#### MTH 222 Theory of Computation

## Second Mid Semester Examination (Exercise set A)

| Total marks: 25                                                                                                                                                                                                       | October 2002                                                | Time: $1 + \epsilon$ hours | 5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|---|
| Name:                                                                                                                                                                                                                 | ne: Roll Number:                                            |                            |   |
| <ol> <li>Which of the following statements is/are true? (Give an explanation for each in at most two sentences.) (Remark: No credit will be given to a correct guess followed by an improper explanation.)</li> </ol> |                                                             |                            |   |
| (a) If the fanout $\phi(G)$ of a CFC                                                                                                                                                                                  | $G G $ is $\leq 2$ , then $\mathcal{L}(G)$ may be infinite. | True                       |   |
| Consider the CFG                                                                                                                                                                                                      |                                                             |                            | - |
| $G:=(\{a,b\},\{S,T\},S,\{$                                                                                                                                                                                            | $[S \to Tb, T \to \epsilon \mid Ta\}).$                     |                            |   |
| Then                                                                                                                                                                                                                  |                                                             |                            |   |
| $\mathcal{L}(G) = \{ a^k b \mid k \in \mathbb{Z}_+ \}$                                                                                                                                                                |                                                             |                            |   |
| is infinite.                                                                                                                                                                                                          |                                                             |                            |   |
|                                                                                                                                                                                                                       |                                                             |                            |   |

(**b**)  $aabbaa \in \mathcal{L}(G)$ , where  $G := (\{a, b\}, \{S\}, S, \{S \to b \mid Sa \mid aS \mid SS\})$ .

Consider the leftmost derivation:

 $S \Rightarrow aS \Rightarrow aaS \Rightarrow aaSa \Rightarrow aaSaa \Rightarrow aaSSaa \Rightarrow aabSaa \Rightarrow aabbaa.$ 

#### (c) The CFG G of Part (b) is ambiguous.

Consider the two different parse trees for the following two leftmost derivations of *bab*:

$$S \Rightarrow SS \Rightarrow bS \Rightarrow baS \Rightarrow bab$$
$$S \Rightarrow SS \Rightarrow SaS \Rightarrow baS \Rightarrow bab$$

(d)  $\mathcal{L}(G)$  is the language of the regular expression  $a^*bb^*a^*$ , where G is the CFG of Part (b).  $bab \in \mathcal{L}(G)$  (See Part (c)), whereas  $bab \notin \mathcal{L}(a^*bb^*a^*)$ .

(e) The union of infinitely many context-free languages may be non-context-free.

Let  $L := \{\alpha_1, \alpha_2, \alpha_3, \ldots\} = \bigcup_{n \in \mathbb{N}} \{\alpha_n\}$  be an (infinite) non-context-free language. Each  $\{\alpha_n\}$  is finite and hence regular and hence context-free.

True

True

#### False

True

**2.** Let  $\Sigma := \{a, b, c\}$  and  $L := \{\alpha c \alpha^R c \alpha \mid \alpha \in \{a, b\}^*\}.$ 

(a) Show that L is not context-free.

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version of the pumping lemma. Consider  $\alpha := a^n c a^n c a^n \in L$ . The pumping lemma gives us the decomposition  $\alpha = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$  with  $|\beta_2 \beta_4| \ge 1$  and  $|\beta_2 \beta_3 \beta_4| \le n$ . Since  $\alpha' := \beta_1 \beta_3 \beta_5 \in L$ ,  $\beta_2 \beta_4$  must not contain the symbol c, i.e.,  $\beta_2 \beta_4$  consists only of a's. The condition  $|\beta_2 \beta_3 \beta_4| \le n$  implies that  $\beta_2 \beta_4$  can not stretch over all the three runs of a's in  $\alpha$ . Therefore,  $\alpha'$  lacks the defining property of the strings of L. This contradiction shows that L is not context-free.

(b) Write L as the intersection of two context-free languages (over  $\Sigma$ ).

