Name:

Roll Number:

1. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.)
(Remark: No credit will be given to a correct guess followed by an improper explanation.)
(a) If the fanout $\phi(G)$ of a $\mathrm{CFG} G$ is $\leqslant 2$, then $\mathcal{L}(G)$ may be infinite. \square
(b) aabbaa $\in \mathcal{L}(G)$, where $G:=(\{a, b\},\{S\}, S,\{S \rightarrow b|S a| a S \mid S S\})$.

(c) The CFG G of Part (b) is ambiguous. \square
(d) $\mathcal{L}(G)$ is the language of the regular expression $a^{*} b b^{*} a^{*}$, where G is the CFG of Part (b). \square
(e) The union of infinitely many context-free languages may be non-context-free. \square
2. Let $\Sigma:=\{a, b, c\}$ and $L:=\left\{\alpha c \alpha^{R} c \alpha \mid \alpha \in\{a, b\}^{*}\right\}$.
(a) Show that L is not context-free.
(b) Write L as the intersection of two context-free languages (over Σ).
3. Let $L:=\left\{a^{3 k+1} b^{5 k-2} \mid k \geqslant 1\right\} \subseteq\{a, b\}^{*}$.
(a) Write a CFG G with $\mathcal{L}(G)=L$.
(b) Design a PDA M with $\mathcal{L}(M)=L$.
(c) Is the PDA you designed in Part (b) a deterministic PDA?
4. [Bonus problem] Let $\Sigma:=\{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^{*}$ define $\nu_{x}(\alpha):=$ the number of occurrences of x in α. Design a PDA M with $\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid \nu_{b}(\alpha)\right.$ is an (integral) multiple of $\left.\nu_{a}(\alpha)\right\}$.

Name:

Roll Number:

1. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.)
(Remark: No credit will be given to a correct guess followed by an improper explanation.)
(a) aabbaa $\in \mathcal{L}(G)$, where $G:=(\{a, b\},\{S\}, S,\{S \rightarrow \epsilon|S b| a S a\})$. \square
(b) $\mathcal{L}(G)$ is the language of the regular expression $a^{*} b^{*} a^{*}$, where G is the CFG of Part (a). \square
(c) The grammar of Part (a) is ambiguous. \square
(d) If $\mathcal{L}(G)$ is finite for a CFG G, then the fanout $\phi(G)$ of G is $\leqslant 2$.

(e) The intersection of two context-free languages is never context-free.

2. Let $\Sigma:=\{a, b, c\}$ and $L:=\left\{\alpha a \alpha^{R} a \alpha \mid \alpha \in\{b, c\}^{*}\right\}$.
(a) Show that L is not context-free.
(b) Write L as the intersection of two context-free languages (over Σ).
3. Let $L:=\left\{a^{5 k+1} b^{3 k-2} \mid k \geqslant 1\right\} \subseteq\{a, b\}^{*}$.
(a) Write a CFG G with $\mathcal{L}(G)=L$.
(b) Design a PDA M with $\mathcal{L}(M)=L$.
(c) Is the PDA you designed in Part (b) a deterministic PDA?
4. [Bonus problem] Let $\Sigma:=\{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^{*}$ define $\nu_{x}(\alpha):=$ the number of occurrences of x in α. Design a PDA M with $\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid \nu_{a}(\alpha)\right.$ is an (integral) multiple of $\left.\nu_{b}(\alpha)\right\}$.
