Name:

Roll Number:

1. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.)
(Remark: No credit will be given to a correct guess followed by an improper explanation.)
(a) If the fanout $\phi(G)$ of a $\mathrm{CFG} G$ is $\leqslant 2$, then $\mathcal{L}(G)$ may be infinite.

Consider the CFG

$$
G:=(\{a, b\},\{S, T\}, S,\{S \rightarrow T b, T \rightarrow \epsilon \mid T a\}) .
$$

Then

$$
\mathcal{L}(G)=\left\{a^{k} b \mid k \in \mathbb{Z}_{+}\right\}
$$

is infinite.
(b) aabbaa $\in \mathcal{L}(G)$, where $G:=(\{a, b\},\{S\}, S,\{S \rightarrow b|S a| a S \mid S S\})$.

Consider the leftmost derivation:

$$
S \Rightarrow a S \Rightarrow a a S \Rightarrow a a S a \Rightarrow a a S a a \Rightarrow a a S S a a \Rightarrow a a b S a a \Rightarrow a a b b a a .
$$

(c) The CFG G of Part (b) is ambiguous.

Consider the two different parse trees for the following two leftmost derivations of $b a b$:

$$
\begin{aligned}
& S \Rightarrow S S \Rightarrow b S \Rightarrow b a S \Rightarrow b a b \\
& S \Rightarrow S S \Rightarrow S a S \Rightarrow b a S \Rightarrow b a b
\end{aligned}
$$

(d) $\mathcal{L}(G)$ is the language of the regular expression $a^{*} b b^{*} a^{*}$, where G is the CFG of Part (b). $b a b \in \mathcal{L}(G)$ (See Part (c)), whereas $b a b \notin \mathcal{L}\left(a^{*} b b^{*} a^{*}\right)$.
(e) The union of infinitely many context-free languages may be non-context-free.

Let $L:=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}=\bigcup_{n \in \mathbb{N}}\left\{\alpha_{n}\right\}$ be an (infinite) non-context-free language. Each $\left\{\alpha_{n}\right\}$ is finite and hence regular and hence context-free.
2. Let $\Sigma:=\{a, b, c\}$ and $L:=\left\{\alpha c \alpha^{R} c \alpha \mid \alpha \in\{a, b\}^{*}\right\}$.
(a) Show that L is not context-free.

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version of the pumping lemma. Consider $\alpha:=a^{n} c a^{n} c a^{n} \in L$. The pumping lemma gives us the decomposition $\alpha=\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}$ with $\left|\beta_{2} \beta_{4}\right| \geqslant 1$ and $\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$. Since $\alpha^{\prime}:=\beta_{1} \beta_{3} \beta_{5} \in L, \beta_{2} \beta_{4}$ must not contain the symbol c, i.e., $\beta_{2} \beta_{4}$ consists only of a 's. The condition $\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$ implies that $\beta_{2} \beta_{4}$ can not stretch over all the three runs of a 's in α. Therefore, α^{\prime} lacks the defining property of the strings of L. This contradiction shows that L is not context-free.
(b) Write L as the intersection of two context-free languages (over Σ).

Solution Define

$$
\begin{aligned}
L_{1} & :=\left\{\alpha c \alpha^{R} c \beta \mid \alpha, \beta \in\{a, b\}^{*}\right\} \\
L_{2} & :=\left\{\beta c \alpha^{R} c \alpha \mid \alpha, \beta \in\{a, b\}^{*}\right\}
\end{aligned}
$$

Clearly $L=L_{1} \cap L_{2}$. I will now show that L_{1} is context-free. Consider the CFG $G:=(\Sigma,\{S, U, V\}, S, R)$ for L_{1}, where the rules in R are:

$$
\begin{aligned}
S & \rightarrow U V \\
U & \rightarrow c|a U a| b U b \\
V & \rightarrow c|V a| V b
\end{aligned}
$$

An analogous CFG defines L_{2}.
3. Let $L:=\left\{a^{3 k+1} b^{5 k-2} \mid k \geqslant 1\right\} \subseteq\{a, b\}^{*}$.
(a) Write a CFG G with $\mathcal{L}(G)=L$.

Solution The trick is to substitute $k=l+1$ and write L as

$$
L=\left\{a^{4+3 l} b^{5 l+3} \mid l \geqslant 0\right\}
$$

Now it is easy to write a CFG $G:=(\{a, b\},\{S, T\}, S, R)$ for L with the rules:

$$
\begin{aligned}
& S \rightarrow a a a a T b b b \\
& T \rightarrow \epsilon \mid a a a T b b b b b
\end{aligned}
$$

Clearly $\mathcal{L}(T)=\left\{a^{3 l} b^{5 l} \mid l \geqslant 0\right\}$. The rest is obvious.
(b) Design a PDA M with $\mathcal{L}(M)=L$.

Solution A PDA can be designed for L naïvely, i.e., starting from the scratch. Now that we have a CFG for L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:

(c) Is the PDA you designed in Part (b) a deterministic PDA?