Solution Define

$$\begin{split} L_1 &:= & \{\alpha c \alpha^R c \beta \mid \alpha, \beta \in \{a, b\}^*\}, \\ L_2 &:= & \{\beta c \alpha^R c \alpha \mid \alpha, \beta \in \{a, b\}^*\}. \end{split}$$

Clearly  $L = L_1 \cap L_2$ . I will now show that  $L_1$  is context-free. Consider the CFG  $G := (\Sigma, \{S, U, V\}, S, R)$  for  $L_1$ , where the rules in R are:

$$\begin{array}{rcl} S & \rightarrow & UV \\ U & \rightarrow & c \mid a \, Ua \mid b \, Ub \\ V & \rightarrow & c \mid Va \mid Vb \end{array}$$

An analogous CFG defines  $L_2$ .

(4)

- **3.** Let  $L := \{a^{3k+1}b^{5k-2} \mid k \ge 1\} \subseteq \{a, b\}^*$ .
  - (a) Write a CFG G with  $\mathcal{L}(G) = L$ .

Solution The trick is to substitute k = l + 1 and write L as

 $L = \{a^{4+3l}b^{5l+3} \mid l \ge 0\}.$ 

Now it is easy to write a CFG  $G := (\{a, b\}, \{S, T\}, S, R)$  for L with the rules:

 $egin{array}{rcl} S & 
ightarrow & aaaaTbbb \ T & 
ightarrow & \epsilon \mid aaaTbbbbb \end{array}$ 

Clearly  $\mathcal{L}(T) = \{a^{3l}b^{5l} \mid l \ge 0\}$ . The rest is obvious.

(b) Design a PDA M with  $\mathcal{L}(M) = L$ .

Solution A PDA can be designed for L naïvely, i.e., starting from the scratch. Now that we have a CFG for L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:



(c) Is the PDA you designed in Part (b) a deterministic PDA?

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to replace it by  $\epsilon$  or by aaaTbbbbb without consuming any symbol from the input.

(1)

(3)

4. [Bonus problem] Let  $\Sigma := \{a, b\}$ . For  $x \in \Sigma$  and  $\alpha \in \Sigma^*$  define  $\nu_x(\alpha) :=$  the number of occurrences of x in  $\alpha$ . Design a PDA M with  $\mathcal{L}(M) = \{\alpha \in \Sigma^* \mid \nu_b(\alpha) \text{ is an (integral) multiple of } \nu_a(\alpha)\}.$  (10)

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track of *both* the number of a's and the number of b's read. With a single stack this is impossible. Alternatively, the machine will have to prepare nondeterministically for every  $k \in \mathbb{Z}_+$  to handle the case  $\nu_b(\alpha) = k\nu_a(\alpha)$ . Since there are infinitely many possibilities for k, a finite machine would not be adequate.

We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma – the stronger version makes reasoning easier here.

Assume that *L* is context-free and let *n* be the pumping lemma constant for *L*. Choose an integer m > n (For example, m := n + 1 will do.) and consider any string  $\alpha \in L$  having exactly *m* occurrences of *a* and exactly *m*! (*m*-factorial) occurrences of *b*. The pumping lemma provides the decomposition  $\alpha = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$  with the relevant properties. Suppose that  $\beta_2 \beta_4$  consists of exactly *r* occurrences of *a* and exactly *s* occurrences of *b*. Then  $1 \leq r + s \leq n$ , since  $1 \leq |\beta_2 \beta_4| \leq |\beta_2 \beta_3 \beta_4| \leq n$ .

#### **Case 1:** s = 0.

In this case  $\beta_2\beta_4$  consists only of *a*'s. Then  $|\beta_2\beta_4| = r \ge 1$  and so we can choose a *k* large enough, so that m + kr > m!. Since  $\beta_1\beta_2^{k+1}\beta_3\beta_4^{k+1}\beta_5 \in L$ , we have  $(m + kr) \mid m!$ , which is absurd.

## Case 2: $s \ge 1$ .

 $\beta_1\beta_3\beta_5 \in L$  and so  $(m-r) \mid (m!-s)$ . Since  $0 \leq r \leq n < m$ , we have  $m-r \in \{1, 2, \ldots, m\}$ , i.e.,  $(m-r) \mid m!$ . Therefore,  $(m-r) \mid s$ , i.e.,  $m-r \leq s$ , i.e.,  $m \leq r+s \leq n < m$ , again a contradiction.

Thus L is not context-free.

(**Remark:** For integers u, v the phrase "v is an integral multiple of u" is abbreviated as  $u \mid v$  to be read as "u divides v". Specifically, we say that  $u \mid v$ , if (and only if) there exists an integer w with v = uw.)

.

## MTH 222 Theory of Computation

# Second Mid Semester Examination (Exercise set B)

|                                                                                                                                                                                                                               | Total marks: 25                           | October 2002                                                    | Time: $1 + \epsilon$ hours |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|----------------------------|--|
|                                                                                                                                                                                                                               | Name:                                     | Roll                                                            | Number:                    |  |
| <ol> <li>Which of the following statements is/are true? (Give an explanation for each in at most two sentences.) (2 &gt; (Remark: No credit will be given to a correct guess followed by an improper explanation.)</li> </ol> |                                           |                                                                 |                            |  |
|                                                                                                                                                                                                                               | (a) $aabbaa \in \mathcal{L}(G)$ , where G | $:= (\{a, b\}, \{S\}, S, \{S \to \epsilon \mid Sb \mid aSa\}).$ | True                       |  |

Consider the leftmost derivation:

 $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaSbaa \Rightarrow aaSbbaa \Rightarrow aabbaa.$ 

(b)  $\mathcal{L}(G)$  is the language of the regular expression  $a^*b^*a^*$ , where G is the CFG of Part (a). Since  $S \Rightarrow Sb \Rightarrow aSab \Rightarrow aSbab \Rightarrow abab$ , we have  $abab \in \mathcal{L}(G)$ . But  $abab \notin \mathcal{L}(a^*b^*a^*)$ .

(c) The grammar of Part (a) is ambiguous.

In the first step of a leftmost derivation of any  $\alpha \in \mathcal{L}(G)$  a unique rule is applicable. That is, the rules  $S \to \epsilon, S \to aSa$  and  $S \to Sb$  are applicable respectively to the pairwise disjoint cases:  $\alpha = \epsilon, \alpha$  ends with a and  $\alpha$  ends with b.

(d) If  $\mathcal{L}(G)$  is finite for a CFG *G*, then the fanout  $\phi(G)$  of *G* is  $\leq 2$ . Consider the CFG

 $G := (\{a, b\}, \{S\}, S, \{S \to aba\}).$ 

Then  $\mathcal{L}(G) = \{aba\}$  is finite, whereas  $\phi(G) = 3$ .

(e) The intersection of two context-free languages is never context-free.

The intersection of two regular languages is regular. Regular languages are context-free. Alternatively, take  $L_1 = L_2$  to be a CFL. Then  $L_1 \cap L_2$  is evidently context-free. False

False

False

False

**2.** Let  $\Sigma := \{a, b, c\}$  and  $L := \{\alpha a \alpha^R a \alpha \mid \alpha \in \{b, c\}^*\}.$ 

(a) Show that L is not context-free.

Solution Assume that L is context-free and let n be the constant for L prescribed by the stronger version of the pumping lemma. Consider  $\alpha := b^n a b^n a b^n \in L$ . The pumping lemma gives us the decomposition  $\alpha = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$  with  $|\beta_2 \beta_4| \ge 1$  and  $|\beta_2 \beta_3 \beta_4| \le n$ . Since  $\alpha' := \beta_1 \beta_3 \beta_5 \in L$ ,  $\beta_2 \beta_4$  must not contain the symbol a, i.e.,  $\beta_2 \beta_4$  consists only of b's. The condition  $|\beta_2 \beta_3 \beta_4| \le n$  implies that  $\beta_2 \beta_4$  can not stretch over all the three runs of b's in  $\alpha$ . Therefore,  $\alpha'$  lacks the defining property of the strings of L. This contradiction shows that L is not context-free.

(b) Write L as the intersection of two context-free languages (over  $\Sigma$ ).

Solution Define

$$L_1 := \{ \alpha a \alpha^R a \beta \mid \alpha, \beta \in \{b, c\}^* \}, L_2 := \{ \beta a \alpha^R a \alpha \mid \alpha, \beta \in \{b, c\}^* \}.$$

Clearly  $L = L_1 \cap L_2$ . I will now show that  $L_1$  is context-free. Consider the CFG  $G := (\Sigma, \{S, U, V\}, S, R)$  for  $L_1$ , where the rules in R are:

$$\begin{array}{rcl} S & \rightarrow & UV \\ U & \rightarrow & a \mid b \, Ub \mid c \, Uc \\ V & \rightarrow & a \mid Vb \mid Vc \end{array}$$

An analogous CFG defines  $L_2$ .

