## MTH 222 Theory of Computation

First Mid Semester Examination (Exercise set A)

| September 2002                                                       | Time: $1 + \epsilon$ hours                                                                                                                                                                                            |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roll Number:                                                         |                                                                                                                                                                                                                       |
| nts are true? (Write True/False in the box                           | provided.) (5)                                                                                                                                                                                                        |
| $(b)^*)) = \{\epsilon\}.$                                            |                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                                                                                                                       |
| guages (over some alphabet $\Sigma$ ), then so is $\setminus L_1$ ). | their symmetric                                                                                                                                                                                                       |
| er $\Sigma$ ) in which the only final state is the st                | art state is $\{\epsilon\}$ .                                                                                                                                                                                         |
| $  \alpha$ contains an odd number of b's} is regu                    | ular.                                                                                                                                                                                                                 |
|                                                                      | ents are true? (Write True/False in the box<br>$b(b)^*)) = \{\epsilon\}.$<br>Inguages (over some alphabet $\Sigma$ ), then so is<br>$\langle L_1 \rangle$ .<br>For $\Sigma$ ) in which the only final state is the st |

2. Let Σ := {a, b, ..., z} be the Roman alphabet and L the 'English' language, i.e., the (finite) language of all valid English words over Σ. Does there exist a DFA D with 20 states such that L(D) = L? (Remark: If you are stupefied by the incomprehensibleness of this exercise, ask for DDT to kill rodents.) (5)

- **3.** Let  $\Sigma := \{a, b\}$  and  $L := \{\alpha \in \Sigma^* \mid \alpha \text{ starts with } aa$  but does not end with  $aa\}$ .
  - (a) Write a regular expression (over  $\Sigma$ ) to represent L.
  - (b) Design a DFA whose language is L.

(c) Design an NFA (or  $\epsilon$ -NFA) whose language is L.

(3)

(4)

- 4. Let  $\Sigma$  be a given alphabet. An extended regular expression (ERE) over  $\Sigma$  is a string  $\alpha$  over  $\Sigma \biguplus \{\emptyset, \epsilon, (, ), \cup, *, +, ?, !, \cdot\}$  defined inductively as follows:
  - (1)  $\phi$ ,  $\epsilon$  and a are ERE's (for each  $a \in \Sigma$ ).
  - (2) If  $\alpha$  is an ERE, then so is  $(\alpha)$ .
  - (3) If  $\alpha$  and  $\beta$  are ERE's, then so is  $\alpha\beta$ .
  - (4) If  $\alpha$  and  $\beta$  are ERE's, then so is  $\alpha \cup \beta$ .
  - (5) If  $\alpha$  is an ERE, then so is  $\alpha^*$ .
  - (6) If  $\alpha$  is an ERE, then so is  $\alpha^+$ .
  - (7) If  $\alpha$  is an ERE, then so is  $\alpha$ ?.
  - (8) If  $\alpha$  is an ERE, then so is  $!\alpha$ .
  - (9)  $\cdot$  is an ERE.

(10) Nothing is an ERE unless it follows from (1)-(9) above.

Rules (1)–(5) bear the same meanings as for RE's. The informal meanings for (6)–(9) are as follows:

 $\alpha^+$  means one or more occurrence(s) of  $\alpha$ .

 $\alpha$ ? means 0 or 1 occurrence of  $\alpha$ .

 $!\alpha$  means  $\beta \in \Sigma^*$  belongs to the language of  $!\alpha$ , if and only if  $\beta \notin \mathcal{L}(\alpha)$ .

 $\cdot$  means the single occurrence of any element of  $\Sigma$ .

(a) Formally extend the definition of  $\mathcal{L}$  for ERE's, i.e., for ERE's  $\alpha$  and  $\beta$  and  $a \in \Sigma$  complete the following definitions: (4)

(b) Let  $\Sigma := \{a, b\}$ . Find a regular expression (over  $\Sigma$ ) whose language is the same as the language of the ERE  $aa(\cdot^{*})(!a)(a?)$ . (2)

5. [Bonus problem ] Give an informal description of the language accepted by the following NFA.



(10)

## MTH 222 Theory of Computation

## First Mid Semester Examination (Exercise set B)

| Total marks: 25                                                                   | September 2002                                                   | Time: $1 + \epsilon$ hours     |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|
| Name:                                                                             | Roll Number:                                                     |                                |
| <b>1.</b> Which of the following statem                                           | ents are true? (Write True/False in the box                      | provided.) (5)                 |
| (a) The language of a DFA (or                                                     | ver $\Sigma$ ) in which every state except the start             | state is final is $\Sigma^+$ . |
| <b>(b)</b> $\mathcal{L}((ab^*ba^*) \cap (ba^*ab^*)) =$                            | $= \{\epsilon\}.$                                                |                                |
| (c) $abcd \in \mathcal{L}((b^*a^*)^*(d^*c^*)^*)$                                  |                                                                  |                                |
| (d) The language $\{\alpha \in \{a, b\}\}$                                        | * $\mid \alpha \text{ contains an even number of } a$ 's} is reg | gular.                         |
| (e) If $L_1$ and $L_2$ are regular la $(L_1 \cup L_2) \setminus (L_1 \cap L_2)$ . | nguages (over some alphabet $\Sigma$ ), then so is               | their exclusive or             |

2. Let L be a finite language over the binary alphabet  $\{0, 1\}$ . Assume that |L| = m. Let D be a DFA with n states such that  $\mathcal{L}(D) = L$ . Show that  $n \ge \log_2(m+1)$ . (5)

- **3.** Let  $\Sigma := \{a, b\}$  and  $L := \{\alpha \in \Sigma^* \mid \alpha \text{ ends with } bb$  but does not start with  $bb\}$ .
  - (a) Write a regular expression (over  $\Sigma$ ) to represent L.
  - (b) Design a DFA whose language is L.

(c) Design an NFA (or  $\epsilon$ -NFA) whose language is L.

(3)

(2)

(4)

- **4.** Let  $\Sigma$  be a given alphabet. An extended regular expression (ERE) over  $\Sigma$  is a string  $\alpha$  over  $\Sigma \oiint \{\emptyset, \epsilon, (, ), \cup, *, ^+, ?, !, \cdot\}$  defined inductively as follows:
  - (1)  $\phi$ ,  $\epsilon$  and a are ERE's (for each  $a \in \Sigma$ ).
  - (2) If  $\alpha$  is an ERE, then so is  $(\alpha)$ .
  - (3) If  $\alpha$  and  $\beta$  are ERE's, then so is  $\alpha\beta$ .
  - (4) If  $\alpha$  and  $\beta$  are ERE's, then so is  $\alpha \cup \beta$ .
  - (5) If  $\alpha$  is an ERE, then so is  $\alpha^*$ .
  - (6)  $\cdot$  is an ERE.
  - (7) If  $\alpha$  is an ERE, then so is  $\alpha$ ?.
  - (8) If  $\alpha$  is an ERE, then so is  $\alpha^+$ .
  - (9) If  $\alpha$  is an ERE, then so is  $!\alpha$ .

(10) Nothing is an ERE unless it follows from (1)–(9) above.

Rules (1)–(5) bear the same meanings as for RE's. The informal meanings for (6)–(9) are as follows:

 $\cdot$  means the single occurrence of any element of  $\Sigma$ .

 $\alpha$ ? means 0 or 1 occurrence of  $\alpha$ .

 $\alpha^+$  means one or more occurrence(s) of  $\alpha$ .

 $!\alpha$  means  $\beta \in \Sigma^*$  belongs to the language of  $!\alpha$ , if and only if  $\beta \notin \mathcal{L}(\alpha)$ .

(a) Formally extend the definition of  $\mathcal{L}$  for ERE's, i.e., for ERE's  $\alpha$  and  $\beta$  and  $a \in \Sigma$  complete the following definitions: (4)

| $\mathcal{L}(\phi) := \phi. \ \mathcal{L}(\epsilon) := \{\epsilon\}. \ \mathcal{L}(a) := \{a\}.$ |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{L}((lpha)) := \mathcal{L}(lpha).$                                                      |
| $\mathcal{L}(lphaeta):=\mathcal{L}(lpha)\mathcal{L}(eta).$                                       |
| $\mathcal{L}(lpha\cupeta):=\mathcal{L}(lpha)\cup\mathcal{L}(eta).$                               |
| $\mathcal{L}(lpha^*):=(\mathcal{L}(lpha))^*.$                                                    |
| $\mathcal{L}(\cdot) :=$                                                                          |
|                                                                                                  |
| $\mathcal{L}(lpha?):=$                                                                           |
|                                                                                                  |
| $\mathcal{L}(lpha^+):=$                                                                          |
|                                                                                                  |
| $\mathcal{L}(!lpha):=$                                                                           |
|                                                                                                  |

(b) Let  $\Sigma := \{a, b\}$ . Find a regular expression (over  $\Sigma$ ) whose language is the same as the language of the ERE  $(b?)(!b)(\cdot^*)bb$ . (2)

5. [Bonus problem ] Give an informal description of the language accepted by the following DFA.



(10)