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Chapter 1 : Algebra preliminaries

Algebraic number theory, as the name suggests, employs a fair amount of results from abstract algebra
far beyond the scope of one or two introductory courses on algebra. In this chapter I highlight some of
the more advanced topics in algebra, that will prove useful during the rest of the course. The reader may,
however, start wondering: “Where are my numbers?” True! We will eventually study numbers in latter
chapters. This chapter is merely a collection of auxiliary results. I could have taken the approach: “Discuss
algebra whenever needed”. But this compilation of algebraic techniques is useful elsewhere in mathematics
too. Having all these results at one place is expected to aid the reader not only by making referencing
easy later but also by decoupling algebra from number theory to emphasize the independence (and yet the
interdependence) of these two branches of mathematics.

Fortunately enough, throughout this course (as well as in the most part of the study of algebraic number
theory) we don’t have to dirty our hands by attempting to deal with non-commutativity. In fact, very little is
known in non-commutative algebra which turns out to be a very difficult branch of mathematics. But here
we start with the following glorious assumption:

1.1 Assumption By a ring we will always mean a commutative ring with identity.

Many results discussed in this chapter are valid for non-commutative rings too. But we won’t even bother
classifying the results based on their generalities. We will mostly study a special class of subrings of C, the
field of complex numbers, and all these rings naturally inherit commutativity from C.

1.1 Divisibility in rings

The concept of divisibility naturally extends from Z to a general ring (i.e., a commutative ring with identity).
However, one may not have unique factorization in all rings. Z is, indeed, a very well-mannered algebraic
structure. Or perhaps | would better say that our notions of algebraic etiquette stem from studies of Z and
other instances of rings that occurred ‘naturally’ to our mathematical ancestors.

1.2 Definition Let A be a ring.

e Anelementa € Aissaidto divide an element b € A, if there exists ¢ € A such that b = ac. In this
case, we write a | b. If no such c exists, we write a /b.

e Anelementu € Aiscalled a unit (of A), if u | 1, i.e., if there exists v € A with uv = 1. All the
units of A form a group under the multiplication of A. This group is called the group of units
of A and is denoted by A*. Aisa field, ifand only if A # {0} and A* = A\ {0}. Ifu € Aisa
unit and wv = 1, we often write v = v~! and w = v~! and say that v (resp. ) is the inverse of u

(resp. v).

e Two non-zero elements a, b € A are called associates, denoted by a ~ b, if a = ub for some unit
u of A. Clearly, ~ is an equivalence relation on A \ {0}.

e A non-zero non-unit p € Aiscalled a prime, if whenever p | ab (with a,b € A), we have either
plaorp|b.

e A non-zero non-unit a is called irreducible, if any factorization a = be (with b, ¢ € A) implies
that either b or c is a unit.
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1.3 Example All the concepts introduced in Definition 1.2 pertain to the underlying ring A. If A = Z, the
only units we have are +1 and, therefore, a ~ b, if and only if a = +b. The primes are the prime numbers
2,3,5,7,... and the negatives of them.

If, on the other hand, we take A = @, every nonzero element of A becomes a unit and hence associate to
one another. The ‘integers” £2/1,4+3/1,+5/1,... are, in particular, units too and hence are neither prime
nor irreducible. In fact, Q (or any field) contains no primes or irreducible elements. Also note that 2 /3 in
Z,but2 | 3in@Q since 3 = (3/2) x 2 and 3/2 is a rational number but not an integer.

An integer p is prime (in Z) if and only if p is irreducible (in Z). This is, in fact, true for more general classes
of rings as we will see below. We can now prove a partial result in this direction.

1.4 Proposition Let A be an integral domain and p a prime in A. Then p is irreducible.

Proof Let us write p = ab. We will show that either a or b is a unit. Clearly, p | aband hence p | a orp | b
by definition. If p | a, we write a = up for some u € A. But then p = ubp, i.e., (1 — ub)p = 0. Since A is
an integral domain and p # 0, we must have 1 —ub = 0, i.e., ub = 1, i.e., bis a unit. Similarly, p | b implies
a is a unit. <

The converse of this proposition is not true for a general integral domain. Consider the ring Z[v/—5] =
{a +b/—5 | a,b € Z}. (Itis easy to verify that Z[\/—5] is indeed a ring.) Z[/—5], being a subring
of C, is clearly an integral domain. We have two essentially different factorizations of 6 = 2 x 3 =
(14 +/=5)(1 —v/=5). Thus 2 | (1 ++/=5)(1 — v/=5), but 2f(1 + +/=5) and 2 (1 — /=5), i.e., 2 is not
a prime. In order to show that 2 is irreducible let us write 2 = (a + by/=5)(c + dv/=5) with a, b, c,d € Z,
so that 4 = (a + 5b%)(c? + 5d2). It is easy to see that the Diophantine equation z2 4 532 = 2 does not
have a solution in integer values of = and y. Therefore, we must have a? + 56> = 1 or ¢? 4+ 5d*> = 1, i.e.,
a=+1,b=00rc==+1,d =0, i.e., either a+ by/=5 or c+d/=5 is a unit in Z[/=5]. It can be similarly
proved that each of 3, 1 + +/—5 and 1 + /=5 is also irreducible, but neither is a prime.

Thus Z[+/—5] is an example of a ring where unique factorization fails in some sense. On the other hand, we
know that each non-zero integer can be written uniquely as a product of prime integers (the fundamental
theorem of arithmetic). Inorder to make these concepts rigid, we introduce the following definition.

1.5 Definition An integral domain A is called a unique factorization domain ora UFD for
short, if every non-zero element ¢ € A can be written as a product a = up; - - - p, of primes p1,...,p, and
a unit u, where the primes p; (not necessarily all distinct or all non-associate) are uniquely determined by a
upto multiplications by units and upto permutations of the indexes 1,...,r.

By the fundamental theorem of arithmetic Z is a UFD. So also is the ring K [X] of polynomials over a field
K in one indeterminate X. We will later prove both these statements in a rather indirect way. The readers
may look at more direct proofs elsewhere. The ring Z[+/—5], on the other hand, is not a UFD, since the
element 6 is itself non-zero, non-unit and non-prime and does not admit a factorization into primes. In fact,
Z]+/—5] contains irreducible elements which are not primes. In any UFD this is not possible.

1.6 Proposition Let A beaUFDand p € A. Then p is prime, if and only if p is irreducible.

Proof Since a UFD is by definition an integral domain, every prime in A is irreducible by Proposition 1.4.
For the converse let p be irreducible and let p | ab with a,b € A. We have to show that p | a or p | b. We
have ab = pc for some ¢ € A. Consider the unique factorization of ¢ = up1 - - - p, with « a unit and p;
primes in A. Let us write ag := v~ 'a and by := b. Then agby = pp1 ---pr. Now p; is a prime dividing
agbg. Hence we must have p1 | ag or p1 | bo. If p1 | ao, let us write ag = p1aq and by = by, whereas if
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p1 | by, let us write a; = ag and by = p1b;. In both cases canceling (This is allowed, since A is an integral
domain.) py gives a1by = pps--- p-. Continuing this procedure for po,...,p, gives a.b, = p. But p is
irreducible by hypothesis. Therefore, either a,. or b, is a unit. If a, is a unit b, = a, 'p, i.e,, p | b,. By
construction by | by—1, by—1 | by—2,..., b1 | bpand by | b, i.e., p | b. Similarly, if b, isaunit, thenp | a. <«

Similar (i.e., associate) primes can be grouped together in the factorization of a non-zero element a of a
UFD A and we can write a = up{* - - - p%, where u is a unit, p1, ..., p, are pairwise non-associate primes
and «; are positive (or nonnegative) integers. Unique factorization means that the primes p; and the integers
a; are uniquely determined by a (where two associate primes are identified in the notion of uniqueness).
This leads us to the following important definitions.

1.7 Definition Let A be a UFD and let a,b € A\ {0} admit factorizations of the form a = up{* - - - p&r

and a = vpy"' ... pP where u and v are units, p1, ... ,p, are pairwise non-associate primes and o, 3; are
nonnegative integers. A greatest common divisor ora gcd of a and b is defined as

T .
gcd(a, b) —w Hp;nln(ai,ﬂi)’
i=1
where w is any unit of A. Thus ged(a, b) is an element of A which is unique upto multiplication by units.
Inasimilar veina least common multiple oran Icm of ¢ and b is defined as
T
lem(a, b) := o' Hp;mx(ai’m)
i=1

for any unit w’ of A. Thus lcm(a, b) is again uniquely determined by a and b upto multiplication by units.

It is often convenient to define gcd(a,0) to be an associate of a for every non-zero a € A. However,
ged(0,0) and lem(a, 0) are left undefined.

If A = Z, the primes of A occurring in the factorizations of nonzero a € Z are conventionally taken to be
the positive primes. Similarly the positive gcd (resp. lcm) of ¢ and b is usually called the gcd (resp. Icm) of
a and b. In K[X] too one often makes the gcd and Icm unique by considering the monic gcd or Icm of two
non-zero polynomials.

1.8 Proposition Let A bea UFD, 0 # a,b € A, dagcd of a and b and m an lem of a and b. If d’ | a and
d' | b, thend’ | d. Similarly, if a | m’ and b | m/, then m | m’.

Proof This is easy to verify. One may start by showing that if a has a factorization as in Definition 1.7,
then all the divisors of A are u'p]* - - - p)r, where u’ is a unit and ~; are integers satisfying 0 < v; < ;. <

The gcd and Icm of two elements of A have alternate definitions for a special class of UFDs.

1.9 Definition An integral domain Aiscalleda principal ideal domain ora PID in short, if every
ideal of A is principal (i.e., generated by a single element).

Again the concepts of prime and irreducible elements in a PID are equivalent.
1.10 Proposition Let AbeaPIDand p € A. Then pis prime, if and only if p is irreducible.
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Proof The ‘only if’ part is immediate from Proposition 1.4. For the converse let p € A be irreducible,
but not prime. Then there are a,b € A such that a ¢ (p) and b ¢ (p), but ab € (p). Consider the ideal
a = (a) = (p) + (a). Since p € (a), we have p = ca for some ¢ € R. By hypothesis p is irreducible,
so that either ¢ or « is a unit. If cis a unit, (p) = (o) = (p) + (a), that is, a € (p), a contradiction. So
a is a unit. Then (p) + (a) = A which implies that there are elements u,v € A such that up + va = 1.
Similarly there are elements u/,v" € A such that w'p + v'b = 1. Multiplying these two equations gives
(uu'p + uv'b + u'va)p + (vv')ab = 1. Now ab € (p), so that ab = wp for some w € A. But then
(uu'p + uv'd + v'va + vo'w)p = 1, which shows that p is a unit, a contradiction. <

As claimed earlier, PIDs are UFDs. Proving this requires the following lemma. In Chapter 2 we will
generalize and extend it considerably for Noetherian rings. For the time being, the following result is all we
need.

1.11 Lemma Let A be a PID. Then we can not have a strictly ascending infinite chain of ideals in A4, i.e.,

we can not have ideals a;, ag,... of Awitha; Gap G ---.

Proof Assume that such a chain exists. a := |J;2; a; is clearly an ideal of A and is principal by hypothesis.
Leta = (a). Thusa € a, i.e., a € a; for some i. But then forall j > iwehavea C a; Ca,ie.,a; =ga,a
contradiction. |

1.12 Theorem APID isa UFD.

Proof Let AbeaPIDand0 # a € A. We first show that o can be written as a product of finitely many
primes. If o is a unit or a prime, we are done. Otherwise, a is not irreducible (Proposition 1.6) and we
write ¢ = a1b; with both a; and b; non-units. If aq is prime, it is a prime divisor of a. Otherwise, a;
is also reducible and we can write a; = agby With both ao and by non-units. If as is prime, it is a prime
divisor of a, else we write aa = asbs with both a3 and b3 non-units. This process must stop after finitely
many steps, i.e., some a; must be prime, since otherwise we will get an infinite strictly ascending chain
(a) G (a1) G (a2) G ---. Thus a has one prime divisor; call it p; and write a = pic;. If ¢; is a unit, we
have produced a prime factorization of a. If ¢; is a non-unit, we find as before a prime divisor p of ¢; and
write ¢; = poco. If ¢ is a unit, we have the factorization a = p1paco, Otherwise we write co = pscz with p3
prime. Again this process must stop after finitely many steps, i.e., some c; has to be a unit, since otherwise
we will be able to generate an infinite ascending chain (a) & (c1) & (c2) & ---.

= Z =
Leta = upi---pr = vqi---qs be two factorizations of a (with a,b units and p;, g; primes). We will
show that = s and p; ~ g,(;) for some permutation o of {1,2,...,r}. We proceed by induction on

t := min(r,s). Ift = 0, either r = 0ors = 0. If r = 0, a is a unit and hence we must have s = 0.
Similarly, if s = 0, we have » = 0. In both these cases, the unique factorization of a is obvious. Now
assume that the result holds for ¢ — 1. Since p, is a prime, p, | g; for some j. After rearranging, if necessary,
we may take p, | gs, i.e., gs = prd. But g5 is prime and hence irreducible, whereas p, is not a unit.
Therefore, d must be a unit, i.e., p, ~ ¢g;. Butthena’ := a/p, = up1---p, 1 = (vd)gy---qs_1. By the
induction hypothesis, 7 —1 = s — 1, i.e., 7 = s, and p; ~ g,(;) for some permutation o of {1,2,...,r —1}.
This completes the proof. |

The converse of the last theorem is, however, not true in general. In the exercises we will see that if A is
a UFD, so is the polynomial ring A[X] and, in general, the polynomial rings A[X,...,X,]. However, if
n > 2,then A[X4,...,X,] isnotaPID, since the ideal (X1, ..., X,) is clearly not principal.

We are now ready to demonstrate the equivalent characterizations of gcd and Icm in a PID.
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1.13 Proposition Let A be a PID and a,b € A not both zero. Let d be a gcd of ¢ and b. Then
(d) = (a) + (b). In particular, there exist u,v € A such that d = ua + vb (Bézout’s relation).
If ¢ and b are both non-zero and if m is an Icm of a and b, then (m) = (a) N (b).

Proof Let (a) + (b) = (c). We show that ¢ and d are associates. There exist u’,v' € A such that
u'a +v'b=c. Since d | aand d | b, we have d | c. On the other hand, a € (c), so that ¢ | a. Similarly ¢ | b.
Proposition 1.8 then implies that ¢ | d. The characterization of m is similar and left to the reader. |

It is, however, not usual (or even efficient) to factorize two integers (or polynomials) for computing their
gcd. One uses the so-called Euclidean gecd loop instead. Thus Z or K[X] are UFDs in which we have
something likea Euclidean division algorithm. This is formalized in the following definition.

1.14 Definition An integral domain A is called a Euclidean domain oran ED for brevity, if there
existsamap v : A\ {0} — Z satisfying the following two conditions:

(1) v(a) < v(ab) forall a,b € A\ {0}.

(2) Forevery a,b € A with b # 0 there exist (not necessarily unique) ¢,r € A such that a = ¢gb + 7 with
r=0orv(r) <v(b).

In this case the map v is often called a Euclidean degree function. We call g and r respectively
a quotient and a remainder of Euclidean division of ¢ by b and denote this as ¢ = a quot b and
r = g remb.

1.15 Example Zis an ED with v(a) = |a| for a # 0. For b # 0 the remainder  := a rem b (and hence
the quotient also) can be made unique by choosing r to be non-negative. The polynomial ring K [X] over a
field K is an ED with v(a) = dega for a # 0. In this case the remainder a rem b and the quotient a quot b
are always uniquely determined by a and b.

1.16 Theorem AnED isaPID.

Proof Let A be an ED with Euclidean degree function v. Obviously the zero ideal of A is principal. Let a
be a non-zero ideal of A. Choose a to be a non-zero element of a such that v(b) > v(a) forevery b € a\{0}.
We will show that @ = (a). Clearly (a) C a. For the converse take any b € a. By definition there exist
q,m € Awithb =ga+randr =0orv(r) < v(a). Thenr = b— ga € a and the minimality of v(a) forces
r=0,ie,b=qa € (a). <

Theorems 1.12 and 1.16 in conjunction with Example 1.15 show that Z and K[X] (where K is a field) are
both PIDs and hence both UFDs. But note that every PID is not necessarily an ED. For example, the ring

{a+b(1+ﬁ) |a,be Z} is a PID but not an ED.

The following theorem is at the heart of the Euclidean gcd algorithm.

1.17 Theorem Let AbeanED, 0 # a,b € Aand r := arem b. Then ged(a, b) ~ ged(b, ).

Proof We will show that (a) + (b) = (b) + (r). Leta = gb+ r. Thena € (b) + (r) and, therefore,
(a) + (b) C (b) + (r). Conversely, r = a — ¢gb € (a) + (b) and it follows that (b) + (r) C (a) + (b). <

The reader is requested to fill out the details on how this theorem can be used to prove the correctness of the
traditional Euclidean gcd algorithm in an ED.
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The central object of study in this course is the class of rings called number rings. Number rings are not
necessarily unique factorization domains (or PIDs or EDs obviously). However, they are all examples of
Dedekind domains which are rings where we have unique factorization of ideals. We will study these topics
in detail later during this course. The simpler cases of UFDs, PIDS and EDs discussed so far should be the
first step of generalizing the notion of unique factorization. Moreover, number rings can be UFDs, PIDs and
even EDs. Cool! But it is high time now that we concentrate on ideals in a ring. This is what we do next.
Unique factorization is important and if preserving it requires us to play at the ideal-level (instead of the
element-level), we will do that.

Exercisesfor Section 1.1

. Let Abearinganda,b,c,z,y € A. Show that:

(@) a| b, ifand only if (@) D (b). (In the notation of ideals “divides” means “contains”.)

(b) a|bandb | a,if and only if (a) = (b). Furthermore, if A is an integral domain, thena | band b | a, if and only if
a~b.

() fa|bandb|c thena | ec.

(d) Ifa|banda | ¢ thena | (bx + cy).

. Let A and B be two rings. Show that (A x B)* = A* x B*.

. (&) Let A be an integral domain. Show that (A[X])* = A*.

(b) Demonstrate by an example that the result of Part (a) may not hold, if A is not an integral domain.

. Let AbeaUFD and 0 # a,b,c € A. Show that:

(@) ged(a,b) - lem(a, b) ~ ab.
(b) Ifa | beand ged(a,c) isaunit, thena | b.

. [Polynomials over a UFD] Let A beaUFD. Fora nonzero polynomial f(X) € A[X]agcd of the coefficients

of f(X)iscalleda content of f(X) and is denoted by cont f(X). One can then write f(X) = (cont f (X)) f1(X),
where f1(X) € A[X] with cont f1(X) € A*. fi(X)iscalleda primitive part of f(X) and is often denoted
as pp f(X). Itis clear that cont f(X) and pp f(X) are unique upto multiplication by units of A. If for a non-zero
polynomial f(X) € A[X] the content cont f(X) € A* (or, equivalently, if f and pp f(X) are associates in A[X]),
then f(X) iscalleda primitive polynomial.

Prove Gauss’s lemma: For two non-zero polynomials f(X), g(X) € A[X] the elements cont(f(X)g(X)) and
(cont f(X))(cont g(X)) are associates in A. In particular, the product of two primitive polynomials is again primitive.

. Let d be a non-zero integer which is not a perfect square. Define Z[v/d] := {a+bVd | a,b € Z}. Prove the following

*

*

*

assertions:

(a) Z[v/d] is an integral domain.

(b) Z[Vd] = Z[X]/(X? - d).

© ZIV-T)* = {+1,+y~T}.

(d) Ifd < —1, then (Z[vd])* = {£1}.

(e) If d > 0 and Z[+/d] has a unit other than £1, then Z[v/d] has infinitely many units. (Hint: Such a unit must be
of infinite order.)

(f) Ford = —2,—1,2, 3the ring Z[v/d] is an ED with Euclidean degree function v(a + bv/d) = |a® — db?|, a,b € Z,
not both 0.

(9) Ifd < 0, then Z[/d] isan ED, if and only if d = —1 or —2. (Hint: If d < —2, you may prove that 2 is irreducible
but not prime in Z[v/d]. This implies that Z[+/d] is not a UFD, hence not a PID and hence not an ED. Note that
2| d(d—1) = (d+Vd)(d - Vd).)

. [Extended Euclidean gcd algorithm] Let AbeanED, 0 # a,b € A and let d := gcd(a,b). Since A is

also a PID, there exist u,v € A such that d = ua + vb. Modify the Euclidean gcd algorithm so that it returns all of d,
u and v.

Department of Mathematics Indian Institute of Technology, Kanpur, India



Chapter 1: Algebra preliminaries Page 7 of 30

1.2 ldeals in aring

Ideals play a very crucial role in the study of rings (commutative with identity). The concept of ideals was
introduced by Ernst Eduard Kummer (1810-1893) and later formalized by Richard Dedekind (1831-1916)
in his famous work “Uber die Theorie der ganzen algebraischen Zahlen”. As before I will use lower-
case Gothic letters a, b, c,m,n,p, q (respectively, a, b, c,m,n,p,q) to designate ideals. On some specific
occasions | will also use the upper-case Gothic letters J,91,B and Q (J, N, P and Q) to denote certain
ideals. Mathematicians always run out of symbols and many believe that if it is Gothic, it looks ideal.

We start with some basic operations on ideals.

1.18 Definition Let A be aring and let a;, 7 € I, be a family (not necessarily finite) of ideals in A.

e The set-theoretic intersection ;< a; is evidently an ideal in A.

e The sum of the family a; is the ideal

Z“i = {Z x; | ©; € a; and z; = 0 except for finitely many i € I} .
icl iel

Two ideals a and b of A are said to be relatively prime or coprime,ifa+b = A, or
equivalently if there exista € aand b € b witha + b = 1.

o If I ={1,2,...,n}isfinite, the product ajay---a, is the ideal generated by all elements of the
form z1xo - - -z, With z; € q; forall i = 1,...,n. It is easy to see that

T
aidg---ay = {Z"I"j,lxjﬂ"'mj,n | re Z+,.77]"Z' € Clz‘} .
Jj=1

Ifa; =a9=---=aqa, = q, the product a;as - - - a, is often denoted as a™.

It is easy to see that the operations intersection, sum and product on ideals in a ring are associative and
commutative.

1.19 Theorem [Chinese remainder theorem (CRT)] LetAbearingandn € N. Letay,...,a,
be ideals in A such that for all 4, j, i # j, the ideals a; and a; are relatively prime. Then A/(a; N---Nay)
is isomorphic to the direct product A/a; x --- x A/ay,.

Proof The assertion is obvious for n = 1. So assume that» > 2 and define themap ¢ : A/(a1N---Nay) —
Afay x - x Afapbya+ (a1 N---Nay) = (a+a1,...,a+ay) foralla € A. Sincea; N---Na, Ca;
for all 4, the map is well-defined. It is easy to see that ¢ is a ring homomorphism. In order to show that ¢
is injective, we let ¢(a + (a1 N---Nay,)) = 0. This means that a + a; = 0, that is, a € a; for all <. Then
a€a;N---Nay thatis,a+ (a1 N---Nay,) =0.

The trickier part is to prove that ¢ is surjective. Let ay,...,a, € A. Let us consider the ideals
b; ;= a1 N---Na;_1Nap1 N---Nay, for each 5. For a given 4 there exist for each j # ¢ elements
a; € a; and B; € a; such that a; + B; = 1. Multiplying these equations shows that we have a y; € a;
such that «; + §; = 1, where §; := B1---Bi—18ix+1---Bn € b;. (This shows that a; + b; = A for
all i.) Now consider the element a := > i, d;a;. It follows that a = a; (mod «;) for all 4, that is,
pla+(arN--Nay)) = (a1 +ai,...,an + an). <
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Note that in the proof of the last theorem ¢ is injective unconditionally, i.e., for any ideals a4,...,a,. The
pairwise coprimality of these ideals has been needed only to prove the surjectivity of .

1.20 Corollary Letm;,...,m, € N be pairwise relatively prime moduli. Then for integers a1, ..., a,
there exists an integer a unique modulo my - - - m,, such that a = a; (mod m;) foralli =1,...,n. <

Two particular types of ideals are very important in algebra.

1.21 Definition Let A be aring.

e Anideal pof Aiscalleda prime ideal,ifp # Aandifab € pimpliesa € porb € p fora,b € A.
The second condition is equivalent to saying that if a ¢ p and b ¢ p, then the product ab & p.

e Anideal mof Aiscalleda maximal ideal, if m # A and if for any ideal a satisfyingm Ca C A
we have a = mor a = A. The second condition means that there are no non-unit ideals of A properly
containing m.

1.22 Example For p € P the principal ideal (p) of Z is prime. On the other hand, for a composite integer
n the ideal (n) of Z is not prime. For example, 2 ¢ (6) and 3 ¢ (6), but the product 2 x 3 € (6).