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to replace it by ϵ or by $a a a T b b b b b$ without consuming any symbol from the input.
4. [Bonus problem] Let $\Sigma:=\{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^{*}$ define $\nu_{x}(\alpha):=$ the number of occurrences of x in α. Design a PDA M with $\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid \nu_{b}(\alpha)\right.$ is an (integral) multiple of $\left.\nu_{a}(\alpha)\right\}$.

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track of both the number of a 's and the number of b 's read. With a single stack this is impossible. Alternatively, the machine will have to prepare nondeterministically for every $k \in \mathbb{Z}_{+}$to handle the case $\nu_{b}(\alpha)=k \nu_{a}(\alpha)$. Since there are infinitely many possibilities for k, a finite machine would not be adequate.
We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma - the stronger version makes reasoning easier here.

Assume that L is context-free and let n be the pumping lemma constant for L. Choose an integer $m>n$ (For example, $m:=n+1$ will do.) and consider any string $\alpha \in L$ having exactly m occurrences of a and exactly $m!$ (m-factorial) occurrences of b. The pumping lemma provides the decomposition $\alpha=\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}$ with the relevant properties. Suppose that $\beta_{2} \beta_{4}$ consists of exactly r occurrences of a and exactly s occurrences of b. Then $1 \leqslant r+s \leqslant n$, since $1 \leqslant\left|\beta_{2} \beta_{4}\right| \leqslant\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$.

Case 1: $s=0$.
In this case $\beta_{2} \beta_{4}$ consists only of a 's. Then $\left|\beta_{2} \beta_{4}\right|=r \geqslant 1$ and so we can choose a k large enough, so that $m+k r>m$!. Since $\beta_{1} \beta_{2}^{k+1} \beta_{3} \beta_{4}^{k+1} \beta_{5} \in L$, we have $(m+k r) \mid m$!, which is absurd.

Case 2: $s \geqslant 1$.
$\beta_{1} \beta_{3} \beta_{5} \in L$ and so $(m-r) \mid(m!-s)$. Since $0 \leqslant r \leqslant n<m$, we have $m-r \in\{1,2, \ldots, m\}$, i.e., $(m-r) \mid m$!. Therefore, $(m-r) \mid s$, i.e., $m-r \leqslant s$, i.e., $m \leqslant r+s \leqslant n<m$, again a contradiction.

Thus L is not context-free.
(Remark: For integers u, v the phrase " v is an integral multiple of u " is abbreviated as $u \mid v$ to be read as " u divides v ". Specifically, we say that $u \mid v$, if (and only if) there exists an integer w with $v=u w$.)

Name:

Roll Number:

1. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.)
(Remark: No credit will be given to a correct guess followed by an improper explanation.)
(a) aabbaa $\in \mathcal{L}(G)$, where $G:=(\{a, b\},\{S\}, S,\{S \rightarrow \epsilon|S b| a S a\})$.

Consider the leftmost derivation:

$$
S \Rightarrow a S a \Rightarrow a a S a a \Rightarrow a a S b a a \Rightarrow a a S b b a a \Rightarrow a a b b a a .
$$

(b) $\mathcal{L}(G)$ is the language of the regular expression $a^{*} b^{*} a^{*}$, where G is the CFG of Part (a).

Since $S \Rightarrow S b \Rightarrow a S a b \Rightarrow a S b a b \Rightarrow a b a b$, we have $a b a b \in \mathcal{L}(G)$. But $a b a b \notin \mathcal{L}\left(a^{*} b^{*} a^{*}\right)$.
(c) The grammar of Part (a) is ambiguous.

In the first step of a leftmost derivation of any $\alpha \in \mathcal{L}(G)$ a unique rule is applicable. That is, the rules $S \rightarrow \epsilon, S \rightarrow a S a$ and $S \rightarrow S b$ are applicable respectively to the pairwise disjoint cases: $\alpha=\epsilon, \alpha$ ends with a and α ends with b.
(d) If $\mathcal{L}(G)$ is finite for a $\operatorname{CFG} G$, then the fanout $\phi(G)$ of G is $\leqslant 2$.

Consider the CFG

$$
G:=(\{a, b\},\{S\}, S,\{S \rightarrow a b a\}) .
$$

Then $\mathcal{L}(G)=\{a b a\}$ is finite, whereas $\phi(G)=3$.
(e) The intersection of two context-free languages is never context-free.

The intersection of two regular languages is regular. Regular languages are context-free.
Alternatively, take $L_{1}=L_{2}$ to be a CFL. Then $L_{1} \cap L_{2}$ is evidently context-free.
2. Let $\Sigma:=\{a, b, c\}$ and $L:=\left\{\alpha a \alpha^{R} a \alpha \mid \alpha \in\{b, c\}^{*}\right\}$.
(a) Show that L is not context-free.

