MTH 222 Theory of Computation

First Mid Semester Examination (Exercise set A)

	Total marks: 25	September 3, 2002	Time: $1 + \epsilon$ how	ırs
	Name:	R	oll Number:	
1.	Which of the following statements	are true? (Write True/False in the box j	provided.)	(5)
	(a) $\mathcal{L}(((ab)^*(ba)^*) \cap ((ba)^*(ab)^*)$	$) = \{\epsilon\}.$	False	
	(b) $abcd \in \mathcal{L}((d^*c^*b^*a^*)^*).$		True	
	(c) If L_1 and L_2 are regular languation	ges (over some alphabet Σ), then so is	their symmetric	
	difference $(L_1 \setminus L_2) \cup (L_2 \setminus L_2)$	₍₁).	True	
	(d) The language of a DFA (over Σ	2) in which the only final state is the sta	art state is $\{\epsilon\}$. False	
	(e) The language $\{\alpha \in \{a, b\}^* \mid \alpha$	contains an odd number of b 's} is regu	lar. True	
1.	(a) $\mathcal{L}(((ab)^*(ba)^*) \cap ((ba)^*(ab)^*))$ (b) $abcd \in \mathcal{L}((d^*c^*b^*a^*)^*)$. (c) If L_1 and L_2 are regular langua difference $(L_1 \setminus L_2) \cup (L_2 \setminus L_2)$ (d) The language of a DFA (over Σ) = {ε}. ages (over some alphabet Σ), then so is (1). b) in which the only final state is the state is the	FalseTruetheir symmetricTrueart state is $\{\epsilon\}$.False	

2. Let Σ := {a, b, ..., z} be the Roman alphabet and L the 'English' language, i.e., the (finite) language of all valid English words over Σ. Does there exist a DFA D with 20 states such that L(D) = L? (Remark: If you are stupefied by the incomprehensibleness of this exercise, ask for DDT to kill rodents.) (5)

Solution There can not exist a DFA with 20 (or less) states that accepts L. To prove this assertion assume that there exists such a DFA D. The Merriam-Webster dictionary lists the following 20-letter allowed English words:

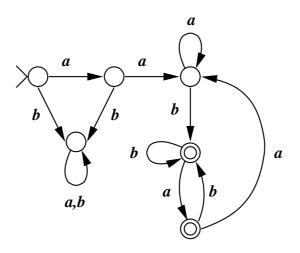
compartmentalization conventionalizations counterrevolutionary departmentalizations electroencephalogram incomprehensibleness indistinguishability institutionalization intellectualizations microminiaturization

Since each such word is a member of L, the pumping lemma for regular languages gives us strings $\beta_1, \beta_2, \beta_3 \in \Sigma^*$ with $|\beta_2| \ge 1$ such that $\beta_1 \beta_2^k \beta_3 \in L$ for all $k \in \mathbb{Z}_+$. This means that L is infinite, a contradiction.

- **3.** Let $\Sigma := \{a, b\}$ and $L := \{\alpha \in \Sigma^* \mid \alpha \text{ starts with } aa \text{ but does not end with } aa\}.$
 - (a) Write a regular expression (over Σ) to represent L.

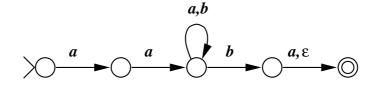
Solution $aa(a \cup b)^*b(a \cup \epsilon)$.

(b) Design a DFA whose language is L.



(c) Design an NFA (or ϵ -NFA) whose language is L.

Solution



(4)

(3)

(2)

.

- **4.** Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \oiint \{\emptyset, \epsilon, (,), \cup, *, ^+, ?, !, \cdot\}$ defined inductively as follows:
 - (1) ϕ, ϵ and a are ERE's (for each $a \in \Sigma$).
 - (2) If α is an ERE, then so is (α) .
 - (3) If α and β are ERE's, then so is $\alpha\beta$.
 - (4) If α and β are ERE's, then so is $\alpha \cup \beta$.
 - (5) If α is an ERE, then so is α^* .
 - (6) If α is an ERE, then so is α^+ .
 - (7) If α is an ERE, then so is α ?.
 - (8) If α is an ERE, then so is $!\alpha$.
 - (9) \cdot is an ERE.

(10) Nothing is an ERE unless it follows from (1)–(9) above.

Rules (1)–(5) bear the same meanings as for RE's. The informal meanings for (6)–(9) are as follows:

 α^+ means one or more occurrence(s) of α .

 α ? means 0 or 1 occurrence of α .

 $!\alpha$ means $\beta \in \Sigma^*$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.

 \cdot means the single occurrence of any element of Σ .