The ideal (p) of Z for a prime p is also maximal, for if (p) & a C Z (a an ideal in Z), then a contains an
integer a which is not a multiple of and hence is coprime to p. By Bézout’s theorem there exist integers u, v
with up + va = 1 implying that 1 € g, i.e., a = Z.

Next consider the polynomial ring A = Z[X] and the principal ideal (X) of A. It is easy to see that
(X) G (X,2) G A. Thus (X) is not maximal.

Prime and maximal ideals can be characterized by the following equivalent criteria.

1.23 Proposition Let A be aring and a an ideal of A.

(1) ais a prime ideal of A, if and only if A/a is an integral domain. In particular, A is an integral domain,
if and only if the zero ideal of A is prime.

(2) a is a maximal ideal of A, if and only if A/a is a field.

Proof (1) Let a,b € A be arbitrary. Then a is prime <= ab € aimpliesa € aorb € a <—
ab+a=(a+a)(b+a)=0impliesa+a=00rb+a=0 <= A/aisan integral domain.

(2) Let a be a maximal ideal. Choose b + a # 0+ a. Then b ¢ a. Consider the ideal b := a + (b).
Since a is maximal, we must have b = A. This means that a 4+ ¢b = 1 for some @ € a and ¢ € A. Then
(c+a)(b+ a) =1+ awhich implies that b + a isa unit in A/a. Thatis, A/a is a field.

Conversely, let A/a be a field. Consider any ideal b of A with a g b C A. Choose any b € b\ a. Then
b+ a # 0 + a. By hypothesis there exists ¢ € R such that (b + a)(c+ a) = 1+ a, thatis,bc—1 € a C b.
Hence 1 € b, thatis, b = A. |

Since fields are integral domains, we immediately have the following important corollary.

1.24 Corollary Maximal ideals are prime. <
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A question that naturally arises is whether there exist prime and maximal ideals in every ring. The answer
is affirmative as long as the ring is non-zero. The following proof is an interesting application of Zorn’s
lemmaZ.

1.25 Proposition Every non-zero ring A has at least one maximal (and hence at least one prime) ideal.

Proof Let S denote the set of all proper ideals of A. S is non-empty, since the zero ideal of A is a proper
ideal of A # 0. S is clearly a partially ordered set under the relation C (inclusion). Now let T = {a; | i € I}
be a chain in S. Consider a := |J;c; a; and take a,b € a. Then a € a; and b € a; for some 4, 5 € I. Since
either a; C a; or a; C a;, it follows that both @ and b belong to either a; or a; and, therefore, a & b, ca (for
any c € A) are in either a; or a; and hence in a. Thus a is an ideal of A. Furthermore, 1 ¢ a; forall < € I
and hence 1 ¢ a, i.e,, a € S. Thus the chain T has an upper bound in S. By Zorn’s lemma, S has at least
one maximal element. <

The last proof can be easily modified to derive the following more general result. Alternatively, one may
use Proposition 1.25 on A/a and the one-to-one correspondence between the ideals in A/a and those of A
containing a.

1.26 Proposition Let A be aring and a a proper ideal of A. Then there exists at least one maximal (and
hence at least one prime) ideal of A containing a. In particular, for every non-unit a of A there exists a
maximal (and hence a prime) ideal of A containing a. |

The set of all prime ideals in A is called the (prime) spectrum of A and is denoted by Spec A. Similarly,
the set of all maximal ideals of A is called the maximal spectrum of A and denoted by Spm A. We
have Spm A C Spec A. Furthermore, if A is non-zero, both these sets are non-empty. In modern algebra
these two sets play an extremely useful role for the study of the ring A. For example, one can define a
topology (the so-called Zariski topology) on Spec A and Spm A naturally inherits its share from
Spec A. Grothendieck’s language of schemes exploits the structures of these sets and provides a unifying
ground for algebraic geometry and algebraic number theory. But these modern languages of mathematics
are little too abstract and advanced to be included in a simple-minded course like this. Interested students
may study these topics later in their careers.

In what follows | will use the Gothic letters p, g, 3, Q to denote prime ideals, and the letter m to denote
maximal ideals.

1.27 Definition Let A be a non-zero ring. The nilradical of A is defined to be the ideal

Na= [ »,

p ESpec A

i.e., to be the intersection of all prime ideals of A. Similarly, the Jacobson radical J 4 is the intersection
of all maximal ideals of A, or in other words, it is the ideal defined by

3,4 = ﬂ m.

méE Spm A

ILet S be a non-empty set partially ordered by the relation <. A chain of S is a subset T of S such that for any a,b € T
we have eithera < borb < a. An upper bound of asubset T of S is an element b € S satisfyinga < bforalla € T. A
maximal element of Sisanelement c € S such that c < a for some a € S impliesthata = c. Zorn’s lemma states
that if every chain of S has an upper bound in S, then S contains at least one maximal element. Zorn’s lemma can not be proved
independently, but can be shown to be equivalent to the other axioms of mathematics, like the well-ordering principle or the axiom
of choice.
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Clearly, 914 C Ja. When no confusions are likely, we may drop the prefix A from 9t 4 and J4. If A is the
zero ring, it is customary to define M4 = J4 = 0.

Jacobson radical is named after Nathan Jacobson (1910-1999) who contributed greatly to the study of rings,
Lie algebras and Jordan algebras. The name “nilradical’ comes from the following consideration. Recall the
an element a inaring Ais called nilpotent, if o™ = 0 for some r € N. Clearly, 0 is a nilpotent element
in any ring. An example of a non-zero nilpotent element is [2]4 in the ring Z4. The following result gives a
connection between the nilpotent elements and the nilradical. It is left to the reader as an exercise to prove
that the set of all nilpotent elements in a ring A is an ideal in A. (Also look at Exercise 1.2.9.)

1.28 Proposition Let A be aring. Then 914 is the set of all nilpotent elements of A.

Proof The result is obvious for A = 0. So assume that A is a non-zero ring and let n 4 denote the set of
all nilpotent elements of A. We will show that n4 = 9t4. First note that if a € n4, then a” = 0 for some
r € N, i.e.,,a” € p forevery p € Spec A. Since all such p are prime, it follows that a € p for all p € Spec A4,
i.e., a € Ny, sothatnyg C Ny4.

For proving the reverse inclusion take any a ¢ n 4. Let S be the set of all proper ideals of A not containing
any power a™, n € N, of a. Since a is not nilpotent, the zero ideal belongs to S, i.e., S is nonempty. Also
S is partially ordered under inclusion C. As in the proof of Proposition 1.25 one can show that S has a
maximal element, say, p. If we can show that p € Spec A, we will have a & 91 4, since by construction p
does not contain any power of a and, in particular, a itself. So take b,c ¢ p. Then the ideals p + (b) and
p + (c) are strict supersets of p and hence by the maximality of p are not in S, i.e., contain some powers of
a. Leta™ € p+(b) and a™ € p+{(c), i.e.,, a™ = u+u'band a™ = v+v'cforsome u,v € pand u’, v’ € A.
But then a™*" = (uv +uv'c + u'vb) + (u'v')be € p + (be), i.e., p+(bc) € S, i.e., be € p. Thus p is prime,
as desired. |

A similar characterization of the Jacobson radical J 4 is covered in Exercise 1.2.11.

Exercisesfor Section 1.2

. (@) Letabeanideal inaring A. Show that a = A, if and only if a contains a unit. In particular, if a ; A(e,ifais
a proper ideal of A), then a consists only of non-units. (Remark: This iswhy A = (1) is called the unit ideal.)

(b) Show that the only ideals in a field are the zero ideal and the unit ideal.

. Let Abearingand a, b, ¢ ideals in A. Prove that:
@ a(b+c¢)=ab+ac.
(b) ab C anb. Furthermore,ifa +b = A, thenab=anb.

(c) More generally, show that if ay,. .., a, are pairwise relatively prime ideals of A, thena; --- a, = a; N ---N ;.
(Hint: Induction on r.)

. Let Abearingand a € A. Show that a is prime, if and only if the principal ideal {a) of A is prime.
. Let f: FF — K be a homomorphism of fields. Show that f is injective.
. Show that a finite integral domain is a field.

. Let f: A — B bearing homomorphism.

(@) Letbbeanidealin Band a:= f~1(b) := {a € A | f(a) € b}. Show that a is an ideal in A. Show further that
if b is prime, then a is also prime, but if b is maximal, then a need not be maximal. (Remark: The ideal a is called
the contraction of b and is denoted by a = b°.)
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(b) Let a be an ideal of A. Show that f(a) := {f(a) | a € a} is not necessarily an ideal in B. (Remark: The ideal
generated by the elements of f(a) is called the extension of a and is denoted by a®.)

(c) Let abeanideal of A and b an ideal of B. Show that: a C a¢¢, b D b°¢, a® = a®°® and b® = beee,

. (a) Show that the set 91 of nilpotent elements in aring A is an ideal of A.

(b) Prove that the ring A/91 does not contain non-zero nilpotent elements. (Remark: One often calls the ring A/91
the reduction of A and denote this ring as Ayeq. If9T = 0, then A,eq = A and we call Atobea reduced ring.
In particular, the reduction A,.q of any ring A is reduced.)

(c) Conclude that an integral domain is reduced. Give an example of a reduced ring that is not an integral domain.

. (@) Show that all non-zero prime ideals in a PID are maximal. (Hint: Example 1.22.)

(b) Demonstrate by an example that a prime ideal in a UFD need not be maximal.

. Let Abearingand a C A an ideal. Consider the set

Va:={a€ A|a" € aforsomen € N}.

Show that 1/« is an ideal of A. Itis called the radical or root of a. If \/a = a,thenaiscalleda radical ideal
oraroot ideal. Forarbitrary ideals a and b of A prove the following assertions.

(@ a CVa.

(b) Vva=a.

(c) Ifa C b, then v/a C V/b.

(d) If ais a prime ideal, then /a = a.
() va=A,ifandonlyifa= A.

(f) Va+b=1/va+ Vb
(9 vVanb =+yanvb.
(h) The nilradical 914 = V0.

[The prime avoidance lemma] Let A bearing, p1,...,p, prime ideals in A and a an ideal of A with
a C Ui, p;. Show that a C p; forsome i € {1,...,n}. (Hint: Prove the contrapositive by induction on n.)

Let A be aring and J the Jacobson radical of A. Show thata € J, ifand only if 1 — ab € A* forall b € A.

1.3 Modules and algebras

Vector spaces and linear transformations between them are the central objects of study in linear algebra.
We now generalize the concept of vector spaces to get a more powerful class of objects called modules. A
module which also carries a (compatible) ring structure is referred to as an algebra. Algebras over fields (or
more generally over rings) play an important role in commutative algebra, algebraic geometry and algebraic
number theory.

Recall that a vector space over a field K is an Abelian group V together with a scalar multiplication map
-+ K xV — V enjoying certain properties (loosely speaking, the linearity properties). If we simply assume
that K is a general ring (i.e., not necessarily a field) and keep the other parts of the definition (of a vector
space) intact, we get a K-module. Now K being a ring, it is not expected in general that every non-zero
element in K is invertible. This means that all the properties of vector spaces do not straightaway carry over
to modules. But that does not deter us from going for the generalization.

1.29 Definition Let A bearing. A module over A (oran A-module, in short) is an (additively
written) Abelian group M together with a scalar multiplication map -: A x M — M with the
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following properties. Conventionally we denote - (a,z) as a - z or simply as ax. For every a,b € A and
x,y € M the scalar multiplication map must satisfy:

alz+y) = az+ay,
(a+b)x = az+ bz,
l-z = =,
a(br) = (ab)z,

where ab denotes the product of a and & in the ring A.

1.30 Example (1) When A is a field, an A-module is a vector space over A.
(2) Ideals of A are modules over A with the ring multiplication taken as the scalar multiplication map.

(3) Every Abelian group G is a Z-module under the scalar multiplication map defined as

0 ifn=20
ne:=14{ ¢+ ---+ z (ntimes) ifn>0
—z—---—x(—ntimes) ifn<O0.

(4) The polynomial rings A[X] and A[X1,..., X,] are modules over A.

(5) Let A C B be any extension of rings. Then B is an A-module with the scalar multiplication map defined
as the multiplication of the ring B.

(6) Let M;, 4 € I, be afamily of A-modules. The direct product [];c; M; of M; is defined as the set of
all tuples (z;);cr with z; € M;. The direct sum @, M; is the subset of the Cartesian product [];.; M;
consisting only of the tuples (a;);c; for which a; = 0 except for a finite number of 7 € I. Both the direct
product and the direct sum are A-modules under component-wise addition and scalar multiplication.

If M; = M for all i € I, we denote the direct product of M;, i € I, as M T and the direct sum of M;, i € I,
as M), When I is of finite cardinality n, these two modules are naturally the same and we use the notation
M™ to designate M = M@ in this case.

The above example shows that all vector spaces. ideals and Abelian groups are modules. This means that
any result we prove for modules holds for all these three kinds of algebraic structures. This is one of the
reasons why modules call for specific attention in mathematics.

1.31 Proposition Let M be an A-module. Then for everya € Aandxz € M wehave: 0-z =0,a-0 =0,
(—a)z = a(—z) = —(az) and (—a)(—z) = ax.

Proof Easy verification. <

An A-submodule of an A-module M is a subgroup IV of M that is closed under the scalar multiplication
of M. For an arbitrary subset S C M the set of all finite linear combinations of the form a1z1 + - - - + a, Ty,
n€”Zy a; €A x; €8, isan A-submodule N of M and is denoted by AS or 3~ ¢ Az. We say that NV is
generated by S (or by elements of S). If S is finite, then N is said to be finitely generated. A
(sub)module generated by a single element is called cyclic.

It is important to note that unlike vector spaces the cardinality of a minimal generating set of a module is not
necessarily unique. (See Exercise 1.3.1 for an example.) Itis also true that given a minimal generating set .S
for M there may be several different ways of writing a given element of M as finite linear combinations of
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elements of S. (For example, if M = A=Zand S = {2,3},then1 = (-1)-24+1-3=2-2+4(-1)-3)
It follows that the nice theory of dimensions enjoyed by vector spaces does not generalize to modules.

If M isan A-module and N a submodule of A, then the Abelian group M /N can be made to an A-module
by defining the scalar multiplication map a(z + N) := az + N. This module (still denoted as M /N) is
called the quotient module of M by N. (Note that M is by definition an Abelian group, so that any
subgroup N of M is normal in M and the quotient group M /N is necessarily defined.)

For A-modules M and N an A-linear map oran A-module homomorphism (from M to
N) is defined as a map f : M — N satisfying f(az + by) = af(z) + bf(y) for all a,b € A and
z,y € M (or equivalently satisfying f(z + y) = f(z) + f(y) and f(az) = af(x) for all a € A and
z,y € M). An isomorphism of modules is a bijective homomorphism. If M = N, then an A-linear
map f : M — M is also called an endomorphism of M. Finally, an automorphism is a bijective
endomorphism. The set of all (A-module) homomorphisms M — N is denoted by Hom 4 (M, N) and the
set of all (A-module) endomorphisms of M is denoted by End 4 M. These sets are again A-modules under
the definitions: (f + g)(z) := f(z) + g(z) and (af)(z) := af(z) foralla € Aand z € M (and f, g in
Homy (M, N) or Endy M).

For an A-linear map f : M — N the kernel and image of f are defined respectively as the sets
Kerf:={zeM]| f(z)=0}C M

and
Imf:={yeN|y= f(z) forsomez e M} CN.

Like groups, rings and vector spaces, we have the isomorphism theorem for modules.

1.32 Theorem [lsomorphism theorem] Foran A-module homomorphism f : M — N the sets
Ker f and Im f are submodules of M and N respectively and M/ Ker f = Im f. <

Certain specific A-modules behave like vector spaces in the sense that they have bases over A. These
modules are worth investigating, because the number rings are Z-modules of this type.

1.33 Definition A free module M overaring A is defined to be a direct sum @, ; M; of A-modules
M; with each M; = A as an A-module. Thus a free A-module M is isomorphic to A() for some index set
1. If I is of finite cardinality n, then M = A™.

For example, any vector space over a field K, being isomorphic to K /) for some index set I, is a free
K-module. In particular, every K-vector space of finite dimension = is isomorphic to K™. On the other
hand, every finitely generated A-module need not be isomorphic to a free module A™ for some n € N.
For example, consider an integer m > 2 and the cyclic Z-module Z,,, which has cardinality m. The free
Z-modules Z" have cardinalities 1 or infinity. Hence Z,, can not be a free Z-module. We, however, have
the following result:

1.34 Theorem [Structure theorem for finitely generated modules] Let M be an A-module.
Then M is finitely generated (as an A-module), if and only if M is the quotient of a free module A™ for
somen € Zy.

Proof [if] The free A-module A™ has a generating set {ey, es,...,e,}, where e; = (0,...,0,1,0,...,0)
(1 in the ¢-th position). If M = A™/N for some A-submodule N of A™, the equivalence classes e; + N,
1 =1,...,n, clearly constitute a finite (but not necessarily minimal) set of generators of M.
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[only if] If z1,...,z, generate M, then the A-linear map f : A™ — M defined by (ai,...,a,) —
a1r1 + - - - + anx, is surjective. Hence by the isomorphism theorem M = A"/ Ker f. <

As in the case of vector spaces, a subset S of an A-module M is called linearly independent
over A, if an arbitrary finite A-linear combination 7" ; a;z; (with a; € A and z; € S) is zero only for
a1 = -+ =a, = 0. Asubset S of M is called an A-basis of M, if S is linearly independent over A
and generates M as an A-module. It is easy to see that S C M is an A-basis of M, if and only if every
x € M can be written uniquely as an A-linear combination x = ayz1 + - + apzy, Withn € Z,4, a; € A
and z; € S.

1.35 Proposition Let M be an A-module. Then M has an A-basis, if and only if M is a free A-module.

Proof [if] Let f : A®) — M be an isomorphism for some index set I. For each s € I define e; := (0i5)jer,
where §;; is the Dirac delta. It is easy to see that e;, i € I, form an A-basis of A(). It follows that f(e;),
1 € I, form an A-basis of M.

[only if] Let ;, i € I, be an A-basis of M. Define f : AU) — M by (ai)icr — ;s aizi. First note
that elements of A() are I-tuples (a;)ic; with only finitely many a; non-zero. Therefore, f((ai)icr) is
well-defined (i.e., a finite sum). It is easy to check that f is an A-linear map. Also f is surjective, since zx;,
i € I, is a generating set for M. Furthermore, f is injective, because z;, i € I, are linearly independent
over A. Therefore, f is an isomorphism. |

That free modules have bases does not immediately imply that any two bases of a free module will have to
have the same cardinality. This is, however, true, though proving this requires some care. We start with the
following lemma the (easy) verification of which is left to the reader.

1.36 Lemma For an ideal a of A and an A-module M the set aM consisting of all finite A-linear
combinations Y1 ; a;z; Withn € Z 4, a; € aand z; € M is an A-submodule of M. M/aM isan A/a-
module. Moreover, if M is a free A-module with a basis z;, ¢ € I, then M /aM is also a free A/a-module
with basis 7 (z;), i € I, where 7 : M — M /aM is the canonical projection map. <

Now we can state and prove the dimension theorem for free modules.

1.37 Theorem Let A be a non-zero ring and M a free A-module. Then every A-basis of M has the same
cardinality.

Proof Let z;, ¢ € I, constitute an A-basis of M and let a be a maximal ideal of A. (Such an ideal
exists by Proposition 1.25.) By the last lemma M /aM is a free A/a-module with basis =(z;), ¢ € I,
where 7 : M — M /aM is the canonical projection map. But a is a maximal ideal of A and hence by
Proposition 1.23 K := A/a is a field, that is, M /aM is a K-vector space. By the dimension theorem for
vector spaces we have |I| = dimg (M /aM). <

The cardinality of any basis of a free A-module M is called the rank of M and is denoted by Rank 4 M
or simply by Rank M (if A is understood from the context). This terminology may be a bit confusing,
because when vector spaces are concerned we prefer to call dimension instead of rank. On the other hand,
we associate the term rank with a linear transformation (or matrix). Note that a vector space can not have
that rank which is defined for linear transformations. Thus whenever we say rank of a K-vector space V,
we mean the rank of V" as a K-module, i.e., dimg V.

Next we prove a result which turns out to be very useful one.
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1.38 Proposition [Nakayama’s lemma] Let M be afinitely generated A-module and a an ideal of
A contained in the Jacobson radical J 4 of A. If aM = M, then M = 0.

Proof We prove this by contradiction. Assume that M # 0 and let x4,...,x, constitute a minimal
set of generators of M. Obviously, n > 1, since M # 0. Now z; € M = aM can be written as a
linear combination z; = a1y + --- + a,y, for some a1,...,a, € aand y1,...,y, € M. Each y;, on
the other hand, is an A-linear combination of x4, ..., z, and, therefore, since a is an ideal, we can write
z1 = bizy + -+ -+ by, for some by, ..., b, € a. This can be rewritten as (1 — by)z1 = boza + -+ - + bpzy.
But b; € J4 and hence by the characterization of elements of J 4 (See Exercise 1.2.11) 1 — by is a unit in
A. Thus z1 = (1 — by) " thozo + --- + (1 — by) Loz, 1fn = 1, then z; = 0, whereas if n > 1, then
z1 € y.ir o Az;. In both these cases the minimality of the generating set {z1,...,z,} is contradicted. <«

So far we have treated modules just as additive Abelian groups with scalar multiplication maps. The additive
group of any ring R is an Abelian group. If we can give R an A-module structure (for some ring A) such
that the multiplication of R is compatible with the scalar multiplication map A x R — R, R is called an
algebra over A.

Let ¢ : A — R be a homomorphism of rings. Then the ring R possesses an A-module structure with
the scalar multiplication map az := ¢(a)z fora € A and z € R. Furthermore, the ring structure and
the A-module structure of R are compatible in the sense that for every a,b € A and =,y € R we have

(az)(by) = (ab)(zy).
Conversely if a ring R has an A-module structure with (ax)(by) = (ab)(zy) for every a,b € A and

z,y € R, then there is a unique ring homomorphism ¢ : A — R taking a — a - 1 (where 1 denotes the
identity of R and - denotes scalar multiplication). This motivates us to define the following.

1.39 Definition Let A bearing. An algebra over Aoran A-algebra isaring R together with a
ring homomorphism ¢ : A — R. The homomorphism ¢ is called the structure homomorphism of
the A-algebra R. If R and S are A-algebras with structure homomorphisms ¢ : A — Randy : A — S,
thenan A-algebra homomorphism (from R to S) is a ring homomorphism n : R — S such that

P =mnoop.

1.40 Example Let A be aring.

(1) The polynomial ring A[X1, ..., X,] (for indeterminates X1, ..., X,,) isan A-algebra with the canonical
inclusion as the structure homomorphism and is called a polynomial algebra over A.

(2) If ais an ideal of A, then the canonical surjection A — A/a makes A/a an A-algebra.

(3) If R is an A-algebra with the structure homomorphism ¢ : A — R and if S is an R-algebra with the
structure homomorphism ) : R — S, then S is an A-algebra with the structure homomorphism ) o .

(4) Combining (2) and (3) one can show that if R is an A-algebra and a an ideal of R, then the ring R/a is
an A-algebra. This is called the quotient algebra of R by a.

Let x1,...,z, belong to an A-algebra R. Because of the A-module structure of R we can talk about the
A-linear combinations of z;. Now R being a ring, it also makes sense to talk about the products =" - - - &

for non-negative integers «; and to investigate what all these products generate as an A-module. This leads
to the concept of algebra generators.

1.41 Definition Let R be an A-algebra with the structure homomorphism ¢ : A — R. A subset S of R
is said to generate R as an A-algebra, if every element z € R can be written as a polynomial expression
in finitely many elements of S with coefficients from A (i.e., from ¢(A4)). We write this as R = A[S].
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If S = {x1,...,z,} is finite, we write A[z1,...,z,] in place of A[S] and say that Risa finitely
generated A-algebra and that the homomorphism ¢ : A — Ris of finite type. On the other hand,
if R is finitely generated as an A-module, then we say that Risa finite A-algebra.

It is important that the reader understands the distinction between the concepts of R generated as an A-
algebra and R generated as an A-module. Since every A-linear combination is also a polynomial expression
with coefficients from A, it follows that a generating set of R as an A-module is also a generating set of R
as an A-algebra. In particular, finite A-algebras are also finitely generated A-algebras. The converse of this
is, however, not true in general.

1.42 Example (1) The polynomial algebra A[X1,...,X,], n > 1, over A is not finitely generated as an
A-module, but is finitely generated as an A-algebra. In fact, A[X1,...,X,] is a free A-module generated
by the monomials X7 --- X2 for all (ay,...,a,) € Z%.

