´n�cügïEþ�ú/ï , a contradiction. Thus �cüùí_þ£È?í . Similarly �4ügí_þ£´?í .)

1.5 Finite fields

A f i n i t e f i e l d is a field containing only finitely many elements. Though infinite fields like S ,
�

or
�

are more familiar to us, finite fields often play important roles in algebra and number theory. The simplest
example of a finite field is the field of residue classes of � modulo a prime number @ . Such a field, which
we denote as �0� , consists of exactly @ elements e &^h���9'e �Ch���9QPQPQP'9'e @�a��Ch�� . But there are other finite fields too.
Though they have rich algebraic structures, they are not as easy to visualize as the fields � � . In this section
we let @ be a prime number and Í a power of a prime, i.e., Í>�.@ Õ for some Ö �mu . We will soon see that
there exists a finite field with Í elements. If Ö È K , this field is not the same as the ring ��� . In fact, if Í is
composite, then ��� has non-zero zero divisors and is not even an integral domain.

Recall that the cha rac t e r i s t i c of a ring � is the smallest positive integer Ö such that the sum ��i���i �Q�Q� ix�
( Ö times) in � is the zero element of � . We denote this by �� ë�ä0�¼� Ö . If no such Ö exists, we take�! ë�ä��z�#& . A field � of characteristic zero (like S ,

�
or
�

) has to be infinite, since & , � , K �¼�qiJ� ,L=�%� iG�niG� , PQPQP are distinct elements of � . Thus a finite field must have positive characteristic. In fact,
if � is a finite field, �! ë�ä0� has to be a prime. More generally, we have:

1.72 Proposition Let � be an integral domain of positive characteristic @ . Then @ is a prime.

Proof If @ is composite, write @��¸° Ö for some °B9 Ö ��u , � ß ° ß @ and � ß Ö ß @ . But then@x�G° Ö �G& (in � ). Since � is an integral domain, we must have °#�8& or Ö �2& (in � ). This contradicts
the minimality of @ . d
Let � be a finite field of cardinality Í and let @A�p� �! ë�ä�� �¸� . � contains an isomorphic copy of the
field 	��p�,� � . If e �Á�w	�h4� Ö �Lu , it follows that Í=��@ Õ (since � is a � � -vector space of dimension Ö ).
Therefore we have proved the first statement of the following important result.

1.73 Theorem The cardinality Í of a finite field is a power @ Õ , Ö �ªu , of a prime number @ . Conversely,
given @7�v� and Ö �Ru , there exists a finite field of cardinality Í+�/@ Õ .
Proof In order to construct a finite field of cardinality Í*�/@ Õ , we start with the field 	s�p�G� � and consider
the polynomial ×£X½� Z �p��� � a	�±���8��e �;h . Let � be the splitting field of × over 	 . Since × ­ X½� Z �Ja+�>���& ,
the roots of × are distinct (See Exercise 1.4.3). Therefore, the set �s�p�j$'����� �^� � ����( has cardinality Í .
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From Exercise 1.5.1 it follows that � is a field. But then 	 É � É � and × splits over � . By the definition
of splitting fields we must then have � �5� , that is, � ���_�s� �»����Í . d
1.74 Theorem Let � be a finite field of cardinality Í=��@ Õ and let 	 be the subfield of � isomorphic to� � . Then � is the splitting field of the polynomial ×£X½� Z �p�J� � a/�¾�P	1e ��h over 	 . In particular, � is
unique up to isomorphisms fixing elements of 	 .