(4)

- **3.** Let  $L := \{a^{5k+1}b^{3k-2} \mid k \ge 1\} \subseteq \{a, b\}^*$ .
  - (a) Write a CFG G with  $\mathcal{L}(G) = L$ .

Solution The trick is to substitute k = l + 1 and write L as

 $L = \{a^{6+5l}b^{3l+1} \mid l \ge 0\}.$ 

Now it is easy to write a CFG  $G := (\{a, b\}, \{S, T\}, S, R)$  for L with the rules:

 $\begin{array}{cccc} S & 
ightarrow & aaaaaaTb \ T & 
ightarrow & \epsilon \mid aaaaaTbbb \end{array}$ 

Clearly  $\mathcal{L}(T) = \{a^{5l}b^{3l} \mid l \ge 0\}$ . The rest is obvious.

(b) Design a PDA M with  $\mathcal{L}(M) = L$ .

Solution A PDA can be designed for L naïvely, i.e., starting from the scratch. Now that we have a CFG for L, it is easier to use the CFG-to-PDA conversion procedure to construct the following PDA with two states:



(c) Is the PDA you designed in Part (b) a deterministic PDA?

Solution Nope! When the PDA is in the state f and T is at the top of the stack, the PDA may decide to replace it by  $\epsilon$  or by aaaaaTbbb without consuming any symbol from the input.

(1)

(3)

4. [Bonus problem] Let  $\Sigma := \{a, b\}$ . For  $x \in \Sigma$  and  $\alpha \in \Sigma^*$  define  $\nu_x(\alpha) :=$  the number of occurrences of x in  $\alpha$ . Design a PDA M with  $\mathcal{L}(M) = \{\alpha \in \Sigma^* \mid \nu_a(\alpha) \text{ is an (integral) multiple of } \nu_b(\alpha)\}.$  (10)

Solution Oops! A PDA can not be designed to accept the language in question, call it L, since L is not context-free at all. The intuitive reason why L is not context-free is that the machine will have to keep track of *both* the number of a's and the number of b's read. With a single stack this is impossible. Alternatively, the machine will have to prepare nondeterministically for every  $k \in \mathbb{Z}_+$  to handle the case  $\nu_a(\alpha) = k\nu_b(\alpha)$ . Since there are infinitely many possibilities for k, a finite machine would not be adequate.

We need formal arguments to settle this issue. As usual we will appeal to the pumping lemma – the stronger version makes reasoning easier here.

Assume that *L* is context-free and let *n* be the pumping lemma constant for *L*. Choose an integer m > n (For example, m := n + 1 will do.) and consider any string  $\alpha \in L$  having exactly *m* occurrences of *b* and exactly m! (*m*-factorial) occurrences of *a*. The pumping lemma provides the decomposition  $\alpha = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$  with the relevant properties. Suppose that  $\beta_2 \beta_4$  consists of exactly *r* occurrences of *b* and exactly *s* occurrences of *a*. Then  $1 \leq r + s \leq n$ , since  $1 \leq |\beta_2 \beta_4| \leq |\beta_2 \beta_3 \beta_4| \leq n$ .

#### **Case 1:** s = 0.

In this case  $\beta_2\beta_4$  consists only of *b*'s. Then  $|\beta_2\beta_4| = r \ge 1$  and so we can choose a *k* large enough, so that m + kr > m!. Since  $\beta_1\beta_2^{k+1}\beta_3\beta_4^{k+1}\beta_5 \in L$ , we have  $(m + kr) \mid m!$ , which is absurd.

## Case 2: $s \ge 1$ .

 $\beta_1\beta_3\beta_5 \in L$  and so  $(m-r) \mid (m!-s)$ . Since  $0 \leq r \leq n < m$ , we have  $m-r \in \{1, 2, \ldots, m\}$ , i.e.,  $(m-r) \mid m!$ . Therefore,  $(m-r) \mid s$ , i.e.,  $m-r \leq s$ , i.e.,  $m \leq r+s \leq n < m$ , again a contradiction.

Thus L is not context-free.

(**Remark:** For integers u, v the phrase "v is an integral multiple of u" is abbreviated as  $u \mid v$  to be read as "u divides v". Specifically, we say that  $u \mid v$ , if (and only if) there exists an integer w with v = uw.)

.