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version of the pumping lemma. Consider $\alpha:=b^{n} a b^{n} a b^{n} \in L$. The pumping lemma gives us the decomposition $\alpha=\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}$ with $\left|\beta_{2} \beta_{4}\right| \geqslant 1$ and $\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$. Since $\alpha^{\prime}:=\beta_{1} \beta_{3} \beta_{5} \in L, \beta_{2} \beta_{4}$ must not contain the symbol a, i.e., $\beta_{2} \beta_{4}$ consists only of b 's. The condition $\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$ implies that $\beta_{2} \beta_{4}$ can not stretch over all the three runs of b 's in α. Therefore, α^{\prime} lacks the defining property of the strings of L. This contradiction shows that L is not context-free.
(b) Write L as the intersection of two context-free languages (over Σ).

Solution Define

$$
\begin{aligned}
& L_{1}:=\left\{\alpha a \alpha^{R} a \beta \mid \alpha, \beta \in\{b, c\}^{*}\right\}, \\
& L_{2}:=\left\{\beta a \alpha^{R} a \alpha \mid \alpha, \beta \in\{b, c\}^{*}\right\} .
\end{aligned}
$$

Clearly $L=L_{1} \cap L_{2}$. I will now show that L_{1} is context-free. Consider the CFG $G:=(\Sigma,\{S, U, V\}, S, R)$ for L_{1}, where the rules in R are:

$$
\begin{aligned}
S & \rightarrow U V \\
U & \rightarrow a|b U b| c U c \\
V & \rightarrow a|V b| V c
\end{aligned}
$$

An analogous CFG defines L_{2}.
3. Let $L:=\left\{a^{5 k+1} b^{3 k-2} \mid k \geqslant 1\right\} \subseteq\{a, b\}^{*}$.
(a) Write a CFG G with $\mathcal{L}(G)=L$.

Solution The trick is to substitute $k=l+1$ and write L as

$$
L=\left\{a^{6+5 l} b^{3 l+1} \mid l \geqslant 0\right\}
$$

Now it is easy to write a CFG $G:=(\{a, b\},\{S, T\}, S, R)$ for L with the rules:
$S \rightarrow$ aaaaaaTb
$T \rightarrow \epsilon \mid a a a a a T b b b$
Clearly $\mathcal{L}(T)=\left\{a^{5 l} b^{3 l} \mid l \geqslant 0\right\}$. The rest is obvious.
(b) Design a PDA M with $\mathcal{L}(M)=L$.

Solution A PDA can be designed for L naïvely, i.e., starting from the scratch. Now that we have a CFG for L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:

(c) Is the PDA you designed in Part (b) a deterministic PDA?

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to replace it by ϵ or by aaaaaTbbb without consuming any symbol from the input.
4. [Bonus problem] Let $\Sigma:=\{a, b\}$. For $x \in \Sigma$ and $\alpha \in \Sigma^{*}$ define $\nu_{x}(\alpha):=$ the number of occurrences of x in α. Design a PDA M with $\mathcal{L}(M)=\left\{\alpha \in \Sigma^{*} \mid \nu_{a}(\alpha)\right.$ is an (integral) multiple of $\left.\nu_{b}(\alpha)\right\}$.

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track of both the number of a 's and the number of b 's read. With a single stack this is impossible. Alternatively, the machine will have to prepare nondeterministically for every $k \in \mathbb{Z}_{+}$to handle the case $\nu_{a}(\alpha)=k \nu_{b}(\alpha)$. Since there are infinitely many possibilities for k, a finite machine would not be adequate.
We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma - the stronger version makes reasoning easier here.

Assume that L is context-free and let n be the pumping lemma constant for L. Choose an integer $m>n$ (For example, $m:=n+1$ will do.) and consider any string $\alpha \in L$ having exactly m occurrences of b and exactly $m!$ (m-factorial) occurrences of a. The pumping lemma provides the decomposition $\alpha=\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5}$ with the relevant properties. Suppose that $\beta_{2} \beta_{4}$ consists of exactly r occurrences of b and exactly s occurrences of a. Then $1 \leqslant r+s \leqslant n$, since $1 \leqslant\left|\beta_{2} \beta_{4}\right| \leqslant\left|\beta_{2} \beta_{3} \beta_{4}\right| \leqslant n$.

Case 1: $s=0$.
In this case $\beta_{2} \beta_{4}$ consists only of b 's. Then $\left|\beta_{2} \beta_{4}\right|=r \geqslant 1$ and so we can choose a k large enough, so that $m+k r>m$!. Since $\beta_{1} \beta_{2}^{k+1} \beta_{3} \beta_{4}^{k+1} \beta_{5} \in L$, we have $(m+k r) \mid m$!, which is absurd.

Case 2: $s \geqslant 1$.
$\beta_{1} \beta_{3} \beta_{5} \in L$ and so $(m-r) \mid(m!-s)$. Since $0 \leqslant r \leqslant n<m$, we have $m-r \in\{1,2, \ldots, m\}$, i.e., $(m-r) \mid m$!. Therefore, $(m-r) \mid s$, i.e., $m-r \leqslant s$, i.e., $m \leqslant r+s \leqslant n<m$, again a contradiction.

Thus L is not context-free.
(Remark: For integers u, v the phrase " v is an integral multiple of u " is abbreviated as $u \mid v$ to be read as " u divides v ". Specifically, we say that $u \mid v$, if (and only if) there exists an integer w with $v=u w$.)