Proof Clearly ×£Xt& Z �Y& . Let �B��� ! . Since � ! is a group of order Í*aA� , we have â_ä �âé[� Xt� Z �ØXtÍ*aA� Z
by Lagrange’s theorem. In particular, � � 365 �J� , i.e., ×£Xt� Z ��� � a��>��& . Therefore, each of the Í elements
of � is a root of × and consequently � is the splitting field of × . The last assertion in the statement of the
theorem follows from the uniqueness of splitting fields (Proposition 1.71). d
This uniqueness allows us to talk about the finite field of cardinality Í (rather than a finite field of cardinalityÍ ). We denote this (unique) field by � � .
Theorem 1.74 can be readily generalized for arbitrary extensions � � É � ��� , where Í+�/@ Õ , @��v� , Ö 9r° �Nu
(Exercise 1.5.2).

1.75 Proposition Let ��� É �d� � , ° �»u , be a (finite) extension. There is a unique intermediate field
with Í � elements, wx�ªu , if and only if w7�U° . Furthermore, if w7��° , then ���&�4� � belongs to the (unique
intermediate) field � ��� , if and only if � � � �G� .

Proof For any (positive) divisor w of ° the splitting field 
 of � � � a�� consists of Í � elements and
satisfies �g� É 
 É �w� � . If 
 ­ ��^
 is another intermediate field with Í � elements, then there are more thanÍ � elements of �d� � , that are roots of � � � a�� , a contradiction. Conversely, if 
 is an intermediate field,
then 
 contains Í � elements, where w=�Ye 
��+� � h . Since °z�Ye � ��� ��� � h��Ye � ��� �9
£hñe 
���� � h , w��D° . d
1.76 Corollary Let � � É � ��� , ° � u , be a (finite) extension of finite fields, �×��� ��� and let×£X½� Z �p� ¬>Ó Ô ��â «., �)¨ �!� X½� Z �l�d��e �;h . Then � å � × divides ° .

Proof Consider the intermediate field �h��X�� Z <� �d��e ��h T µ*×�¶ <� � � � , where wF�p� � å � × . d
Now we are in a position to prove a very important fact about the multiplicative group of a finite field.

1.77 Theorem Let � be a field (not necessarily finite). Then any finite subgroup Ð of the multiplicative
group ��! is cyclic. In particular, �6!� is cyclic.

Proof Since � is a field, for any Ö �Nu the polynomial � Õ a�� has at most Ö roots in � and hence in Ð .
The theorem then follows immediately from Exercise 1.5.4. d
1.78 Corollary Every finite extension �4� É �d� � of finite fields is simple.

Proof Let � be a generator of the cyclic group � !��� . Then ° is the smallest of the positive integers Ï for
which � ��� ��� . If × is the minimal polynomial of � over � � , then � � É � � X�� Z <� � � e ��h T µ*×�¶ <� � � � É � � � ,

where wF�p� � å � × . Since ���l� � � , � � � �G� , and hence we must have w=�A° , i.e., �h� � �=�d��X�� Z . d
1.79 Corollary For any finite field �h� and °Ý�Lu there exists an irreducible polynomial ×����4��e �;h with� å � ×���° .
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Proof The minimal polynomial over �4� of a generator of ��!� � is irreducible in ���]e �;h and has degree ° . d
We now study some interesting properties of polynomials over finite fields. As before we concentrate on
the polynomials in ����e ��h for an arbitrary Í���@ Õ , @Y�å� , Ö � u . We have seen how the polynomials� � � aj� proved to be important for understanding the structures of finite fields. But that’s not all;
these polynomials indeed have further roles to play. Therefore, we reserve the following special symbol:  � ¨ « X½� Z �p�A� � � a��¼�;�d�]e �;h .
Let �G� É �d� � be a finite extension of finite fields and let � �_�4� � be a root of the polynomial×£X½� Z �p�G��Õ�� Õ i���Õ 365 � Õ 3654i �Q�Q� i�� � ��� � e �;h . Since each � � ��� � , it follows that � �� �G� � . Therefore,×£X�� � Z �G� Õ � � Õ i>� Õ 365 � � ¦ Õ 365 ª i �Q�Q� iF���b��� �Õ � � Õ i>� �Õ 365 � � ¦ Õ 365 ª i �Q�Q� i>� �� ��×£X�� Z � ��& . More generally,
for every �7� &]9���9 K 9QPQPQP the element � � � is a root of ×£X½� Z . We will now show that if × is irreducible in
�d��e ��h , then all the roots of × are of this form. First let us prove the following important lemma:

1.80 Lemma Let ×£X½� Z �;�G��e ��h be a non-constant irreducible polynomial. If × has a root in ��� � , then all
the roots of × are in �G� � .

