MTH 222 Theory of Computation

Name:

Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.)
(a) $\mathcal{L}\left(\left((a b)^{*}(b a)^{*}\right) \cap\left((b a)^{*}(a b)^{*}\right)\right)=\{\epsilon\}$.
(b) $a b c d \in \mathcal{L}\left(\left(d^{*} c^{*} b^{*} a^{*}\right)^{*}\right)$.
(c) If L_{1} and L_{2} are regular languages (over some alphabet Σ), then so is their symmetric difference $\left(L_{1} \backslash L_{2}\right) \cup\left(L_{2} \backslash L_{1}\right)$.
(d) The language of a DFA (over Σ) in which the only final state is the start state is $\{\epsilon\}$.
(e) The language $\left\{\alpha \in\{a, b\}^{*} \mid \alpha\right.$ contains an odd number of b 's $\}$ is regular.
2. Let $\Sigma:=\{a, b, \ldots, z\}$ be the Roman alphabet and L the 'English' language, i.e., the (finite) language of all valid English words over Σ. Does there exist a DFA D with 20 states such that $\mathcal{L}(D)=L$? (Remark: If you are stupefied by the incomprehensibleness of this exercise, ask for DDT to kill rodents.)

Solution There can not exist a DFA with 20 (or less) states that accepts L. To prove this assertion assume that there exists such a DFA D. The Merriam-Webster dictionary lists the following 20 -letter allowed English words:

```
compartmentalization
conventionalizations
counterrevolutionary
departmentalizations
electroencephalogram
incomprehensibleness
indistinguishability
institutionalization
intellectualizations
microminiaturization
```

Since each such word is a member of L, the pumping lemma for regular languages gives us strings $\beta_{1}, \beta_{2}, \beta_{3} \in \Sigma^{*}$ with $\left|\beta_{2}\right| \geqslant 1$ such that $\beta_{1} \beta_{2}^{k} \beta_{3} \in L$ for all $k \in \mathbb{Z}_{+}$. This means that L is infinite, a contradiction.
3. Let $\Sigma:=\{a, b\}$ and $L:=\left\{\alpha \in \Sigma^{*} \mid \alpha\right.$ starts with $a a$ but does not end with $\left.a a\right\}$.
(a) Write a regular expression (over Σ) to represent L.

Solution $\quad a a(a \cup b)^{*} b(a \cup \epsilon)$.
(b) Design a DFA whose language is L.

Solution

(c) Design an NFA (or ϵ-NFA) whose language is L.

Solution

4. Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \biguplus\left\{\emptyset, \epsilon,(),, \cup,^{*},+, ?,!, \cdot\right\}$ defined inductively as follows:
(1) ϕ, ϵ and a are ERE's (for each $a \in \Sigma$).
(2) If α is an ERE, then so is (α).
(3) If α and β are ERE's, then so is $\alpha \beta$.
(4) If α and β are ERE's, then so is $\alpha \cup \beta$.
(5) If α is an ERE, then so is α^{*}.
(6) If α is an ERE, then so is α^{+}.
(7) If α is an ERE, then so is α ?.
(8) If α is an ERE, then so is ! α.
(9) - is an ERE.
(10) Nothing is an ERE unless it follows from (1)-(9) above.

Rules (1)-(5) bear the same meanings as for RE's. The informal meanings for (6)-(9) are as follows:
α^{+}means one or more occurrence(s) of α.
α ? means 0 or 1 occurrence of α.
! α means $\beta \in \Sigma^{*}$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.

- means the single occurrence of any element of Σ.
(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions:
$\mathcal{L}(\phi):=\phi . \mathcal{L}(\epsilon):=\{\epsilon\} . \mathcal{L}(a):=\{a\}$.
$\mathcal{L}((\alpha)):=\mathcal{L}(\alpha)$.
$\mathcal{L}(\alpha \beta):=\mathcal{L}(\alpha) \mathcal{L}(\beta)$.
$\mathcal{L}(\alpha \cup \beta):=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$.
$\mathcal{L}\left(\alpha^{*}\right):=(\mathcal{L}(\alpha))^{*}$.
$\mathcal{L}\left(\alpha^{+}\right):=(\mathcal{L}(\alpha))(\mathcal{L}(\alpha))^{*}$.
$\mathcal{L}(\alpha ?):=\mathcal{L}(\alpha) \cup\{\epsilon\}$.
$\mathcal{L}(!\alpha):=\Sigma^{*} \backslash \mathcal{L}(\alpha)$.

```
L}(\cdot):=\Sigma. 
```

(b) Let $\Sigma:=\{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the ERE $a a\left(\cdot^{*}\right)(!a)(a ?)$.

