MTH 222 Theory of Computation

Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.)
(a) $\mathcal{L}\left(\left((a b)^{*}(b a)^{*}\right) \cap\left((b a)^{*}(a b)^{*}\right)\right)=\{\epsilon\}$. \square
(b) $a b c d \in \mathcal{L}\left(\left(d^{*} c^{*} b^{*} a^{*}\right)^{*}\right)$. \square
(c) If L_{1} and L_{2} are regular languages (over some alphabet Σ), then so is their symmetric difference $\left(L_{1} \backslash L_{2}\right) \cup\left(L_{2} \backslash L_{1}\right)$.
(d) The language of a DFA (over Σ) in which the only final state is the start state is $\{\epsilon\}$.
(e) The language $\left\{\alpha \in\{a, b\}^{*} \mid \alpha\right.$ contains an odd number of b 's $\}$ is regular. \square
2. Let $\Sigma:=\{a, b, \ldots, z\}$ be the Roman alphabet and L the 'English' language, i.e., the (finite) language of all valid English words over Σ. Does there exist a DFA D with 20 states such that $\mathcal{L}(D)=L$? (Remark: If you are stupefied by the incomprehensibleness of this exercise, ask for DDT to kill rodents.)
3. Let $\Sigma:=\{a, b\}$ and $L:=\left\{\alpha \in \Sigma^{*} \mid \alpha\right.$ starts with $a a$ but does not end with $\left.a a\right\}$.
(a) Write a regular expression (over Σ) to represent L.
(b) Design a DFA whose language is L.
(c) Design an NFA (or ϵ-NFA) whose language is L.
4. Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \biguplus\left\{\emptyset, \epsilon,(),, \cup,^{*},{ }^{+}, ?,!, \cdot\right\}$ defined inductively as follows:
(1) ϕ, ϵ and a are ERE's (for each $a \in \Sigma$).
(2) If α is an ERE, then so is (α).
(3) If α and β are ERE's, then so is $\alpha \beta$.
(4) If α and β are ERE's, then so is $\alpha \cup \beta$.
(5) If α is an ERE, then so is α^{*}.
(6) If α is an ERE, then so is α^{+}.
(7) If α is an ERE, then so is α ?.
(8) If α is an ERE, then so is ! α.
(9) - is an ERE.
(10) Nothing is an ERE unless it follows from (1)-(9) above.

Rules (1)-(5) bear the same meanings as for RE's. The informal meanings for (6)-(9) are as follows:
α^{+}means one or more occurrence(s) of α.
α ? means 0 or 1 occurrence of α.
! α means $\beta \in \Sigma^{*}$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.

- means the single occurrence of any element of Σ.
(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions:
$\mathcal{L}(\phi):=\phi . \mathcal{L}(\epsilon):=\{\epsilon\} . \mathcal{L}(a):=\{a\}$.
$\mathcal{L}((\alpha)):=\mathcal{L}(\alpha)$.
$\mathcal{L}(\alpha \beta):=\mathcal{L}(\alpha) \mathcal{L}(\beta)$.
$\mathcal{L}(\alpha \cup \beta):=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$.
$\mathcal{L}\left(\alpha^{*}\right):=(\mathcal{L}(\alpha))^{*}$.
$\mathcal{L}\left(\alpha^{+}\right):=$
$\mathcal{L}(\alpha ?):=$
$\mathcal{L}(!\alpha):=$

$$
\mathcal{L}(\cdot):=
$$

(b) Let $\Sigma:=\{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the ERE $a a\left(\cdot^{*}\right)(!a)(a ?)$.
5. [Bonus problem] Give an informal description of the language accepted by the following NFA.

MTH 222 Theory of Computation

Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.)
(a) The language of a DFA (over Σ) in which every state except the start state is final is Σ^{+}. \square
(b) $\mathcal{L}\left(\left(a b^{*} b a^{*}\right) \cap\left(b a^{*} a b^{*}\right)\right)=\{\epsilon\}$. \square
(c) $a b c d \in \mathcal{L}\left(\left(b^{*} a^{*}\right)^{*}\left(d^{*} c^{*}\right)^{*}\right)$. \square
(d) The language $\left\{\alpha \in\{a, b\}^{*} \mid \alpha\right.$ contains an even number of a 's $\}$ is regular.

(e) If L_{1} and L_{2} are regular languages (over some alphabet Σ), then so is their exclusive or $\left(L_{1} \cup L_{2}\right) \backslash\left(L_{1} \cap L_{2}\right)$. \square
2. Let L be a finite language over the binary alphabet $\{0,1\}$. Assume that $|L|=m$. Let D be a DFA with n states such that $\mathcal{L}(D)=L$. Show that $n \geqslant \log _{2}(m+1)$.
3. Let $\Sigma:=\{a, b\}$ and $L:=\left\{\alpha \in \Sigma^{*} \mid \alpha\right.$ ends with $b b$ but does not start with $\left.b b\right\}$.
(a) Write a regular expression (over Σ) to represent L.
(b) Design a DFA whose language is L.
(c) Design an NFA (or ϵ-NFA) whose language is L.
4. Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \biguplus\left\{\emptyset, \epsilon,(),, \cup,^{*},{ }^{+}, ?,!, \cdot\right\}$ defined inductively as follows:
(1) ϕ, ϵ and a are ERE's (for each $a \in \Sigma$).
(2) If α is an ERE, then so is (α).
(3) If α and β are ERE's, then so is $\alpha \beta$.
(4) If α and β are ERE's, then so is $\alpha \cup \beta$.
(5) If α is an ERE, then so is α^{*}.
(6) \cdot is an ERE.
(7) If α is an ERE, then so is α ?.
(8) If α is an ERE, then so is α^{+}.
(9) If α is an ERE, then so is ! α.
(10) Nothing is an ERE unless it follows from (1)-(9) above.

Rules (1)-(5) bear the same meanings as for RE's. The informal meanings for (6)-(9) are as follows:

- means the single occurrence of any element of Σ.
α ? means 0 or 1 occurrence of α.
α^{+}means one or more occurrence(s) of α.
! α means $\beta \in \Sigma^{*}$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.
(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions:
$\mathcal{L}(\phi):=\phi . \mathcal{L}(\epsilon):=\{\epsilon\} . \mathcal{L}(a):=\{a\}$.
$\mathcal{L}((\alpha)):=\mathcal{L}(\alpha)$.
$\mathcal{L}(\alpha \beta):=\mathcal{L}(\alpha) \mathcal{L}(\beta)$.
$\mathcal{L}(\alpha \cup \beta):=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$.
$\mathcal{L}\left(\alpha^{*}\right):=(\mathcal{L}(\alpha))^{*}$.
$\mathcal{L}(\cdot):=$
$\mathcal{L}(\alpha ?):=$
$\mathcal{L}\left(\alpha^{+}\right):=$

$$
\mathcal{L}(!\alpha):=
$$

(b) Let $\Sigma:=\{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the $\operatorname{ERE}(b ?)(!b)\left(\cdot^{*}\right) b b$.
5. [Bonus problem] Give an informal description of the language accepted by the following DFA.

