MTH 222 Theory of Computation

Second Mid Semester Examination (Exercise set A)

Total marks: 25	October 2002	Time: $1 + \epsilon$ hours
Name:	Roll Number:	
Which of the following statem (Remark: No credit will be g	nents is/are true? (Give an explanation for iven to a correct guess followed by an imp	reach in at most two sentences.) (2 proper explanation.)
(a) If the fanout $\phi(G)$ of a CF	FG G is ≤ 2 , then $\mathcal{L}(G)$ may be infinite.	
(b) $aabbaa \in \mathcal{L}(G)$, where G	$P := (\{a, b\}, \{S\}, S, \{S \to b \mid Sa \mid aS \mid S)$	<i>SS</i> }).
(c) The CFG G of Part (b) is	ambiguous.	
(d) $\mathcal{L}(G)$ is the language of the	he regular expression $a^*bb^*a^*$, where G is	s the CFG of Part (b).
		<u> </u>
(e) The union of infinitely ma	any context-free languages may be non-co	ontext-free.

- **2.** Let $\Sigma := \{a, b, c\}$ and $L := \{\alpha c \alpha^R c \alpha \mid \alpha \in \{a, b\}^*\}.$
 - (a) Show that L is not context-free.

(4)

(b) Write L as the intersection of two context-free languages (over Σ).

(4)

- **3.** Let $L := \{a^{3k+1}b^{5k-2} \mid k \ge 1\} \subseteq \{a, b\}^*$.
 - (a) Write a CFG G with $\mathcal{L}(G) = L$.

(3)

(b) Design a PDA M with $\mathcal{L}(M) = L$.

(c) Is the PDA you designed in Part (b) a deterministic PDA?

(1)

(3)

4. [Bonus problem] Let $\Sigma := \{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^*$ define $\nu_x(\alpha) :=$ the number of occurrences of x in α . Design a PDA M with $\mathcal{L}(M) = \{\alpha \in \Sigma^* \mid \nu_b(\alpha) \text{ is an (integral) multiple of } \nu_a(\alpha)\}.$ (10)

MTH 222 Theory of Computation

Secon	d Mid Semester Examination (Exer	rcise set B)	
Total marks: 25	October 2002	Time: $1 + \epsilon$ hours	
Name:	Roll Number:		
Which of the following stateme (Remark: No credit will be give	ents is/are true? (Give an explanation for yen to a correct guess followed by an im	r each in at most two sentences.) ((2 ×)
(a) $aabbaa \in \mathcal{L}(G)$, where G :	$:= (\{a,b\}, \{S\}, S, \{S \rightarrow \epsilon \mid Sb \mid aSa\}$).	
(b) $\mathcal{L}(G)$ is the language of the	e regular expression $a^*b^*a^*$, where G is	the CFG of Part (a).	
(c) The grammar of Part (a) is	ambiguous.		
(d) If $\mathcal{L}(G)$ is finite for a CFG	G , then the fanout $\phi(G)$ of G is ≤ 2 .		
		[]	
(e) The intersection of two con	text-free languages is never context-free	e.	

- **2.** Let $\Sigma := \{a, b, c\}$ and $L := \{\alpha a \alpha^R a \alpha \mid \alpha \in \{b, c\}^*\}.$
 - (a) Show that L is not context-free.

(4)

(b) Write L as the intersection of two context-free languages (over Σ).

(4)

- **3.** Let $L := \{a^{5k+1}b^{3k-2} \mid k \ge 1\} \subseteq \{a, b\}^*$.
 - (a) Write a CFG G with $\mathcal{L}(G) = L$.

(3)

(b) Design a PDA M with $\mathcal{L}(M) = L$.

(c) Is the PDA you designed in Part (b) a deterministic PDA?

(1)

(3)

4. [Bonus problem] Let $\Sigma := \{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^*$ define $\nu_x(\alpha) :=$ the number of occurrences of x in α . Design a PDA M with $\mathcal{L}(M) = \{\alpha \in \Sigma^* \mid \nu_a(\alpha) \text{ is an (integral) multiple of } \nu_b(\alpha)\}.$ (10)