Solution $\quad a a(a \cup b)^{*}\left(\epsilon \cup b \cup(a \cup b)(a \cup b)(a \cup b)^{*}\right)(a \cup \epsilon)$. This simplifies to $a a(a \cup b)^{*}$. Note that by our definition $\mathcal{L}(!a)$ is $\Sigma^{*} \backslash\{a\}$ and not $\Sigma \backslash\{a\}$.
5. [Bonus problem] Give an informal description of the language accepted by the following NFA.

Solution The above NFA - call it N - accepts valid binary representations of all non-negative integer multiples of 3 . In order to see how let us name the states as above. The automaton is at the start state q_{0}, if and only if it has not consumed any input. But the empty string is not a valid binary representation of any non-negative integer. So q_{0} is not a final state. If N reads 0 at the very beginning, it accepts the input string, if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q_{1}, whereas 0 at the beginning followed by any non-empty string causes the automaton to go to the 'stuck' position.

Now assume that N reads a 1 at the beginning. This means that N is handling a positive integer. In this case the automaton subsequently remains in the states p_{0}, p_{1} and p_{2}, where being in p_{i} indicates that the string read so far represents a positive integer of the form $3 k+i$ (for some $k \in \mathbb{Z}_{+}$). When N is in state p_{i} and reads $a \in\{0,1\}$, it moves to the state p_{j}, where $j=(2(3 k+i)+a)$ rem $3=(2 i+a)$ rem 3 , where c rem 3 denotes the remainder of division of c by 3 . The indicated transitions can be easily verified to satisfy this formula.

MTH 222 Theory of Computation
First Mid Semester Examination (Exercise set B)

Name:

Roll Number:

1. Which of the following statements are true? (Write True/False in the box provided.)
(a) The language of a DFA (over Σ) in which every state except the start state is final is Σ^{+}.
(b) $\mathcal{L}\left(\left(a b^{*} b a^{*}\right) \cap\left(b a^{*} a b^{*}\right)\right)=\{\epsilon\}$.
(c) $a b c d \in \mathcal{L}\left(\left(b^{*} a^{*}\right)^{*}\left(d^{*} c^{*}\right)^{*}\right)$.
(d) The language $\left\{\alpha \in\{a, b\}^{*} \mid \alpha\right.$ contains an even number of a 's $\}$ is regular.
(e) If L_{1} and L_{2} are regular languages (over some alphabet Σ), then so is their exclusive or $\left(L_{1} \cup L_{2}\right) \backslash\left(L_{1} \cap L_{2}\right)$.
2. Let L be a finite language over the binary alphabet $\{0,1\}$. Assume that $|L|=m$. Let D be a DFA with n states such that $\mathcal{L}(D)=L$. Show that $n \geqslant \log _{2}(m+1)$.

Solution Let l be the length of the longest string in L. Since L is given to be finite, l is finite too. We also have $m \leqslant 1+2+2^{2}+\cdots+2^{l}=2^{l+1}-1$, i.e., $l+1 \geqslant \log _{2}(m+1)$. If $\alpha \in L$ is of length l and if $l \geqslant n$, then by the pumping lemma we have strings $\beta_{1}, \beta_{2}, \beta_{3} \in \Sigma^{*}$ such that $\left|\beta_{2}\right| \geqslant 1$ and $\beta_{1} \beta_{2}^{k} \beta_{3} \in L$ for all $k \in \mathbb{Z}_{+}$implying that L is infinite, a contradiction. Thus $l<n$, i.e., $n \geqslant l+1 \geqslant \log _{2}(m+1)$.
3. Let $\Sigma:=\{a, b\}$ and $L:=\left\{\alpha \in \Sigma^{*} \mid \alpha\right.$ ends with $b b$ but does not start with $\left.b b\right\}$.
(a) Write a regular expression (over Σ) to represent L.

