MTH 222 Theory of Computation
Second Mid Semester Examination (Exercise set A)

Total marks: 25 October 2002 Time: 1 4+ € hours
Name: Roll Number:
. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.) 2 x5)
(Remark: No credit will be given to a correct guess followed by an improper explanation.)
(a) If the fanout ¢(G) of a CFG G is < 2, then £(G) may be infinite. True
Consider the CFG

G := ({a,b},{S,T},S,{S = Tb,T — €| Ta}).
Then
L(G)={d*b|keZ,}

is infinite.

(b) aabbaa € L(G), where G := ({a,b},{S},S5,{S = b| Sa|aS|SS}). True

Consider the leftmost derivation:

S = aS = aaS = aaSa = aaSaa = aaSSaa = aabSaa = aabbaa.

(¢) The CFG G of Part (b) is ambiguous. True

Consider the two different parse trees for the following two leftmost derivations of bab:

S = S55=0b5 = baS = bab
S = 55= 5a5 = baS = bab

(d) £(G) is the language of the regular expression a*bb*a*, where G is the CFG of Part (b). False
bab € L(G) (See Part (c)), whereas bab & L(a*bb*a*).

(e) The union of infinitely many context-free languages may be non-context-free. True

Let L := {1, a0, a3,...} = U,cn{on} be an (infinite) non-context-free language. Each { vy, } is finite and
hence regular and hence context-free.



2. Let ¥ := {a,b,c} and L := {acafca | a € {a,b}*}.

(a) Show that L is not context-free. 4)

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version
of the pumping lemma. Consider o := a"ca™ca™ € L. The pumping lemma gives us the decomposition

a = B1P2838405 with |,82,B4| > 1 and |,82,33,84| < n. Since o/ = 818385 € L, 8234 must not contain the
symbol ¢, i.e., 8234 consists only of a’s. The condition |8233/34| < n implies that 8234 can not stretch over
all the three runs of a’s in .. Therefore, o lacks the defining property of the strings of L. This contradiction
shows that L is not context-free. °

(b) Write L as the intersection of two context-free languages (over X). @)

Solution Define

Li = {acoRef | af € {a,b)},
Ly = {Bcafca]|a,p € {a,b}*}.

Clearly L = Ly N Ly. I will now show that L is context-free. Consider the CFG G := (3, {S,U,V}, S, R)
for L1, where the rules in R are:

S — UV
U — c¢|laUa|bUb
V. = ¢|Val|Vb

An analogous CFG defines L. .



3. Let L:= {a®**'0%%=2 | k > 1} C {a,b}*.
(a) Write a CFG G with L(G) = L. 3
Solution  The trick is to substitute £ = [ + 1 and write L as
L = {a*3p543 | [ > o).
Now it is easy to write a CFG G := ({a, b}, {S,T}, S, R) for L with the rules:

S — aaaaTbbdb
T — €| aaaTbbbbb

Clearly £(T) = {a®b° | I > 0}. The rest is obvious. o

(b) Design a PDA M with L(M) = L. 3)

Solution A PDA can be designed for L naively, i.e., starting from the scratch. Now that we have a CFG for
L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:

€, SlaaaaTbbb
e £ls g, Tle

Q_>©:> &, TlaaaTbbbbb

S a, ale
/ b, ble

(c) Is the PDA you designed in Part (b) a deterministic PDA? 1)

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to
replace it by € or by aaaT'bbbbb without consuming any symbol from the input. .



4. [Bonus problem] Let Y := {a,b}. Forz € ¥ and o € X* define v, («) := the number of occurrences of
x in a.. Design a PDA M with L(M) = {a € ¥* | vp(«) is an (integral) multiple of v,(a)}. (10)

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not
context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track
of both the number of a’s and the number of b’s read. With a single stack this is impossible. Alternatively,
the machine will have to prepare nondeterministically for every k € Z to handle the case vj,(«) = kvg(«).
Since there are infinitely many possibilities for %, a finite machine would not be adequate.

We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma — the stronger
version makes reasoning easier here.

Assume that L is context-free and let n be the pumping lemma constant for L. Choose an integer m > n (For
example, m := n+1 will do.) and consider any string o € L having exactly m occurrences of a and exactly
m/! (m-factorial) occurrences of b. The pumping lemma provides the decomposition o = (1 52338405 with
the relevant properties. Suppose that 5234 consists of exactly r occurrences of a and exactly s occurrences
of b. Then 1 < r + s < n, since 1 < |B2f4] < |P2B3081] < n.

Case 1: s = 0.

In this case 234 consists only of a’s. Then |B234] = r > 1 and so we can choose a k large enough, so that
m + kr > m). Since 8,857 8,851 85 € L, we have (m + kr) | m!, which is absurd.

Case2: s > 1.
B1BsPs € Landso (m —r) | (m! —s). Since 0 < 7 < n < m,wehave m —r € {1,2,...,m}, ie,

(m —r) | m!. Therefore, (m —r) | s,i.e., m —r < s,i.e., m <1+ s < n < m,again a contradiction.

Thus L is not context-free. °

(Remark: For integers u, v the phrase “v is an integral multiple of «” is abbreviated as « | v to be read as
“u divides v”. Specifically, we say that u | v, if (and only if) there exists an integer w with v = uw.)