Proof Let �?���d� � be a root of × . Then ×£X½� Z � ¬>Ó Ô ��â «., �)¨ � � X½� Z . Since � � � �2� , ×£X½� Z ��X½� � � aB� Z ,
i.e., any root � of × also satisfies � � � �A� , i.e., �/�l�d� � . d
1.81 Corollary The minimal polynomial of ���l� ��� over � � is X½��a�� Z X½�%a�� � Z �Q�Q� X½�%a�� � ��¡ � Z , wherew is the smallest of the integers ÏË�Ru for which � � � �G� .

Proof Let ×£X½� Z �p� ¬>ÓùÔ ��â «., �)¨ �!� �^�d��e ��h and let z?�p� � å � × . Then �G��X�� Z <� �g��e ��h T µ*×�¶ <� � ��¢ is
the smallest field containing ( �h� and) � and hence all the roots of × . It follows that � � � ��� for Ï;� z
and for no smaller positive integer values of Ï . Therefore, z»�sw and all the conjugates of � are precisely�o9:� � 9QPQPQP'9:� � ��¡ � . (One can easily check that �l9:� � 9QPQPQP'9:� � ��¡ � are all distinct.) d
1.82 Theorem The polynomial

  � ¨ « X½� Z �A� � � ax� is the product of all non-constant monic irreducible
polynomials in �G��e ��h whose degrees divide ° .

Proof We have the factorization
  � ¨ « X½� Z ��Ó � e � � � X½�ºa�� Z over �d� � . Now by Corollary 1.81 the

minimal polynomial × � X½� Z for every �¸�F�g� � over �d� divides
  � ¨ « X½� Z . By Corollary 1.76 we have� å � X*× � Z �D° . Finally since × � X½� Z �å× � X½� Z or �U�Q� X*× � X½� Z 9�× � X½� ZrZ �J� depending on whether � and � are

conjugates or not, it follows that
  � ¨ « X½� Z is a product of monic irreducible polynomials of � � e �;h whose

degrees divide ° . In order to show that
  � ¨ « X½� Z is the product of all such polynomials, let us consider

an arbitrary polynomial Þ�X½� Z �£����e ��h which is monic, irreducible over �h� and has degree w��0° . Finite
fields being perfect (Exercise 1.5.6), Þ has no multiple roots. Moreover, Þ has one (and hence all) roots in
� ��� <� �d��e ��h T µMÞ�X½� Z ¶ . Since w;�U° , we conclude from Proposition 1.75 that � ��� is contained in �G� � . ThusÞ splits over � ��� as well and, in particular, divides

  � ¨ « . d
An important consequence of the last theorem is that it leads to a procedure for checking the irreducibility of
a polynomial ×£X½� Z �l�G��e �;h . Let wF�p� � å � × . If ×£X½� Z is reducible, it admits an irreducible factor of degree´¥¤½w T�K§¦ . Now Þ « �p� �U�Q� X*×�9   � ¨ « Z is the product of all distinct irreducible factors of × whose degrees
divide ° . If all the gcds Þ 5 9QPQPQPD9YÞ�¨ �!© {�ª are � , × is irreducible. Otherwise × is reducible.