(2) For an ideal a of A[X,...,X,] thering R := A[X},...,X,]/a is generated as an A-algebra by the
equivalence classes z; := X; +a,1 < i < n. Thus we have R = A[z1,...,z,]. If ais not the zero
ideal, then R is not, in general, (isomorphic to) a polynomial algebra over A. In fact z4,...,z, are not
indeterminates (over A) in the sense that they satisfy non-zero polynomial equations f(z1,...,z,) = 0 for
every f € a\ {0}. (In this case we also say that z1,...,z, are algebraically dependent.) In other
words, the notation A[. . .] is a generalization of the notation to denote polynomial algebras. In what follows
| will usually denote polynomial algebras by A[X1,..., X, ] with upper-case letters as algebra generators,
whereas for an arbitrary finitely generated A-algebra I use lower-case letters for the algebra generators as in
Alzi,...,zn).

One may proceed to define kernels and images of A-algebra homomorphisms and frame and prove the
isomorphism theorem for A-algebras. The details are left to the reader. Let me only mention here that
algebra homomorphisms (and isomorphisms etc.) are essentially ring homomorphisms with the added
condition of commutativity with the structure homomorphisms.

1.43 Theorem Let A be aring. Then a ring R is a finitely generated A-algebra, if and only if R is a
quotient of a polynomial algebra over A.
Proof [if] Immediate from Example 1.42.

[only if] Let R = Alzy,...,z,]. Then the map n : A[Xy,...,X,] — R taking f(X1,...,X,) —
f(x1,...,2,) is a surjective A-algebra homomorphism. By the isomorphism theorem one then has the
isomorphism R = A[X;,...,X,]/ Kern of A-algebras. |

This theorem shows that for the study of finitely generated algebras it is sufficient to investigate the
polynomial algebras and the quotients of the polynomial algebras.

Exercisesfor Section 1.3

. Show that for every n € N there are integers a1, . . . , a,, that constitute a minimal set of generators for the unit ideal in

Z. (Hint: Take any n distinct primes py, . .., p,. Define a := []}_, p; and take a; := a/p; fori =1,...,n.)

. Let A be aring. Prove or disprove:

*

(a) Every A-submodule of a free A-module is again free.
(b) Every A-submodule of a non-free A-module is again non-free.

. Prove Lemma 1.36.
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. Let M be a finitely generated A-module. Define

pa(M) :=min{|S| | M is generated by S} .

Show that if N is a submodule of M, then pa(M) < pa(N) + pa(M/N). Give an example where the strict
inequality holds.

. Let M be an A-module and IV an A-submodule of A . Define

(M:N):={a€ A|laM CN}CA.

(a) Show that (M : N) is an ideal of A. In particular, for N = 0 the ideal (M : 0) is called the (A-)annihilator
of M and is denoted as Ann4 M (or as Ann M).

(b) Let @ C Ann M be an ideal of A. Show that M is an A/a-module under the scalar multiplication map
(a + a)z := az. (Remark: It is only necessary to check that this map is well-defined, that is, the definition is
independent of the choice of the representative a of the equivalence class a + a.)

. Let M be an A-module. Anelementx € M iscalleda torsion element of M, if Ann Az # 0, that is, if there is

ana € A\ {0} with axz = 0. The set of all torsion elements of A is denoted by Tors M (or Tors4 M if the ring A is
to be highlighted). M is called torsion-free,if Tors M =0,anda torsion module,if Tors M = M.

(a) Show that Tors M is a submodule of M.

(b) Show that Tors M is a torsion module (called the torsion submodule of M) and that M/ Tors M is
torsion-free.

(c) If Ais an integral domain, show that every free module over A is torsion-free. In particular, every vector space is
torsion-free.

. Show that:

(@ Qis not finitely generated as a Z-module. (Hint: If N is the Z-submodule of Q generated by a;/b;,i = 1,...,n,
with ged(a;, b;) = 1, then for any prime p that does not divide b; - - - b, we have 1/p ¢ N.)

(b) Q is not a free Z-module. (Hint: Any two distinct elements of (Q are linearly dependent over Z.)

(c) Q is atorsion-free Z-module. (Remark: This shows that the converse of Exercise 1.3.6(c) is not true in general,
that is, for an integral domain A every torsion-free A-module need not be free. However, if A isaPID and if M isa
finitely generated torsion-free A-module, then M is free. The proof of this last statement is not that easy.)

. Let A be a non-zero ring and X, Y, Z indeterminates (over A). Demonstrate the following ring (actually A-algebra)

*

isomorphisms:

(a) A[X] = A[Y] = A[Z].

(b) A[X,Y] = AX][Y].

(©) A[X,Y]/(X) = A[Z].

(d) A[X,Y]/(X,Y) = A

(e) A[X]/aA[X] = (A/aA)[X]foranya € A.

(f) A[X]/a¢ = (A/a)[X], where a is an ideal of A and where a is the extension of a in A[X].
(@) ALX,Y]/(X ~Y) = A[Z).

(h) A[X,Y]/{aX —bY) = A[Z], where AisaPIDand 0 # a,b € A\ A* are relatively prime.

1.4 Field extensions

With groups, rings, modules etc. it is often useful to investigate a smaller structure (subgroup, subring or
submodule) sitting inside a bigger one. With fields, however, the usual practice is the converse. That is,
if we have a field that is lacking some desirable properties, we extend the field to get superfields (more
commonly designated as field extensions) that possess those properties. For example, we get the field
R as an extension of Q in an attempt to make it ‘complete’ in the sense that every Cauchy sequence in R
converges in R. Once completion is achieved, our journey does not stop, because we see that R is still not
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big enough so that every polynomial with real coefficients will have a real root. So we adjoin the fictitious
element i = +/—1to R in order to get the field C of complex numbers. It turns out that C is both complete
(in terms of convergence of Cauchy sequences) and algebraically closed (in the sense that every polynomial
with complex coefficients has a complex root). Thus we should now keep ourselves rather happy with C
and make no further attempts to extend C, unless there is an (esoteric) need to do so.

In this section | will reserve the (Roman) letters F, K, L to designate fields. I start with some basic properties
of roots of polynomials.

1.44 Definition Let f(X) € K[X]. Anelement a in K (or in any extension of K) is saidtobea root of
f,if f(a) =0.

1.45 Proposition Let f(X) € K[X] and a € K. Then f(X) = (X — a)g(X) + f(a) for some
q(X) € K[X]. In particular, a is a root of f(X), ifand only if X — a divides f(X) (in K[X]).

Proof Recall that K[X] isan ED. Euclidean division of f(X) by X —a gives f(X) = (X —a)q(X)+r(X)
with deg7(X) < deg(X — a) = 1. Thus r(X) is a constant polynomial. Let us denote 7(X) by r € K.
Substituting X = a gives f(a) = r, whence the first result follows. The last statement is an immediate
consequence of this. <

1.46 Proposition Let f be a non-zero polynomial of K[X] with d := deg f. Then f can have at most d
roots in K.

Proof We proceed by induction on d. The result clearly holds for d = 0. So assume that d > 1 and that
the proposition holds for all polynomials in K[X] of degree d — 1. If f has no roots in K, we are done.
So assume that f has a root, say, a € K. By Proposition 1.45 we have f(X) = (X — a)g(X) for some
g9(X) € K[X]. Now deg g = d— 1 and so by the induction hypothesis g has at most d — 1 roots in K. Since
K is afield (and hence does not contain non-zero zero divisors), it follows that the roots of f are precisely
a and the roots of g. This establishes the induction step. |

It is easy to see that Proposition 1.46 continues to remain valid, if K is any integral domain (not necessarily
a field). However, if K is not an integral domain, the proposition does not necessarily hold. For example, if
ab=0with 0 # a,b € K, a # b, then the polynomial X2 + (b — a) X has at least three roots, namely, 0, a
and a — b.

For a field extension K C L and for a polynomial f € K[X] we can talk about the roots of f in L, since
f € L[X] too. Clearly all the roots of f in K are also roots of f in L. However, the converse is not true in
general. For example, the only roots of X4 — 1 in R are +1, whereas the roots of the same polynomial in C
are 1, +1i. Indeed we have the following important result.

1.47 Proposition Let f € K[X] be a non-constant polynomial. Then there exists a field extension L of K
such that f has aroot in L.

Proof If f hasarootin K, taking L = K proves the proposition. So we assume that f has no root in X
(which implies that every irreducible factor of f has degree > 2). In principle we do not require f to be
irreducible. But if we consider a non-constant factor g of f, irreducible over K, we see that the roots of ¢
in any extension L of K are roots of f in L too. Thus we may replace f by g and assume without loss of
generality that f itself is irreducible. We then construct the field extension? L := K[X]/(f) and denote the
equivalence class of X in L by «. (One also writes z, X or [X] to denote this equivalence class.) It is clear
that f(a) = 0 € L, that is, ais a root of f(X) in L. <

ZSince K[X]isaPID, (f) is a maximal ideal of K[X] and hence L is indeed a field. Also K is canonically embedded in L.
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We say that the field L in the proof of the last proposition is obtained by adjoining the root « of f and
denote thisas L = K (a). We write f(X) = (X — ) f1(X), where f1(X) € L[ X] and deg f; = deg f — 1.
Now there is a field extension L’ of L, where f; has a root. Proceeding in this way one can prove the
following result.

1.48 Proposition Let f be a non-constant polynomial in K[X] with deg f = d. Then there exists a field
extension L of K such that f has d roots (not necessarily all distinct) in L.

If a polynomial f € K[X] of degree d > 1 has all its roots a, ..., aq in L, then we have the factorization
f(X) =a(X —aq)--- (X — ag) for some a € L (actually ¢ € K). In this case we say that f splits
(completely or into linear factors) over L.

1.49 Definition Let f € K[X] be a non-constant polynomial. A minimal (with respect to inclusion) field
extension of K over which f splits completely is called a splitting field of f over K. This is a minimal
field which contains K and all the roots of f.

From the above discussion it is clear that every non-constant polynomial f € K|[X] has a splitting field L.
Quite importantly the field L is unique in some sense. This allows us to call the splitting field of f instead
of a splitting field of f. I will discuss these topics again later. For the time being let me mention that the
phrase ‘over K’ is necessary in the definition of splitting fields. For example, the splitting field of X2 + 1
over Q is not the same as that of the same polynomial over R.

1.50 Definition Let f be a non-constant polynomial in K[X] and let « be a root of f (in some extension
of K). The largest natural number n for which (X — «)™ | f(X) is called the multiplicity of the root
a(in f). Ifn=1(resp.n > 1),then aciscalled a simple (resp. multiple) root of f. If all the roots of
f are simple, then we call f a square-free polynomial. It is easy to see that f is square-free, only if f
is not divisible by the square of a non-constant polynomial in K[X]. The reverse implication also holds, if
char K = 0 or if K is a finite field.

The notion of multiplicity can be extended to a non-root 5 of f by setting the multiplicity of 3 to zero.

Now for a while let us assume that K C L is a field extension.

1.51 Definition Anelement o € L issaidto be algebraic over K, if there exists a non-constant
polynomial f(X) € K[X] with f(«) = 0. If an element « € L is not algebraic over K, then we say that «
is transcendental over K. Thus atranscendental (over K) element o € L is a root of no polynomial in
K[X]. The field extension K C Liscalled an algebraic extension, if every element of L is algebraic
over K. A non-algebraic extension is also often called a transcendental extension. f K C Lisa
transcendental extension, there exists at least one element «« € L which is transcendental (i.e., not algebraic)
over K.

152 Example (1) Every element a« € K is algebraic over K, since it is a root of the non-constant
polynomial X — a € K[X].

(2) The element o := {/2 + /3 € Ris algebraic over Q, since « is a root of the polynomial (X3 —2)2—3 =
X6 —4X3 +1 € QX].

(3) The well-known real numbers e and 7 are transcendental over Q. (We are not going to prove this.)
Note that the concepts of algebraic and transcendental elements are heavily dependent on the field K. For
example, e and 7, being elements of R, are algebraic over R.
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(4) Let z := a+ ib € C, where i := /-1 and a,b € R Then z is a root of the polynomial
(X —a)?2 + b = X% - 2aX + (a® + %) € R[X]. It, therefore, follows that every complex number
is algebraic over R. In other words, the field extension R C C is algebraic.

(5) The extension Q C R is transcendental, since R contains elements (like e and ) that are transcendental
over Q. Therefore, the extension (Q C C is also transcendental.

1.53 Definition Let «a € L be algebraic over K. A non-constant polynomial f € K[X] of least (positive)
degree with f(a) = 0Oiscalleda minimal polynomial of o over K.

1.54 Proposition Let o € L be algebraic over K. A minimal polynomial f of « over K is irreducible
over K. If h € K[X] is a polynomial with h(a) = 0, then f | A in K[X]. In particular, any two minimal
polynomials f and g of « satisfy g(X) = ¢f(X) for some ¢ € K*.

Proof If f is reducible over K, then f = f; fo for some non-constant polynomials f1, fo € K[X]. Since
K isafieldand 0 = f(«) = fi(a)f2(a), we have fi(a) = 0or fo() = 0. But1 < deg f1 < deg f and
1 < deg fo < deg f, a contradiction to the choice of f.

Using polynomial division one can write A(X) = ¢(X)f(X) + r(X) for some polynomials ¢, € K[X].
Now h(c) = 0 implies r(a) = 0. Since degr < deg f, the choice of f forces r(X) =0, i.e., f | h.

Finally if f and g are two minimal polynomials of « over K, then f | gand g | f,i.e., g(X) = cf(X) for
some unit ¢ of K[X]. But the units of K[X] are precisely the non-zero elements of K. <

If f is a monic minimal polynomial of « over K, then by the last proposition f is uniquely determined
by « and K. It is, therefore, customary to define the minimal polynomial of « over K to be this (unique)
monic polynomial. Unless otherwise stated we will also stick to this revised definition and use the symbol
minpoly,, ;(X) € K[X] to denote the minimal polynomial of  over K. If K is clear from the context,
we may simply write minpoly,, (X).

1.55 Example (1) The minimal polynomial of o € K over K is the linear polynomial X — « € K[X].

(2) A complex number z = a + ib, a,b € R, b # 0, is not a root of a linear polynomial over R. On the other
hand, z is a root of the quadratic polynomial f(X) = X2 — 2aX + (a® + b?) € R[X]. It follows that f is
the minimal polynomial of z over R and thus f is irreducible in R[X].

1.56 Proposition For a field K the following conditions are equivalent:

(a) Every proper field extension K g L is transcendental, i.e., K has no algebraic extension other than itself.
(b) Every non-constant polynomial in K[X] has a root in K.

(c) Every non-constant polynomial in K[X] splits in K.

(d) Every non-constant irreducible polynomial in K[X] is of degree 1.

Proof [(a)=-(b)] Consider a non-constant irreducible polynomial f(X) € K[X] and the field extension
L := K[X]/(f) of K. We have seen that L contains a root of f. We will prove later (Corollary 1.64) that
this extension K C L is algebraic. Hence (a) implies that L = K, that is, K contains a root of f.

[(0)=(c)] Let f € K[X] be a non-constant polynomial. By (b) f has a root, say, a; in K. Thus
f(X) = (X —aq) fi(X) for some f1 € K[X] with deg f1 = deg(f) — 1. If f1 is a constant polynomial,
we are done. Otherwise, we find as above ae € K and fo € K[X] with f1(X) = (X — ag) fo(X) and with
deg fo = deg(f1) — 1 = deg(f) — 2. Proceeding in this way proves (c).

[(c)=-(d)] Obvious.
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[(d)=(a)] Let K C L be an algebraic extension, « € L and f(X) := minpoly, x(X) € K[X]. Since f
is irreducible over K, by (d) we have deg f = 1, i.e., f(X) = X —a,ie,a € K. Thus L C K, i.e,
L=K. <

1.57 Definition A field K satisfying one (and hence all) of the equivalent conditions of Proposition 1.56
iscalled an algebraically closed field. For any arbitrary field K a minimal algebraically closed field
containing K is called an algebraic closure of K and is denoted by K. If L is an algebraically closed
field containing K, there exists a field K’ with K C K’ C L such that K is an algebraic closure of K. We
call K’ an algebraic closure of K in L.

We will see soon that an algebraic closure of every field exists and is unique in some sense. The algebraic
closure of an algebraically closed field K is K itself. The following is a very well-known result. | will not
prove the theorem here. Interested students may consult Exercise 1.4.1.

158 Theorem [Fundamental theorem of algebra] The field C of complex numbers is
algebraically closed.

R is not algebraically closed, since the proper extension C of R is algebraic (Example 1.52). Indeed C is
the algebraic closure of R. The algebraic closure Q of Q in C is a proper subfield of C (Exercise 1.4.8(d)).

I now introduce an important quantity associated with a field extension. Recall that if ¥ C K is a field
extension, then K is a vector space over F'.

1.59 Definition For a field extension F' C K the cardinality of any F'-basis of K is called the degree
of extension orthe extension degree of K over F and is usually denoted by [K : F]. Thus
[K : F] = dimp K. If [K : F] is finite, we say that K isa finite extension of F. Otherwise, the
extension is said to be infinite.

1.60 Example Let f(X) € F[X] be irreducible (over F') of degree d > 1. Then K := F[X]/(f(X)) isa
field extension of F'. One can easily check that the equivalence classes of 1, X, ..., X ¢~! form an F-basis
of K. Thus [K : F] = d.

1.61 Proposition Let F C K C L be a tower of field extensions. Then [L : F| = [L : K|[K : F|.
In particular, the extension F C L is finite, if and only if the extensions F C K and K C L are finite.
Furthermore, if [L : F]isfinite, then [L : K] | [L: F]and [K : F] | [L: F].

Proof For an F-basis S of K and a K-basis S’ of L consider the set T := {zy | z € Sandy € S’} C L.
It can be easily verified that 7" generates L as an F'-vector space and that 7" is linearly independent over F'.
The details are left to the reader. |

Let FF C K be a field extension and a € K. Then we define

Fla] := {f(a) | f(X) € F[X]}

and

F(a) = {f(a)/g(a) | f(X),9(X) € F[X],g(a) # 0}

It is easy to see that F[a] is the smallest (with respect to inclusion) of the integral domains (contained in K)
that contain F' and a. On the other hand, F'(a) is the smallest of the fields (contained in K') that contain
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F and a. We also have F[a] C F(a). Now we prove the following important characterization of algebraic
elements.

1.62 Theorem For afield extension F' C K and an element a € K the following conditions are equivalent:
(@) The element a is algebraic over F.

(b) The extension F'(a) is finite over F (i.e., [F(a) : F] < o0).

(c) F(a) = Fla).

Proof [(a)=>(b)] Let ~(X) := minpoly, r(X) € F[X]and d := deg h. Consider the ring homomorphism
¢ : F[X] — F(a) that takes f(X) — f(a). It follows from Proposition 1.54 that Ker ¢ = (h). Therefore,
by the isomorphism theorem we have F[X]/(h) = Im . Since h is irreducible over F', F[X]/(h) is a field
of extension degree d over F'. Therefore, we are done, if we can show that Im ¢ = F(a). But since Im ¢ is
a field containing F' and a (Note that ¢(X) = a.), it is immediate that F'(a) C Im ¢, that is, Im ¢ = F(a).

[())=(c)] Let d := [F(a) : F]. Since the d + 1 elements 1,a,a?,...,a? are linearly dependent over F,
there exist ay, ..., aq € F, not all 0, such that ag + aia + --- + aga® = 0. This, in turn, implies that
there is an irreducible polynomial h(X) € F[X] with h(a) = 0. Now consider f(a)/g(a) € F(a).
Clearly h } g (because otherwise g(a) = 0). Since h is irreducible, ged(g,h) = 1, i.e., there exist
polynomials u(X),v(X) € F[X] with u(X)g(X) + v(X)h(X) = 1, i.e., with u(a)g(a) = 1. But then
f(a)/g(a) = u(a)f(a) € Fla]. Thus F'(a) C Fl[a]. The reverse inclusion is obvious.

[(c)=(a)] Clearly the element 0 is algebraic over F'. So assume a # 0. Since 1/a € F(a), by hypothesis
there is a polynomial f(X) € F[X] such that 1/a = f(a). But then a is a root of the non-constant
polynomial X f(X) — 1 € F[X]. <

1.63 Corollary Let F' C K be a field extension. Then the set of elements in K that are algebraic over F'
is a field.

Proof It is sufficient to show that if a,b € K are algebraic over F, then the elements a + b, ab and a/b
(if b # 0) are also algebraic over F'. By the last theorem [F'(a) : F] is finite. Since b is algebraic over F,
it is also algebraic over F'(a). In particular, [F'(a)(b) : F(a)] is finite. But then by Proposition 1.61 the
extension F'(a)(b) is finite over F" and contains a + b, ab and a/b (if b # 0). <

The field F(a)(b) in the proof of the last corollary is also denoted as F'(a,b). Itis, in fact, the smallest
subfield of K that contains F', a and b, and it follows that F'(a,b) = F'(b,a). More generally, for a field
extension F' C K and for elements a1, ... ,a, € K each algebraic over F the field F (a1, ... ,ay) is defined
as F'(a1)(a2) - - - (an,) and is independent of the order in which a; are adjoined.

1.64 Corollary Let FF C K be afinite extension. Then K is algebraic over F'.
Proof Forany a € K the degree [F'(a) : F] divides [K : F] and hence is finite. <

The converse of the last corollary is, however, not true. That is, it is possible that an algebraic extension of
a field F' has infinite extension degree over F'. (See Exercise 1.4.6 as an example.)

1.65 Corollary If F C K and K C L are algebraic field extensions, then F' C L is also algebraic.

Proof Leta € L. K C L being algebraic, there exists f(X) := ap, X" + ap_1 X™ 1+ -+ + ap € K[X]
with f(a) = 0. It then follows that a is algebraic over F'(«y, ..., ay). Since each «; is algebraic over F,
[F(ag,...,an) : F)isfinite, so that

[F(ag,...,an)(a) : F] = [F(ag,-.-,an)(a) : F(ag,...,on)][Flag,...,an) : F]
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is also finite and hence the extension F(«y, ..., ay)(a) of F and, in particular, a is algebraic over F. <

1.66 Definition A field extension F' C K iscalled simple, if K = F(a) for some g € K. In this case a
iscalleda primitive element of K (over F).

1.67 Proposition Let F be afield of characteristic 0 and let the elements a, b (belonging to some extension
of F') be algebraic over F'. Then the extension F'(a, b) is simple.

Proof Let p(X) and ¢(X) be the respective minimal polynomials of a and b over F'. Let d := degp and
d' := degq. The polynomials p and q are irreducible over F' and hence by Exercise 1.4.3 have no multiple
roots. Letay,...,aq betherootsof pand by, ..., by the roots of g with a = a1 and b = b;. For each 4, j with
J # 1the equation a; + Ab; = a + Ab has a unique solution for A. Since F is infinite, we can choose p € F
which is a solution of neither of the equations just mentioned. Define ¢ := a + ub, so that ¢ # a; + pub;
for all 4,5 with j # 1. Clearly F(c) C F(a,b). To prove the reverse inclusion, note that by hypothesis
q(b) = 0. Also if we define f(X) := p(c — pX) € F(c)[X], we see that f(b) = p(a) = 0. By choice of
c we see that f(b;) # 0 for j # 1. Finally since g is square-free, we have ged(q, f) = X — b € F(c)[X].
This implies that b € F'(c) and so a = ¢ — ub € F(c). <

1.68 Corollary A finite extension F' C K of fields of characteristic 0 is simple.

Proof We proceed by induction on d := [K : F']. The result vacuously holds for d = 1. So let’s assume
that d > 1 and that the result holds for all extensions of degree < d of fields of characteristic 0. Choose
a € K\ F. Then [F(a) : F] > 1,sothat [K : F(a)] = [K : F]/[F(a) : F] < d. By the induction
hypothesis the extension F'(a) C K is simple, say K = F(a)(b) = F(a,b). The result now follows
immediately from the previous proposition. |

Now we have sufficient machineries to prove the existence and uniqueness of splitting fields of polynomials.
Let f be an arbitrary non-constant polynomial of degree d in F[X]. Assume that f does not split over F’ and
consider an irreducible factor f; of f of degree d; > 1. Fy := F[X]/(f1) is a field extension of F. If oy
denotes the equivalence class of X in Fy, then the elements 1, aq, . .., a‘fl‘l constitute a basis of Fy over
F. In particular, [F} : F] = d; < d. Now one can write f(Y) = (Y — ay)g(Y) for some g(Y') € Fi[Y]. If
g splits over F1, then f also does so. Otherwise, choose any irreducible factor g; of g with degg; > 1 and
consider the field extension Fy := F1[Y]/(g1) of Fy. Then [F, : F1] = degg; < degg = d — 1, so that
[F> : F] < d(d—1). Moreover, if oy is the equivalence class of Y in Fy, then f(Z) = (Z—o1)(Z—a2)h(Z)
for some polynomial h(Z) € F»[Z]. Proceeding in this way we can prove the following result.

1.69 Proposition For a polynomial f € F[X] of degree d > 1 there is a field extension K of F' with
[K : F] < d!such that f splits over K. <

That’s the existence of splitting fields. Now comes the question of uniqueness. Let u : FF — F' be an
isomorphism of fields. Then x induces an isomorphism p* : F[X] — F'[Y] of polynomial rings defined by
adXd + ad_le_1 +---+ag+— /z(ad)Yd + ﬂ(ad_l)Yd_l +---+ p,(a,()). Note that ,u*(a) = u(a) for all
a € F. We also see that f € F[X] is irreducible over F, if and only if u*(f) € F'[Y] is irreducible over
F'. With these notations we state the following important lemma.

1.70 Lemma Let the non-constant polynomial f € F[X] be irreducible over F. Let « and 3 be any
roots of f and p*(f) respectively. Then there is an isomorphism v : F(a) — F'(8) of fields, such that
v(a) = pu(a) foralla € F and v(a) = 5.

Department of Mathematics Indian Institute of Technology, Kanpur, India



Page 24 of 30 MTH 617 Algebraic number theory

Proof Since F(a) = Fl[a] and F'(8) = F'[3], we define the map v : Fla] — F'[B] by g(a) —
(u*(g))(B) for each g € F[X]. Itis now an easy check that v is a well-defined isomorphism of fields with
the desired properties. |

Roots of an irreducible polynomial are called conjugates of one another. If o and 3 are two roots of
a non-constant irreducible polynomial f(X) € F[X], then the last lemma guarantees the existence of an
isomorphism 7 : F(a) — F(p) that fixes all the elements of F' and maps a +— f.

1.71 Proposition We use the maps p and p* as defined above. Let f(X) € F[X] be a non-constant
polynomial and let K and K’ be some splitting fields of f and u*(f) (over F and F”) respectively. Then
there is an isomorphism 7 : K — K’ of fields, such that for all a € F we have 7(a) = u(a).

Proof ~We proceed by induction on d := [K : F]. (By Proposition 1.69 d is finite.) If d = 1, the
polynomial f splits over F' itself and since K is a minimal field containing F' and all the roots of f, we
must have K = F'. It also follows that u*(f) splits over F' and hence K’ = F'. Thus 7 = p is the desired
isomorphism.

Now assume that ¢ > 1 and that the result holds for all fields L and for all polynomials in L[X] with
splitting fields (over L) of extension degrees less than d. Consider an irreducible factor g of f with
1 < degg < degf. Note that g also splits over K. We take any root « € K of g and consider the
intermediate field F'(«), i.e., F C F(a) C K. Similarly, let 3 € K’ be a root of *(g) and we consider the
tower of extensions F' C F'(8) C K'. By Lemma 1.70 there is an isomorphism v : F(a) — F'(8) with
v(a) = p(a) forall a € F and v(a) = (. One can extend v to v* : F(a)[X] — F'(B)[Y] as before. We
then clearly have v*(f) = p*(f). Now [K : F(a)] = [K : F|/[F(a) : F] = [K : F]/degg < d. Itis
evident that K and K’ are splitting fields of f and v*(f) over F(«) and F'(3) respectively. Hence by the
induction hypothesis there is an isomorphism 7 : K — K' with 7(a) = v(a) forall a € F(«). In particular,
7(a) = u(a) foralla € F. <

The results pertaining to the splitting field of a polynomial can be generalized in the following way. Let
S be a set of non-constant polynomials of F[X]. Then a splitting field of S over F' is a minimal field K
containing F' over which each polynomial f € S splits. If S = {f1,..., fr} is afinite set, then the splitting
field of S is the same as the splitting field of f = f; - -- f, (See Exercise 1.4.4). But the situation is different,
if S is infinite. Of particular interest to us is the set .S consisting of all non-constant irreducible polynomials
in F[X]. In this case the splitting field of S is an algebraic closure of F'.

We give a sketch of the proof that even when S is infinite, a splitting field for S exists. This, in particular,
establishes the existence of an algebraic closure of any field. For each f € S we define an indeterminate
X and consider the ring A := F[X[ | f € S] and the ideal a generated by f(X) for all f € S. We have
a # A and, therefore, there is a maximal ideal m of A containing a (Proposition 1.26). Consider the field
F, := A/m containing F. It follows that every polynomial f € .S contains at least one root in ;. Now we
repeat the above procedure with F replaced by F; and S replaced by the set S; of all non-constant irreducible
(over Fy) factors of polynomials in S to get another field F5 containing F3y (and hence F'). We continue this
procedure (infinitely often, if necessary) getting a sequence of fields 7 C F; C F» C F3 C --- and define
K to be the field consisting of all elements of |J,,cn Fr, that are algebraic over F'. Then each polynomial in
S splits in K, but in no proper subfield of K. So K is a splitting field of S.

Now let S be the set of all non-constant irreducible polynomials of F[X]. We want to show that the
field K obtained as above is algebraically closed in this case. Let K C L be an algebraic extension.
Since the extensions F C K is also algebraic, so is the extension F C L. Take any a € L. Then
h(X) := minpoly, »(X) € F[X] is irreducible over F" and by the construction of K has all the roots in
K. In particular, « € K, ie., L =K.
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It is also true that the splitting field of .S is unique upto isomorphisms that fix elements of F'. In particular,
the algebraic closure of F' is unique upto isomorphisms that fix elements of F. We are not going to prove
this uniqueness here.

Exercisesfor Section 1.4

. Let f(z) be a non-constant polynomial with complex coefficients.
(a) Show that f(z) is unbounded (i.e., |f(2)| = oo as |z| = o).

(b) Show that f(z) has aroot zo € C. (Hint: Assume not, i.e., f(z) # 0 forall z € C. Theng(z) := 1/f(2)isa
bounded entire function and hence by Liouville’s theorem is a constant.)

. Show that the irreducible polynomials in R[X] have degrees < 2. (Hint: Use the fundamental theorem of algebra.)

. Let K beafieldand f(X) = ap, X" +---+ a1 X +ag € K[X]. The formal derivative f'of f is defined to be
the polynomial f'(X) := =7, ja; X7~! € K[X].

(@) Let f,g € K[X]. Showthat (f +g¢)' = f'+g'and (fg)' = f'g+ fg'.

(b) If char K = 0, show that f' =0, ifand only if f € K.

(c) Ifchar K = p > 0,then f' =0, ifand only if f(X) = g(X?) for some polynomial g(X) € K[X].

(d) Show that f (# 0) has no multiple roots (in any extension field of K), i.e., f is square-free, if and only if
ged(f, f') = 1.

(e) Let f be a non-constant irreducible polynomial over K. Show that if char K = 0, then f has no multiple roots.
On the other hand, if char K = p > 0, show that f has multiple roots, if and only if f(X) = ¢g(XP?) for some

9(X) € K[X]. (However, if K = Z,, then by Fermat’s little theorem and by the binomial theorem ¢g(X?) = g(X)?,
which contradicts the fact that f(z) is irreducible. Therefore, f cannot have multiple roots.)

. Let K C L be afield extension and f1, ..., f,, non-constant polynomials in K[X]. Show that each f;, i = 1,...,n,
splits over L, if and only if the product f; - - - f,, splits over L.

. Let f(X) € K[X] be irreducible of degree d > 2 and L the splitting field of f over K. Give an example when
[L: K] =d!andan examplewhen [L : K] < d!.

. Show that a finite field (i.e., a field with finite cardinality) is not algebraically closed. In particular, the algebraic
closure of a finite field is infinite. (Hint: Leta,,...,a, be all the elements of a finite field . Consider the polynomial
(X —a1)--- (X —an) +1€ K[X].)

. Let L be an algebraic closure of a field K. Prove that L is an algebraic extension of K.

. A complex number z is called an algebraic number, if z is algebraic over Q. An algebraic number z is called
an algebraic integer,if z is a root of a monic polynomial in Z[X]. Show that:

(a) If z is an algebraic number, then mz is an algebraic integer for some m € N.
(b) If a € Qis an algebraic integer, then a € Z.

(c) If z € C is an algebraic integer, then for any integer n € Z the complex numbers nz and 2 + n are algebraic
integers.

(d) The set of all algebraic numbers is countable (and infinite). (Remark: This implies that the algebraic closure Q
of Q in C is countable. On the other hand, C is uncountable. Therefore, Q g C. This last statement also follows
from Exercise 1.4.7 and Example 1.52(5).)

. Let f(X) € K[X] be a non-constant polynomial of degree d and let 1, . .., a4 be the roots of f (in some extension
field of K). The quantity A(f) := H1<i<]<d(a,- —aj)?iscalled the discriminant of f. Prove the following
assertions:

(@ A(f) =0, ifandonly if f has a multiple root.
(b) A(f) e K.
(© A(X?+aX +b)=a®—4b.
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(d) A(X? 4+ aX +b) = —(4a® + 2707).

Let F' C K be a field extension and let ¢ be an endomorphism of K with p(a) = a forevery a € F.

(@) If an irreducible polynomial f(X) € F[X] has a root o € K, show that o(a) € K is also a root of f. For
example, taking FF = R, K = C and ¢ the automorphism mapping z to its (complex) conjugate z allows us to
conclude that if a complex number z is a root of the polynomial f(X) € R[X], then Z is also a root of f. A similar
result holds for the extension Q C Q(1/m), where m is a non-square rational number.

(b) If K is algebraic over F', show that ¢ is an automorphism. (Hint: Let the conjugates of o € K over F' be
a1 = a,aa,...,a,. Since ¢ is injective, it follows from Part (a) that ¢ makes a permutation of a, ..., a,. Thus ¢
is surjective.)

Prove the following assertions:

(@) R is an infinite extension of Q. (Hint: Consider transcendental numbers.)

(b) The only automorphism of R that fixes all the elements of Q is the identity map. (Hint: Let ¢ be such an
automorphism. First note that if 0 < a € R, then p(a) = ¢(v/a)? > 0. This implies that for a, b € R with a < b one

has ¢(a) < ¢(b). Now assume a < ¢(a) for some a € R\ Q. Choose a rational number b with a < b < ¢(a). Then
p(a) < ¢(b) = b, a contradiction. Thus ¢(a) > a. Similarly p(a) < a.)

1.5 Finite fields

A finite field is a field containing only finitely many elements. Though infinite fields like Q, R or C
are more familiar to us, finite fields often play important roles in algebra and number theory. The simplest
example of a finite field is the field of residue classes of Z modulo a prime number p. Such a field, which
we denote as Z,, consists of exactly p elements [0],, [1]p, ..., [p — 1],. But there are other finite fields too.
Though they have rich algebraic structures, they are not as easy to visualize as the fields Z,,. In this section
we let p be a prime number and ¢ a power of a prime, i.e., ¢ = p™ for some n € N. We will soon see that
there exists a finite field with g elements. If n > 2, this field is not the same as the ring Z,. In fact, if g is
composite, then Z, has non-zero zero divisors and is not even an integral domain.

Recall that the characteristic of aring A is the smallest positive integer n such that the sum 14+14---+1
(n times) in A is the zero element of A. We denote this by char A = n. If no such n exists, we take
char A = 0. A field K of characteristic zero (like @, R or C) has to be infinite, since 0, 1, 2 = 1 4+ 1,
3=1+4+1+41,...aredistinct elements of K. Thus a finite field must have positive characteristic. In fact,
if K is a finite field, char K has to be a prime. More generally, we have:

1.72 Proposition Let A be an integral domain of positive characteristic p. Then p is a prime.

Proof If p is composite, write p = mn for some m,n € N, 1 < m < pand 1 < n < p. But then
p=mn = 0 (in A). Since A is an integral domain, we must have m = 0 or n = 0 (in A). This contradicts
the minimality of p. |

Let K be a finite field of cardinality ¢ and let p := char K € P. K contains an isomorphic copy of the
field F := Z,. If [K : F] = n € N, it follows that ¢ = p™ (since K is a Z,-vector space of dimension n).
Therefore we have proved the first statement of the following important result.

1.73 Theorem The cardinality ¢ of a finite field is a power p™, n € N, of a prime number p. Conversely,
given p € Pand n € N, there exists a finite field of cardinality ¢ = p™.