(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions: (4)

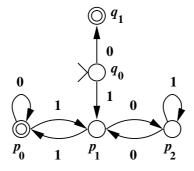
$$\begin{split} \mathcal{L}(\phi) &:= \phi. \ \mathcal{L}(\epsilon) := \{\epsilon\}. \ \mathcal{L}(a) := \{a\}. \\ \mathcal{L}((\alpha)) &:= \mathcal{L}(\alpha). \\ \mathcal{L}(\alpha\beta) &:= \mathcal{L}(\alpha)\mathcal{L}(\beta). \\ \mathcal{L}(\alpha \cup \beta) &:= \mathcal{L}(\alpha) \cup \mathcal{L}(\beta). \\ \mathcal{L}(\alpha^{+}) &:= (\mathcal{L}(\alpha))(\mathcal{L}(\alpha))^{*}. \end{split}$$

$$\begin{split} \mathcal{L}(\alpha^{+}) &:= \mathcal{L}(\alpha) \cup \{\epsilon\}. \\ \mathcal{L}(\alpha?) &:= \Sigma^{*} \setminus \mathcal{L}(\alpha). \\ \end{split}$$

(b) Let $\Sigma := \{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the ERE $aa(\cdot^*)(!a)(a?)$. (2)

Solution $aa(a \cup b)^* (\epsilon \cup b \cup (a \cup b)(a \cup b)(a \cup b)^*)(a \cup \epsilon)$. This simplifies to $aa(a \cup b)^*$. Note that by our definition $\mathcal{L}(!a)$ is $\Sigma^* \setminus \{a\}$ and not $\Sigma \setminus \{a\}$.

5. [Bonus problem] Give an informal description of the language accepted by the following NFA.



Solution The above NFA – call it N – accepts valid binary representations of all non-negative integer multiples of 3. In order to see how let us name the states as above. The automaton is at the start state q_0 , if and only if it has not consumed any input. But the empty string is not a valid binary representation of any non-negative integer. So q_0 is not a final state. If N reads 0 at the very beginning, it accepts the input string, if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q_1 , whereas 0 at the beginning followed by any non-empty string causes the automaton to go to the 'stuck' position.

Now assume that N reads a 1 at the beginning. This means that N is handling a positive integer. In this case the automaton subsequently remains in the states p_0 , p_1 and p_2 , where being in p_i indicates that the string read so far represents a positive integer of the form 3k + i (for some $k \in \mathbb{Z}_+$). When N is in state p_i and reads $a \in \{0, 1\}$, it moves to the state p_j , where $j = (2(3k + i) + a) \operatorname{rem} 3 = (2i + a) \operatorname{rem} 3$, where $c \operatorname{rem} 3$ denotes the remainder of division of c by 3. The indicated transitions can be easily verified to satisfy this formula.

MTH 222 Theory of Computation

First Mid Semester Examination (Exercise set B)

	Total marks: 25	September 3, 2002	Time: $1 + \epsilon$ hours	5
	Name: Roll Numb		2r:	
1.	Which of the following statements are true? (Write True/False in the box provided.)			(5)
	(a) The language of a DFA (over Σ) in which every state except the start state is final is Σ^+ .		Σ^+ . False]
	(b) $\mathcal{L}((ab^*ba^*) \cap (ba^*ab^*)) = \{\epsilon\}.$		False]
	(c) $abcd \in \mathcal{L}((b^*a^*)^*(d^*c^*)^*).$		True]
	(d) The language $\{\alpha \in \{a, b\}^* \mid \alpha \text{ cont}$	tains an even number of a 's} is regular.	True	
	e) If L_1 and L_2 are regular languages (over some alphabet Σ), then so is their exclusive or		or	-
	$(L_1 \cup L_2) \setminus (L_1 \cap L_2).$		True	

2. Let L be a finite language over the binary alphabet {0,1}. Assume that |L| = m. Let D be a DFA with n states such that L(D) = L. Show that n ≥ log₂(m + 1).

Solution Let l be the length of the longest string in L. Since L is given to be finite, l is finite too. We also have $m \leq 1+2+2^2+\cdots+2^l = 2^{l+1}-1$, i.e., $l+1 \geq \log_2(m+1)$. If $\alpha \in L$ is of length l and if $l \geq n$, then by the pumping lemma we have strings $\beta_1, \beta_2, \beta_3 \in \Sigma^*$ such that $|\beta_2| \geq 1$ and $\beta_1 \beta_2^k \beta_3 \in L$ for all $k \in \mathbb{Z}_+$ implying that L is infinite, a contradiction. Thus l < n, i.e., $n \geq l+1 \geq \log_2(m+1)$.

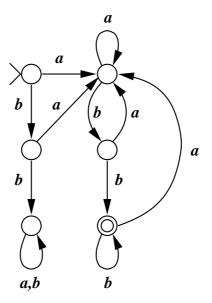
3. Let $\Sigma := \{a, b\}$ and $L := \{\alpha \in \Sigma^* \mid \alpha \text{ ends with } bb$ but does not start with $bb\}$.

(a) Write a regular expression (over Σ) to represent L.

Solution $(b \cup \epsilon)a(a \cup b)^*bb$.