Solution $\quad(b \cup \epsilon) a(a \cup b)^{*} b b$.
(b) Design a DFA whose language is L.

Solution

(c) Design an NFA (or ϵ-NFA) whose language is L.

Solution

4. Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \biguplus\left\{\emptyset, \epsilon,(),, \cup,^{*},+, ?,!, \cdot\right\}$ defined inductively as follows:
(1) ϕ, ϵ and a are ERE's (for each $a \in \Sigma$).
(2) If α is an ERE, then so is (α).
(3) If α and β are ERE's, then so is $\alpha \beta$.
(4) If α and β are ERE's, then so is $\alpha \cup \beta$.
(5) If α is an ERE, then so is α^{*}.
(6) \cdot is an ERE.
(7) If α is an ERE, then so is α ?.
(8) If α is an ERE, then so is α^{+}.
(9) If α is an ERE, then so is ! α.
(10) Nothing is an ERE unless it follows from (1)-(9) above.

Rules (1)-(5) bear the same meanings as for RE's. The informal meanings for (6)-(9) are as follows:

- means the single occurrence of any element of Σ.
α ? means 0 or 1 occurrence of α.
α^{+}means one or more occurrence(s) of α.
! α means $\beta \in \Sigma^{*}$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.
(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions:
$\mathcal{L}(\phi):=\phi . \mathcal{L}(\epsilon):=\{\epsilon\} . \mathcal{L}(a):=\{a\}$.
$\mathcal{L}((\alpha)):=\mathcal{L}(\alpha)$.
$\mathcal{L}(\alpha \beta):=\mathcal{L}(\alpha) \mathcal{L}(\beta)$.
$\mathcal{L}(\alpha \cup \beta):=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$.
$\mathcal{L}\left(\alpha^{*}\right):=(\mathcal{L}(\alpha))^{*}$.
$\mathcal{L}(\cdot):=\Sigma$.
$\mathcal{L}(\alpha ?):=\mathcal{L}(\alpha) \cup\{\epsilon\}$.
$\mathcal{L}\left(\alpha^{+}\right):=(\mathcal{L}(\alpha))(\mathcal{L}(\alpha))^{*}$.

$$
\mathcal{L}(!\alpha):=\Sigma^{*} \backslash \mathcal{L}(\alpha)
$$

(b) Let $\Sigma:=\{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the $\operatorname{ERE}(b ?)(!b)\left(\cdot^{*}\right) b b$.

Solution $\quad(b \cup \epsilon)\left(\epsilon \cup a \cup(a \cup b)(a \cup b)(a \cup b)^{*}\right)(a \cup b)^{*} b b$. This simplifies to $(a \cup b)^{*} b b$. Note that by our definition $\mathcal{L}(!b)$ is $\Sigma^{*} \backslash\{b\}$ and not $\Sigma \backslash\{b\}$.
5. [Bonus problem] Give an informal description of the language accepted by the following DFA.

Solution The above DFA - call it D - accepts valid binary representations of all non-negative integer multiples of 3 . In order to see how let us name the states as above. The automaton is at the start state q_{0}, if and only if it has not consumed any input. But the empty string is not a valid binary representation of any non-negative integer. So q_{0} is not a final state. If D reads 0 at the very beginning, it accepts the input string, if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q_{1}, whereas 0 at the beginning followed by any non-empty string causes the automaton to go to (and remain in) the non-final state q_{2}.

Now assume that D reads a 1 at the beginning. This means that D is handling a positive integer. In this case the automaton subsequently remains in the states p_{0}, p_{1} and p_{2}, where being in p_{i} indicates that the string read so far represents a positive integer of the form $3 k+i$ (for some $k \in \mathbb{Z}_{+}$). When D is in state p_{i} and reads $a \in\{0,1\}$, it moves to the state p_{j}, where $j=(2(3 k+i)+a)$ rem $3=(2 i+a)$ rem 3 , where c rem 3 denotes the remainder of division of c by 3 . The indicated transitions can be easily verified to satisfy this formula.