Proof In order to construct a finite field of cardinality ¢ = p™, we start with the field ' := Z, and consider
the polynomial f(X) := X7—X € Z,[X]. Let K be the splitting field of f over F. Since f'(X) = —1 # 0,
the roots of f are distinct (See Exercise 1.4.3). Therefore, the set E' := {a € K | a? = a} has cardinality q.
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From Exercise 1.5.1 it follows that E is afield. Butthen FF C EF C K and f splits over E. By the definition
of splitting fields we must then have K = FE, that is, |[K| = |E| = q. <

1.74 Theorem Let K be a finite field of cardinality ¢ = p™ and let F' be the subfield of K isomorphic to
Z,. Then K is the splitting field of the polynomial f(X) := X? — X € F[X] over F. In particular, K is
unique up to isomorphisms fixing elements of F'.

Proof Clearly f(0) = 0. Leta € K*. Since K* is a group of order ¢ — 1, we have ordg-(a) | (¢ — 1)
by Lagrange’s theorem. In particular, a?~! = 1, i.e., f(a) = a? — a = 0. Therefore, each of the ¢ elements
of K is aroot of f and consequently K is the splitting field of f. The last assertion in the statement of the
theorem follows from the uniqueness of splitting fields (Proposition 1.71). |

This uniqueness allows us to talk about the finite field of cardinality ¢ (rather than a finite field of cardinality
g). We denote this (unique) field by F,.

Theorem 1.74 can be readily generalized for arbitrary extensions F, C Fym,where g = p",p € P,n,m € N
(Exercise 1.5.2).

1.75 Proposition LetF, C F,m, m € N, be a (finite) extension. There is a unique intermediate field
with ¢¢ elements, d € N, if and only if d | m. Furthermore, if d | m, then o € F,~ belongs to the (unique

intermediate) field Fq, if and only if P —

Proof  For any (positive) divisor d of m the splitting field L of X9 — X consists of q¢ elements and
satisfies F; C L C Fym . If L' # L is another intermediate field with g® elements, then there are more than

qd elements of F,~ , that are roots of Xt _ X, a contradiction. Conversely, if L is an intermediate field,
then L contains g% elements, where d = [L : F,]. Since m = [Fym : F,] = [Fym : L][L : F,], d | m. <

1.76 Corollary LetF, C Fym, m € N, be a (finite) extension of finite fields, « € Fy» and let
f(X) := minpoly,, z (X) € F,[X]. Then deg f divides m.

Proof Consider the intermediate field F (o) = IF, [ X]/(f) = F,a, where d := deg f. <

Now we are in a position to prove a very important fact about the multiplicative group of a finite field.
1.77 Theorem Let K be a field (not necessarily finite). Then any finite subgroup G of the multiplicative
group K* is cyclic. In particular, Fy is cyclic.

Proof Since K is a field, for any n. € N the polynomial X™ — 1 has at most n roots in K and hence in G.
The theorem then follows immediately from Exercise 1.5.4. |

1.78 Corollary Every finite extension F, C IF;= of finite fields is simple.

Proof Let « be a generator of the cyclic group Fy». Then m is the smallest of the positive integers s for
which a?° = . If f is the minimal polynomial of « over F,, then F, C F, () = F,[X]/(f) Fpa C Fym,
where d := deg f. Since « € Fa, a?" = a, and hence we must have d = m, i.e., Fogm = Fy(a). <

1.79 Corollary For any finite field F, and m € N there exists an irreducible polynomial f € F,[X] with
deg f = m.
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Proof The minimal polynomial over IF, of a generator of ;.. is irreducible in ¥, [X] and has degree m. <«

We now study some interesting properties of polynomials over finite fields. As before we concentrate on
the polynomials in F,[X] for an arbitrary ¢ = p", p € P, n € N. We have seen how the polynomials
X9" — X proved to be important for understanding the structures of finite fields. But that’s not all;
these polynomials indeed have further roles to play. Therefore, we reserve the following special symbol:
Tym(X) == X" — X € F,[X].

Let F, C TF,» be a finite extension of finite fields and let o € Iz be a root of the polynomial
f(X) =ap X" +ap 1 X" 14+ +ag € FF,[X]. Since each a; € Fy, it follows that a! = a;. Therefore,
f(a9) = a0 +a,_109" D 4. pag = ala®+al_0d™ D) 4. 4ad = f(a)? = 0. More generally,
for every r = 0,1,2,... the element 9" is a root of f(X). We will now show that if f is irreducible in
I, [X], then all the roots of f are of this form. First let us prove the following important lemma:

1.80 Lemma Let f(X) € F,[X] be a non-constant irreducible polynomial. If f has a root in Fg= , then all
the roots of f are in Fym .

Proof Leta € Fym be aroot of f. Then f(X) = minpoly, , (X). Since " =q, f(X) | (X" - X),
i.e., any root 3 of f also satisfies 37" = B, i.e., B € Fym. <

1.81 Corollary The minimal polynomial of a € Fgm over Fy is (X — a)(X —a?)--- (X — a?™"), where
d is the smallest of the integers s € N for which a¢" = «.

Proof Let f(X) := minpoly,r, € Fy[X]and let§ := deg f. Then Fy(a) = Fy[X]/(f) = Fps is
the smallest field containing (F, and) « and hence all the roots of f. It follows that «?" = « for s = §
and for no smaller positive integer values of s. Therefore, 6 = d and all the conjugates of « are precisely
a,a9,...,a9" ", (One can easily check that o, a?, ..., 9" " are all distinct.) <

1.82 Theorem The polynomial Z ,,(X) = X 9" — X is the product of all non-constant monic irreducible
polynomials in [, [ X] whose degrees divide m.

Proof  We have the factorization Zy ;m(X) = [laer,. (X — a) over Fgm. Now by Corollary 1.81 the
minimal polynomial f,(X) for every o € Fy» over [, divides Z,,,(X). By Corollary 1.76 we have
deg(fa) | m. Finally since fo(X) = f3(X) or ged(fa(X), fg(X)) = 1 depending on whether o and 3 are
conjugates or not, it follows that Z, ., (X) is a product of monic irreducible polynomials of IF,[X] whose
degrees divide m. In order to show that Z, ,,,(X) is the product of all such polynomials, let us consider
an arbitrary polynomial g(X) € IF,[X] which is monic, irreducible over F, and has degree d | m. Finite
fields being perfect (Exercise 1.5.6), g has no multiple roots. Moreover, g has one (and hence all) roots in
Fpa = F,[X]/(g(X)). Since d | m, we conclude from Proposition 1.75 that IF 4 is contained in Fym . Thus

q
g splits over [F;» as well and, in particular, divides Z ,. <

An important consequence of the last theorem is that it leads to a procedure for checking the irreducibility of
apolynomial f(X) € F,[X]. Letd := deg f. If f(X) is reducible, it admits an irreducible factor of degree
< |d/2]. Now gy, := ged(f,Zy,m) is the product of all distinct irreducible factors of f whose degrees
divide m. If all the gcds g1, ..., g|4/2) are 1, f is irreducible. Otherwise f is reducible.

We end this section by explaining how elements of a finite field can be represented. Since Fy= is a vector
space of dimension m over F,, we can choose fJy, ..., Bm—1 € Fy that form an I, -basis of F,~. Each
element a € Fym then has a unique representation a = aofy + -+ + am—18m—1, Where each a; € F,.
Therefore, if we have a representation for the elements of IF,, we have the same for the elements of Fym.
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It is, then, easy to see that elements of any finite field can be represented, if we have representations of
elements of prime fields. But we have the standard representation of F,, as the set {0, 1,...,p — 1} with
arithmetic modulo p.

So our problem now reduces to selecting a suitable basis Sy, . .. , B,—1 of Fym over IF,. To see how we can
do that, let’s choose a priori a fixed monic irreducible polynomial f(X) € F,[X] with deg f = m. We
represent Fym as I, [X]/(f) = Fq (), where « (the residue class of X) is a root of f in Fgm . The elements
La,...,a™ 1 € F,m are linearly independent over F,, since otherwise we would have a polynomial
of degree less than m of which « is a root. Therefore, 1,a,...,a™ ! is an F,-basis of F,m, called the
polynomial basis (with respect to the defining polynomial f). Elements of F,= are then polynomials
in F, [X] of degrees < m. Arithmetic in IFy= is carried out as the polynomial arithmetic of IF, [ X] modulo
the irreducible polynomial f.

1.83 Example The elements of F; are 0 and 1 with0+0 =0,0+1=1,1+0= 1,141 =0,
0x0 =1x0=0x1=0and1x1 = 1. Inorder to represent Fs = F,3 we choose the irreducible polynomial
f(X) = X3+ X? + 1 € F2[X]. The elements of Fg are asa? + a1a + ag, where a; € {0,1}. In order to
demonstrate the arithmetic in Fg we take a := a®> 4+ 1,b:= o> + a € Fy. TheirsuminFg isa +b = o+ 1.
On the other hand, the productisab=a*+a® + o’ +a=a(a® +a? + 1)+ a? = a- 0+ o? = o2

Polynomial bases are the ones most commonly used in finite field implementations. However, there are
other types of bases that are sometimes used.

Exercisesfor Section 1.5

. Let F' be a field (not necessarily finite) of characteristic p € IP. Show that for every a, b € F we have (a+b)? = a?+bP.
(Hint: Use the binomial theorem.) More generally, prove that for n € Nand a,b € F we have (a+b)?" = a?" +b7".
(Hint: Use induction on n.)

. Letpbeaprime,n,m € Nandq := p™. Let FF C K be an extension of finite fields with || = gand |K| = ¢™. Show
that K is the splitting field of the polynomial X¢™ — X € F[X] over F. (Hint: Follow the proof of Theorem 1.74.)

. [Solving this exercise requires the knowledge of Sylow subgroups and internal direct products of groups.
If the reader is not already familiar with these topics, (s)he may consult any text-book on groups and/or algebra.]

Let G be a finite (multiplicatively written) Abelian group with identity e and of order n = p* - - - p®~, where p; are
distinct primes and «; € N. For each ¢ let H; be the p;-Sylow subgroup of G. Show that:

(@) G =H;---H,. (Hint: Leti # j and g € H; N H;. Then ord g divides both p;** and pj‘j and so is equal to 1, that
is, g = e. Now let h,,h; € H; and h]',hz' S H]‘ with hzh] = h;h; But then h;lh: = hj(hllj)_l € H;N Hj = {6}
Thus |H;H;| = |H;||H;|. Generalize this argument to show that |H; - - - H.| = n.)

(b) Every element g € G can be written uniquely as g = hy - - - h, with h; € H;. Moreover, in that case we have
ordg g = (ordg, h1) - - - (ordg, hy).

(¢) Giscyclic, ifandonly if all of Hy, ..., H, are cyclic.

. Let G be a finite (multiplicatively written) Abelian group with identity e. Assume that for every n € N there are at
most n elements z of G satisfying z™ = e. Show that G is cyclic. (Hint: First consider the special case |G| = p”
forp € Pandr € N. Then each element g € G has order of the form p®s for some s, € {0,1,...,7}. Let s be the
maximum of the integers s,, g € G. Show that s = r. This proves the assertion for the special case. For the general
case use this special case in conjunction with Exercise 1.5.3.)

. Let F:=TF,,q=p", pe€ P neN Showthat every element o € F has a p-th root in F. (Hint: o?" = a.)
. Afield Fis called perfect, if every (non-constant) irreducible polynomial in F[X] has no multiple roots (in any

extension of F').
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(a) Show that if char F' = 0, then F' is perfect.

(b) Letchar F' = p > 0. Show that F' is perfect, if and only if every element of F' has a p-th root in F'. In particular,
finite fields are perfect.

(Hint: Use Exercise 1.4.3(e).)

. Let f(X) e [, [X] be irreducible with d := deg f > 0. Consider the extension F;, C F,~ and let » := gecd(d, m).
Show that f is irreducible over Fym , if and only if » = 1. (Hint: Assume » > 1. We have the tower of extensions
F, C F;» C Fya and [ is the splitting field of f over IF, and hence over IF;-. Consider the minimal polynomial
of aroota € IF,a of f over [F-. Conversely, let f be reducible over F;~ . Choose a non-constant irreducible factor
h € Fym [X] of f with s := deg h < d. Now f has one (and hence all) roots in [Fs= and, therefore, d | sm.)

. Show that € F% isa primitive element (i.e., a generator) of I, if and only if a(9=1)/ £ 1 for every prime

divisor w of ¢ — 1. Find a primitive element of I} with i represented as F»[X]/(X* + X + 1).
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