We end this section by explaining how elements of a finite field can be represented. Since �C� � is a vector
space of dimension ° over ��� , we can choose ����9QPQPQP�9r� « 365 �(�d� � that form an �g� -basis of �d� � . Each
element �.�]�G� � then has a unique representation �u�#���k�0�bi �Q�Q� iG� « 365 � « 365 , where each �)�I�]�d� .
Therefore, if we have a representation for the elements of �1� , we have the same for the elements of �h� � .
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It is, then, easy to see that elements of any finite field can be represented, if we have representations of
elements of prime fields. But we have the standard representation of � � as the set $'&]9���9QPQPQP^9t@7aG�^( with
arithmetic modulo @ .
So our problem now reduces to selecting a suitable basis �}��9QPQPQP'9r� « 365 of �g� � over �G� . To see how we can
do that, let’s choose a priori a fixed monic irreducible polynomial ×£X½� Z �(����e �;h with � å � ×��¿° . We
represent �G� � as �d��e ��h T µ*×�¶ <� �d�]X�� Z , where � (the residue class of � ) is a root of × in �4� � . The elements��9:�o9QPQPQPD9:� « 365��F� ��� are linearly independent over � � , since otherwise we would have a polynomial
of degree less than ° of which � is a root. Therefore, ��9:�l9QPQPQP^9:�£« 365 is an �d� -basis of �G� � , called the
p o l y n o m i a l b a s i s (with respect to the defining polynomial × ). Elements of ��� � are then polynomials
in �g��e ��h of degrees

ß ° . Arithmetic in ��� � is carried out as the polynomial arithmetic of �h��e ��h modulo
the irreducible polynomial × .

1.83 Example The elements of � { are & and � with &Ii2&u�À&]9E&=iR���Á��9��+i8&u� ��9��"iR�B�À& ,& [ &Ë�J� [ &Ë��& [ �q��& and � [ �q�J� . In order to represent �h«Ë�=� { # we choose the irreducible polynomial×£X½� Z �8� Ì i?� { iG�Ë��� { e �;h . The elements of � « are � { � { i�� 5 ��iu�)� , where ���l��$'&]9��^( . In order to
demonstrate the arithmetic in �h« we take �F�p�2� { iu��9:�	�p�8� { i��/�;�w« . Their sum in �G« is �\iB�
�G�=iu� .
On the other hand, the product is �]�
�G� ¨ iu� Ì i��}{oiu�B�G� X�� Ì iu�Ø{oi�� Z iu�Ø{b�G� � &qiu�Ø{b�G�Ø{ .
Polynomial bases are the ones most commonly used in finite field implementations. However, there are
other types of bases that are sometimes used.

Exercises for Section 1.5

1. Let
²

be a field (not necessarily finite) of characteristic ÷=ô�� . Show that for every í)î�ïoô ² we have üùí)ý\ïEþ ~ ú�í ~ ý\ï ~ .
(Hint: Use the binomial theorem.) More generally, prove that for Ä1ô�u and í)îWïlô ² we have üùí�ýIïEþ ~!¬ úBí ~!¬ ýIï ~!¬ .
(Hint: Use induction on Ä .)

2. Let ÷ be a prime, Ä6îz�Rô	u and ­ . úN÷ Ã . Let
² ­ ´

be an extension of finite fields with õ ² õ'ú/­ and õ ´ õ'ú/­�® . Show
that

´
is the splitting field of the polynomial

�l¯X°L8�� ô ²@� �&�
over

²
. (Hint: Follow the proof of Theorem 1.74.)

3. [Solving this exercise requires the knowledge of S y l o w s u b g r o u p s and i n t e r n a l d i r e c t p r o d u c t s of groups.
If the reader is not already familiar with these topics, (s)he may consult any text-book on groups and/or algebra.]