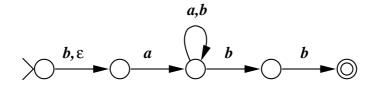
(b) Design a DFA whose language is L.

Solution



(c) Design an NFA (or ϵ -NFA) whose language is L.

Solution



(4)

(2)

.

(3)

- **4.** Let Σ be a given alphabet. An extended regular expression (ERE) over Σ is a string α over $\Sigma \oiint \{\emptyset, \epsilon, (,), \cup, *, ^+, ?, !, \cdot\}$ defined inductively as follows:
 - (1) ϕ , ϵ and a are ERE's (for each $a \in \Sigma$).
 - (2) If α is an ERE, then so is (α) .
 - (3) If α and β are ERE's, then so is $\alpha\beta$.
 - (4) If α and β are ERE's, then so is $\alpha \cup \beta$.
 - (5) If α is an ERE, then so is α^* .
 - (6) \cdot is an ERE.
 - (7) If α is an ERE, then so is α ?.
 - (8) If α is an ERE, then so is α^+ .
 - (9) If α is an ERE, then so is $!\alpha$.

(10) Nothing is an ERE unless it follows from (1)–(9) above.

Rules (1)–(5) bear the same meanings as for RE's. The informal meanings for (6)–(9) are as follows:

 \cdot means the single occurrence of any element of Σ .

 α ? means 0 or 1 occurrence of α .

 α^+ means one or more occurrence(s) of α .

 $!\alpha$ means $\beta \in \Sigma^*$ belongs to the language of $!\alpha$, if and only if $\beta \notin \mathcal{L}(\alpha)$.

(a) Formally extend the definition of \mathcal{L} for ERE's, i.e., for ERE's α and β and $a \in \Sigma$ complete the following definitions: (4)

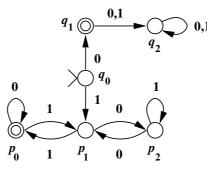
$$\begin{split} \mathcal{L}(\phi) &:= \phi. \ \mathcal{L}(\epsilon) := \{\epsilon\}. \ \mathcal{L}(a) := \{a\}. \\ \mathcal{L}((\alpha)) &:= \mathcal{L}(\alpha). \\ \mathcal{L}(\alpha\beta) &:= \mathcal{L}(\alpha)\mathcal{L}(\beta). \\ \mathcal{L}(\alpha \cup \beta) &:= \mathcal{L}(\alpha) \cup \mathcal{L}(\beta). \\ \mathcal{L}(\alpha^*) &:= (\mathcal{L}(\alpha))^*. \end{split}$$

$$\begin{split} \mathcal{L}(\cdot) &:= \Sigma. \\ \hline \mathcal{L}(\alpha?) &:= \mathcal{L}(\alpha) \cup \{\epsilon\}. \\ \hline \mathcal{L}(\alpha^+) &:= (\mathcal{L}(\alpha))(\mathcal{L}(\alpha))^*. \\ \hline \mathcal{L}(!\alpha) &:= \Sigma^* \setminus \mathcal{L}(\alpha). \end{split}$$

(b) Let $\Sigma := \{a, b\}$. Find a regular expression (over Σ) whose language is the same as the language of the ERE $(b?)(!b)(\cdot^*)bb$. (2)

Solution $(b \cup \epsilon)(\epsilon \cup a \cup (a \cup b)(a \cup b)^*)(a \cup b)^*bb$. This simplifies to $(a \cup b)^*bb$. Note that by our definition $\mathcal{L}(!b)$ is $\Sigma^* \setminus \{b\}$ and not $\Sigma \setminus \{b\}$.

5. [Bonus problem] Give an informal description of the language accepted by the following DFA.



Solution The above DFA – call it D – accepts valid binary representations of all non-negative integer multiples of 3. In order to see how let us name the states as above. The automaton is at the start state q_0 , if and only if it has not consumed any input. But the empty string is not a valid binary representation of any non-negative integer. So q_0 is not a final state. If D reads 0 at the very beginning, it accepts the input string, if and only if no further symbols appear. Thus the integer 0 (a multiple of 3) is accepted in state q_1 , whereas 0 at the beginning followed by any non-empty string causes the automaton to go to (and remain in) the non-final state q_2 .

Now assume that D reads a 1 at the beginning. This means that D is handling a positive integer. In this case the automaton subsequently remains in the states p_0 , p_1 and p_2 , where being in p_i indicates that the string read so far represents a positive integer of the form 3k + i (for some $k \in \mathbb{Z}_+$). When D is in state p_i and reads $a \in \{0, 1\}$, it moves to the state p_j , where $j = (2(3k + i) + a) \operatorname{rem} 3 = (2i + a) \operatorname{rem} 3$, where $c \operatorname{rem} 3$ denotes the remainder of division of c by 3. The indicated transitions can be easily verified to satisfy this formula.