
MTH 222 Theory of Computation

First Mid Semester Examination (Exercise set A)

Total marks: 25 September 3, 2002 Time: 1 + � hours

Name: Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.) (5)

(a) L(((ab)

�

(ba)

�

) \ ((ba)

�

(ab)

�

)) = f�g. False

(b) abd 2 L((d

�



�

b

�

a

�

)

�

). True

(c) If L
1

and L

2

are regular languages (over some alphabet �), then so is their symmetric

difference (L

1

n L

2

) [ (L

2

n L

1

). True

(d) The language of a DFA (over �) in which the only final state is the start state is f�g. False

(e) The language f� 2 fa; bg

�

j � contains an odd number of b’sg is regular. True

2. Let � := fa; b; : : : ; zg be the Roman alphabet and L the ‘English’ language, i.e., the (finite) language of all

valid English words over �. Does there exist a DFA D with 20 states such that L(D) = L? (Remark: If

you are stupefied by the incomprehensibleness of this exercise, ask for DDT to kill rodents.) (5)

Solution There can not exist a DFA with 20 (or less) states that accepts L. To prove this assertion assume

that there exists such a DFA D. The Merriam-Webster dictionary lists the following 20-letter allowed

English words:

compartmentalization

conventionalizations

counterrevolutionary

departmentalizations

electroencephalogram

incomprehensibleness

indistinguishability

institutionalization

intellectualizations

microminiaturization

Since each such word is a member of L, the pumping lemma for regular languages gives us strings

�

1

; �

2

; �

3

2 �

� with j�

2

j > 1 such that �
1

�

k

2

�

3

2 L for all k 2 Z

+

. This means that L is infinite, a

contradiction. �



3. Let � := fa; bg and L := f� 2 �

�

j � starts with aa but does not end with aag.

(a) Write a regular expression (over �) to represent L. (2)

Solution aa(a [ b)

�

b(a [ �). �

(b) Design a DFA whose language is L. (4)

Solution

a a

a

a

bb b

a,b

b

a b

(c) Design an NFA (or �-NFA) whose language is L. (3)

Solution

a a b

a,b

a,ε



4. Let � be a given alphabet. An e x t e n d e d r e g u l a r e x p r e s s i o n (ERE) over � is a string � over

�

U

f;; �; (; );[;

�

;

+

; ?; !; �g defined inductively as follows:

(1) �, � and a are ERE’s (for each a 2 �).

(2) If � is an ERE, then so is (�).

(3) If � and � are ERE’s, then so is ��.

(4) If � and � are ERE’s, then so is � [ �.

(5) If � is an ERE, then so is ��.

(6) If � is an ERE, then so is �+.

(7) If � is an ERE, then so is �?.

(8) If � is an ERE, then so is !�.

(9) � is an ERE.

(10) Nothing is an ERE unless it follows from (1)–(9) above.

Rules (1)–(5) bear the same meanings as for RE’s. The informal meanings for (6)–(9) are as follows:

�

+ means one or more occurrence(s) of �.

�? means 0 or 1 occurrence of �.

!� means � 2 �

� belongs to the language of !�, if and only if � 62 L(�).

� means the single occurrence of any element of �.

(a) Formally extend the definition of L for ERE’s, i.e., for ERE’s � and � and a 2 � complete the following

definitions: (4)

L(�) := �. L(�) := f�g. L(a) := fag.

L((�)) := L(�).

L(��) := L(�)L(�).

L(� [ �) := L(�) [ L(�).

L(�

�

) := (L(�))

�.

L(�

+

) := (L(�))(L(�))

� .

L(�?) := L(�) [ f�g .

L(!�) := �

�

n L(�).

L(�) := � .

(b) Let � := fa; bg. Find a regular expression (over �) whose language is the same as the language of the

ERE aa(�

�

)(!a)(a?). (2)

Solution aa(a[ b)

�

(�[ b[ (a[ b)(a[ b)(a[ b)

�

)(a[ �). This simplifies to aa(a[ b)

�. Note that by our

definition L(!a) is ��

n fag and not � n fag. �



5. [ Bonus problem ] Give an informal description of the language accepted by the following NFA. (10)

1
0

0

10

1

1

0

q
0

q
1

p p p
0 1 2

Solution The above NFA – call it N – accepts valid binary representations of all non-negative integer

multiples of 3. In order to see how let us name the states as above. The automaton is at the start state q
0

, if

and only if it has not consumed any input. But the empty string is not a valid binary representation of any

non-negative integer. So q
0

is not a final state. If N reads 0 at the very beginning, it accepts the input string,

if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q
1

, whereas

0 at the beginning followed by any non-empty string causes the automaton to go to the ‘stuck’ position.