MTH 222 Theory of Computation
Second Mid Semester Examination (Exercise set B)

Total marks: 25 October 2002 Time: 1 + € hours
Name: Roll Number:
. Which of the following statements is/are true? (Give an explanation for each in at most two sentences.) 2 x5)

(Remark: No credit will be given to a correct guess followed by an improper explanation.)

(@) aabbaa € L(G), where G := ({a,b},{S},5,{S — €| Sb|aSa}). True

Consider the leftmost derivation:

S = aSa = aaSaa = aaSbaa = aaSbbaa = aabbaa.

(b) L£(G) is the language of the regular expression a*b*a*, where G is the CFG of Part (a). False
Since S = Sb = aSab = aSbab = abab, we have abab € L(G). But abab ¢ L(a*b*a*).

(¢) The grammar of Part (a) is ambiguous. False

In the first step of a leftmost derivation of any «« € £(G) a unique rule is applicable. That is, the rules
S —¢€ 5 — aSaand S — Sb are applicable respectively to the pairwise disjoint cases: « = €, & ends with
a and « ends with b.

(d) If £L(G) is finite for a CFG G, then the fanout ¢(G) of G is < 2. False
Consider the CFG

G = ({a,b},{S}, S, {S — abal).

Then L(G) = {aba} is finite, whereas ¢(G) = 3.

(e) The intersection of two context-free languages is never context-free. False

The intersection of two regular languages is regular. Regular languages are context-free.
Alternatively, take L; = Lo to be a CFL. Then L; N Lo is evidently context-free.



2. Let ¥ := {a,b,c} and L := {aac®aca | a € {b,c}*}.

(a) Show that L is not context-free. 4)

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version
of the pumping lemma. Consider o := b"ab"ab™ € L. The pumping lemma gives us the decomposition

a = B1P2838405 with |,82,B4| > 1 and |,82,33,84| < n. Since o/ = 818385 € L, 8234 must not contain the
symbol a, i.e., f234 consists only of b’s. The condition |82 3334 < n implies that 8234 can not stretch over
all the three runs of b’s in «.. Therefore, o' lacks the defining property of the strings of L. This contradiction
shows that L is not context-free. °

(b) Write L as the intersection of two context-free languages (over X). @)

Solution Define

Li = {aao®af | a,f € {be}'),
Ly = {Bac®aa|a,p € {bc}*}.

Clearly L = Ly N Ly. I will now show that L is context-free. Consider the CFG G := (3, {S,U,V}, S, R)
for L1, where the rules in R are:

S — UV
U — a|bUb|cUc
V. = al|Vb|Ve

An analogous CFG defines L. .



3. Let L:= {a®**'?=2 | k > 1} C {a,b}*.
(a) Write a CFG G with L(G) = L. 3
Solution  The trick is to substitute £ = [ + 1 and write L as
L = {a®5p3+1 |1 > o).
Now it is easy to write a CFG G := ({a, b}, {S,T}, S, R) for L with the rules:

S — aaaaaaTb
T — €| aaaaaTbbb

Clearly £(T) = {a®b® | I > 0}. The rest is obvious. o

(b) Design a PDA M with L(M) = L. 3)

Solution A PDA can be designed for L naively, i.e., starting from the scratch. Now that we have a CFG for
L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:

€, SlaaaaaaTb

e £ls g, Tle

Q_>©:> €, TlaaaaaTbbb

S a, ale
/ b, ble

(c) Is the PDA you designed in Part (b) a deterministic PDA? 1)

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to
replace it by € or by aaaaaT'bbb without consuming any symbol from the input. .



4. [Bonus problem] Let Y := {a,b}. Forz € ¥ and o € X* define v, («) := the number of occurrences of
x in a.. Design a PDA M with L(M) = {a € £* | v4(a) is an (integral) multiple of v,(ca)}. (10)

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not
context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track
of both the number of a’s and the number of b’s read. With a single stack this is impossible. Alternatively,
the machine will have to prepare nondeterministically for every k € Z to handle the case v,(«) = kvy(a).
Since there are infinitely many possibilities for %, a finite machine would not be adequate.

We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma — the stronger
version makes reasoning easier here.

Assume that L is context-free and let n be the pumping lemma constant for L. Choose an integer m > n (For
example, m := n+ 1 will do.) and consider any string o € L having exactly m occurrences of b and exactly
m/! (m-factorial) occurrences of a. The pumping lemma provides the decomposition o = (1 82338405 with
the relevant properties. Suppose that 8534 consists of exactly r occurrences of b and exactly s occurrences
of a. Then 1 < r+ s < n,since 1 < |B2f4] < |B208384] < n.

Case 1: s = 0.

In this case (234 consists only of b’s. Then |32/34] = r > 1 and so we can choose a k large enough, so that
m + kr > m). Since 8,857 8,851 8 € L, we have (m + kr) | m!, which is absurd.

Case2: s > 1.
B1BsPs € Landso (m —r) | (m! —s). Since 0 < 7 < n < m,wehave m —r € {1,2,...,m}, ie,

(m —r) | m!. Therefore, (m —r) | s,i.e., m —r < s,i.e., m <1+ s < n < m,again a contradiction.

Thus L is not context-free. °

(Remark: For integers u, v the phrase “v is an integral multiple of «” is abbreviated as « | v to be read as
“u divides v”. Specifically, we say that u | v, if (and only if) there exists an integer w with v = uw.)