Let ± be a finite (multiplicatively written) Abelian group with identity ² and of order Ä;úQ÷g³+´� ������÷ ³�µ° , where ÷ È are
distinct primes and � È ôCu . For each Ê let ¶ È be the ÷ È -Sylow subgroup of ± . Show that:

(a) ±�úO¶¡��������¶ ° . (Hint: Let Êy�ú y and '+ô�¶ È ® ¶ x . Then ���H
 ' divides both ÷*³�·È and ÷ ³�¸x and so is equal to
:
, that

is, '+ún² . Now let ¹ È î�¹ vÈ ôj¶ È and ¹ x î�¹ vx ôj¶ x with ¹ È ¹ x ú�¹ vÈ ¹ vx . But then ¹ ¶ �È ¹ vÈ ú(¹ x üa¹ vx þ ¶ � ô�¶ È ® ¶ x ú»0I²�2 .
Thus õ ¶ È ¶ x õ'ú�õ ¶ È õpõ ¶ x õ . Generalize this argument to show that õ ¶	��������¶ ° õDúKÄ .)

(b) Every element '�ô�± can be written uniquely as '»úc¹Ú��������¹ ° with ¹ È ô�¶ È . Moreover, in that case we have���Y
�º3'	ú�üÁ���Y
6» ´ ¹ � þ!�����Oü����Y
6» µ ¹ ° þ .
(c) ± is cyclic, if and only if all of ¶ � î�¯�¯�¯Oî�¶ ° are cyclic.

4. Let ± be a finite (multiplicatively written) Abelian group with identity ² . Assume that for every ÄBôRu there are at
most Ä elements ò of ± satisfying ò Ã ú>² . Show that ± is cyclic. (Hint: First consider the special case õ ±+õ�ú�÷ °
for ÷1ô7� and ±*ô�u . Then each element '=ô�± has order of the form ÷g¼X½ for some ¾�¿"ôL0¬�Uî : î�¯�¯�¯rî·±�2 . Let ¾ be the
maximum of the integers ¾I¿ , '=ô�± . Show that ¾\ú¤± . This proves the assertion for the special case. For the general
case use this special case in conjunction with Exercise 1.5.3.)

5. Let
²�. úP� ¯ , ­núN÷ Ã , ÷=ô	� , Ä1ô�u . Show that every element ��ô ² has a ÷ -th root in

²
. (Hint: � ~!¬ úP� .)

6. A field
²

is called p e r f e c t , if every (non-constant) irreducible polynomial in
²@� ���

has no multiple roots (in any
extension of

²
).
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(a) Show that if ��{9|�� ² úD� , then
²

is perfect.

(b) Let ��{9|}� ² úN÷&Bm� . Show that
²

is perfect, if and only if every element of
²

has a ÷ -th root in
²

. In particular,
finite fields are perfect.

(Hint: Use Exercise 1.4.3(e).)

7. Let ��ü � þ ôk� ¯ � �&�
be irreducible with + . ú¸
�À�
k�§B¤� . Consider the extension � ¯ ­/� ¯ ° and let ± . ú¹
���
�ü�+�îz�=þ .

Show that � is irreducible over � ¯ ° , if and only if ±�ú :
. (Hint: Assume ±�B :

. We have the tower of extensions� ¯ ­n� ¯ µ ­n� ¯�Á and � ¯�Á is the splitting field of � over � ¯ and hence over � ¯ µ . Consider the minimal polynomial
of a root ��ô�� ¯ Á of � over � ¯ µ . Conversely, let � be reducible over � ¯ ° . Choose a non-constant irreducible factor¹IôÂ� ¯ ° � ���

of � with ¾ . úQ
�À�
7¹C?L+ . Now � has one (and hence all) roots in � ¯�Ã ° and, therefore, +Ëõ}¾�� .)

8. Show that ��ô�� �¯ is a p r i m i t i v e e l e m e n t (i.e., a generator) of � �¯ , if and only if ��Ä ¯ ¶ �XÅ�Æ�Ç �ú :
for every prime

divisor È of ­ 8ª:
. Find a primitive element of � ��zÉ with ���zÉ represented as � 6 � �&�Á5 ö �ËÊ ý � ý : ÷ .
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