Now assume that N reads a 1 at the beginning. This means that N is handling a positive integer. In this case

the automaton subsequently remains in the states p
0

, p
1

and p

2

, where being in p

i

indicates that the string

read so far represents a positive integer of the form 3k + i (for some k 2 Z

+

). When N is in state p

i

and

reads a 2 f0; 1g, it moves to the state p
j

, where j = (2(3k+ i)+ a) rem3 = (2i+ a) rem 3, where  rem3

denotes the remainder of division of  by 3. The indicated transitions can be easily verified to satisfy this

formula. �



MTH 222 Theory of Computation

First Mid Semester Examination (Exercise set B)

Total marks: 25 September 3, 2002 Time: 1 + � hours

Name: Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.) (5)

(a) The language of a DFA (over �) in which every state except the start state is final is �+. False

(b) L((ab

�

ba

�

) \ (ba

�

ab

�

)) = f�g. False

(c) abd 2 L((b

�

a

�

)

�

(d

�



�

)

�

). True

(d) The language f� 2 fa; bg

�

j � contains an even number of a’sg is regular. True

(e) If L
1

and L

2

are regular languages (over some alphabet �), then so is their exclusive or

(L

1

[ L

2

) n (L

1

\ L

2

). True

2. Let L be a finite language over the binary alphabet f0; 1g. Assume that jLj = m. Let D be a DFA with n

states such that L(D) = L. Show that n > log

2

(m+ 1). (5)

Solution Let l be the length of the longest string in L. Since L is given to be finite, l is finite too. We also

have m 6 1 + 2 + 2

2

+ � � �+ 2

l

= 2

l+1

� 1, i.e., l+ 1 > log

2

(m+ 1). If � 2 L is of length l and if l > n,

then by the pumping lemma we have strings �
1

; �

2

; �

3

2 �

� such that j�
2

j > 1 and �

1

�

k

2

�

3

2 L for all

k 2 Z

+

implying that L is infinite, a contradiction. Thus l < n, i.e., n > l + 1 > log

2

(m+ 1). �



3. Let � := fa; bg and L := f� 2 �

�

j � ends with bb but does not start with bbg.

(a) Write a regular expression (over �) to represent L. (2)

Solution (b [ �)a(a [ b)

�

bb. �

(b) Design a DFA whose language is L. (4)

Solution

a

a

a

b

b

a,b

b

b aa

b

(c) Design an NFA (or �-NFA) whose language is L. (3)

Solution

a b

a,b

bb,ε



4. Let � be a given alphabet. An e x t e n d e d r e g u l a r e x p r e s s i o n (ERE) over � is a string � over

�

U

f;; �; (; );[;

�

;

+

; ?; !; �g defined inductively as follows:

(1) �, � and a are ERE’s (for each a 2 �).

(2) If � is an ERE, then so is (�).

(3) If � and � are ERE’s, then so is ��.

(4) If � and � are ERE’s, then so is � [ �.

(5) If � is an ERE, then so is ��.

(6) � is an ERE.

(7) If � is an ERE, then so is �?.

(8) If � is an ERE, then so is �+.

(9) If � is an ERE, then so is !�.

(10) Nothing is an ERE unless it follows from (1)–(9) above.

Rules (1)–(5) bear the same meanings as for RE’s. The informal meanings for (6)–(9) are as follows:

� means the single occurrence of any element of �.

�? means 0 or 1 occurrence of �.

�

+ means one or more occurrence(s) of �.

!� means � 2 �

� belongs to the language of !�, if and only if � 62 L(�).

(a) Formally extend the definition of L for ERE’s, i.e., for ERE’s � and � and a 2 � complete the following

definitions: (4)

L(�) := �. L(�) := f�g. L(a) := fag.

L((�)) := L(�).

L(��) := L(�)L(�).

L(� [ �) := L(�) [ L(�).

L(�

�

) := (L(�))

�.

L(�) := � .

L(�?) := L(�) [ f�g .

L(�

+

) := (L(�))(L(�))

� .

L(!�) := �

�

n L(�).

(b) Let � := fa; bg. Find a regular expression (over �) whose language is the same as the language of the

ERE (b?)(!b)(�

�

)bb. (2)

Solution (b [ �)(� [ a [ (a [ b)(a [ b)(a [ b)

�

)(a [ b)

�

bb. This simplifies to (a [ b)

�

bb. Note that by our

definition L(!b) is ��

n fbg and not � n fbg. �



5. [ Bonus problem ] Give an informal description of the language accepted by the following DFA. (10)

0,1
0,1

1
0

0

10

1

1

0

p p p

q

q

q

0

0

1

1

2

2

Solution The above DFA – call it D – accepts valid binary representations of all non-negative integer

multiples of 3. In order to see how let us name the states as above. The automaton is at the start state q

0

,

if and only if it has not consumed any input. But the empty string is not a valid binary representation of

any non-negative integer. So q

0

is not a final state. If D reads 0 at the very beginning, it accepts the input

string, if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q
1

,

whereas 0 at the beginning followed by any non-empty string causes the automaton to go to (and remain in)

the non-final state q
2

.

Now assume that D reads a 1 at the beginning. This means that D is handling a positive integer. In this case

the automaton subsequently remains in the states p
0

, p
1

and p

2

, where being in p

i

indicates that the string

read so far represents a positive integer of the form 3k + i (for some k 2 Z

+

). When D is in state p

i

and

reads a 2 f0; 1g, it moves to the state p
j

, where j = (2(3k+ i)+ a) rem3 = (2i+ a) rem 3, where  rem3

denotes the remainder of division of  by 3. The indicated transitions can be easily verified to satisfy this

formula. �


