1. (a) $L_{1}:=\left\{\alpha \in\{a, b, c\}^{*} \mid \nu_{a}(\alpha)=\nu_{b}(\alpha)=\nu_{c}(\alpha)\right\}$, is recursive-but-non-context-free, where $\nu_{x}(\alpha)$ denotes the number of occurrences of $x \in\{a, b, c\}$ in $\alpha \in\{a, b, c\}^{*}$. If L_{1} is context-free, consider the pumping lemma constant n for L_{1} (Better use the stronger version of the lemma.) and using the string $a^{n} b^{n} c^{n} \in L_{1}$ arrive at a contradiction. So L_{1} is not context-free. It is R.E., since we can design a TM M_{1} to accept L_{1}. One may go for a four-tape machine, where the numbers of occurrences of a, b and c are counted and stored in tapes 2 through 4 as the strings $0^{\nu_{a}(\alpha)}, 0^{\nu_{b}(\alpha)}$ and $0^{\nu_{c}(\alpha)}$. Subsequently the lengths of these strings can be easily compared. Clearly M_{1} can be so constructed as to halt on every input. Thus L_{1} is recursive as well.
(b) $L_{2}:=\{a, b, c\}^{*} \backslash L_{1}$ is context-free-but-not-regular. If L_{2} is regular, $L_{1}=\bar{L}_{2}$ will also be regular, but by Part (a) L_{1} is not even context-free. One can write $L_{2}=L_{21} \cup L_{22}$, where L_{21} (resp. L_{22}) consists of all strings $\alpha \in\{a, b, c\}^{*}$ with $\nu_{a}(\alpha) \neq \nu_{b}(\alpha)$ (resp. $\nu_{b}(\alpha) \neq \nu_{c}(\alpha)$). Since context-free languages are closed under union, it is sufficient to show that L_{21} and L_{22} are context-free. To this end I will construct a CFG $G=(\{a, b, c\},\{S, A, B, C, E\}, S, R)$ for L_{21} with the following rules:

$$
\begin{aligned}
S & \rightarrow A \mid B \\
E & \rightarrow C|C a E b C| C b E a C \mid E E \\
A & \rightarrow C a E|C a A| C b A A \\
B & \rightarrow C b E|C b B| C a B B \\
C & \rightarrow \epsilon \mid c C
\end{aligned}
$$

An analogous CFG for L_{22} can be written.
(c) It is an easy matter to check that $\mathcal{L}(T)=b^{*}$ and it follows that $L_{3}=\mathcal{L}(G)=\mathcal{L}(S)=\left(a b b^{*}\right)^{*}$. Thus L_{3} is regular-and-infinite.
(d) L_{4} is non-R.E. For a proof of this let us look at its complement $L_{5}:=\bar{L}_{4}$. Since there are R.E. languages (like Σ^{*}) containing ϵ and those (like \emptyset) not containing ϵ, it follows from Rice's theorem that L_{5} is not recursive. Converting $\left\langle M_{i}\right\rangle$ to $\left\langle M_{i}, \epsilon\right\rangle=\left\langle M_{i}\right\rangle 111$ can be easily done by a TM (that halts eventually on every input). Now we can feed $\left\langle M_{i}, \epsilon\right\rangle$ to the universal TM U. If $\epsilon \in \mathcal{L}\left(M_{i}\right), U$ accepts $\left\langle M_{i}, \epsilon\right\rangle$ and halts. If $\epsilon \notin \mathcal{L}\left(M_{i}\right)$, then U either halts without accepting or does not halt at all on the input $\left\langle M_{i}, \epsilon\right\rangle$. To sum up the converter (of $\left\langle M_{i}\right\rangle$ to $\left\langle M_{i}, \epsilon\right\rangle$) in conjunction with U gives us a TM for accepting L_{5}. Thus L_{5} is R.E.-but-not-recursive. If $L_{4}=\bar{L}_{5}$ were R.E., then L_{4} would be recursive, a contradiction.
2. Let $M=\left(Q_{M}, \Sigma, \Gamma, \delta_{M}, s_{M}, F_{M}, \sqcup\right)$ be a TM with the property that $\delta_{M}(q, X)$, if defined, is of the form (p, Y, R). Let $L:=\mathcal{L}(M)$. I will design an ϵ-NFA $N=\left(Q_{N}, \Sigma \cup\{\$\}, \delta_{N}, s_{N}, F_{N}\right)$ to accept the language $L \$$ for some symbol $\$ \notin \Sigma$. But then the quotient language $L \$ / \$=L$ will also be regular.
Take $Q_{N}:=Q_{M} \biguplus Q_{M}^{\prime} \biguplus\left\{f_{N}^{\prime}, f_{N}\right\}$. Here $\left|Q_{M}^{\prime}\right|=\left|Q_{M}\right|$. If $Q_{M}=\left\{q_{1}, \ldots, q_{m}\right\}$, let us denote $Q_{M}^{\prime}=\left\{q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right\}$, i.e., there is a one-to-one correspondence of $q_{i} \in Q_{M}$ with $q_{i}^{\prime} \in Q_{M}^{\prime}$. In fact, both q_{i} and q_{i}^{\prime} represent the same state of M, q_{i} stands for the case that the head of M is scanning a non-blank symbol and q_{i}^{\prime} for the case that the head of M is scanning a blank. Also take $s_{N}:=s_{M}$ and $F_{N}:=\left\{f_{N}\right\}$. The transitions in δ_{N} are as follows:

- For every non-accepting state $q \in Q_{M}$ add a transition $q \rightarrow q^{\prime}$ labeled ϵ. When M moves to the blank portion of the tape, N would make this move.
- For every accepting state $f \in F_{M}$ add a transition $f \rightarrow f_{N}^{\prime}$ labeled ϵ. Since there are no transitions of M from the state f (a valid assumption), N can switch only to f_{N}^{\prime}, once it reaches any accepting state of M. But at that time M need not have scanned the entire input, whereas N must see its entire input before
accepting. Thus we add a self-loop from f_{N}^{\prime} to itself labeled by each $a \in \Sigma$. Finally N reads $\$$ and accepts, i.e., there is a transition $f_{N}^{\prime} \rightarrow f_{N}$ labeled $\$$.
- M may choose to accept, when it is in the blank portion of the tape following the input. Thus for each accepting state $f \in F_{M}$ we add the transition $f^{\prime} \rightarrow f_{N}$ labeled by $\$$. Note that once N reaches the states in Q_{M}^{\prime}, M never reads any non-blank symbol in its tape and hence the transition $f^{\prime} \rightarrow f_{N}^{\prime}$ would be incorrect (since there is a self-loop $f_{N}^{\prime} \rightarrow f_{N}^{\prime}$ labeled by the input alphabet). This is the reason why I separated f_{N} and f_{N}^{\prime}.
- For each transition $\delta_{M}(q, a)=(p, Y, R)$ of M with $a \in \Sigma$ add the transition $q \rightarrow p$ labeled a. Using these transitions N simulates the moves of M, while M is scanning the non-blank portion of the tape.
- For each transition $\delta_{M}(q, \sqcup)=(p, Y, R)$ of M add the transition $q^{\prime} \rightarrow p^{\prime}$ labeled ϵ. This simulates M 's behavior, when M is scanning a blank.
That's it! Though almost clear from the description above, let us prove formally that $\mathcal{L}(N)=L \$$. First consider some $\alpha=a_{1} \ldots a_{l} \in L$. Since M accepts α, it goes to one of its final states while processing α. If this happens before M starts scanning a blank α, the sequence of ID's of M will look like $\left(p_{1}, \underline{a_{1}} a_{2} \ldots a_{l}\right) \vdash_{M}\left(p_{2}, X_{1} \underline{a_{2}} a_{3} \ldots a_{l}\right) \vdash_{M} \ldots \vdash_{M}\left(f, X_{1} X_{2} \ldots X_{k} \underline{a_{k+1}} \ldots a_{l}\right)$, where $p_{i} \in Q_{M} \backslash F_{M}$, $f \in \bar{F}_{M}$ and $k \leqslant l$. (Note that $k=l$ means that the last ID should be rewritten as $\left(f, X_{1} X_{2} \ldots X_{l} \sqcup\right)$.) Then N accepts $\alpha \$$ using the moves $p_{1} \xrightarrow{a_{1}} p_{2} \xrightarrow{a_{2}} p_{3} \xrightarrow{a_{3}} \cdots \xrightarrow{a_{k}} f \xrightarrow[\rightarrow]{\epsilon} f_{N}^{\prime} \xrightarrow{a_{k+1}} f_{N}^{\prime} \xrightarrow{a_{k+2}} \cdots \xrightarrow{a_{l}} f_{N}^{\prime} \xrightarrow[\rightarrow]{\$} f_{N}$. Now assume that M accepts α after entering the blank region of the tape following the input. Then the sequence of ID's for N would look like $\left(p_{1}, \underline{a_{1}} a_{2} \ldots a_{l}\right) \vdash_{M}\left(p_{2}, X_{1} \underline{a_{2}} a_{3} \ldots a_{l}\right) \vdash_{M} \ldots \vdash_{M}$ $\left(p_{l+1}, X_{1} X_{2} \ldots X_{l} \underline{\sqcup}\right) \vdash_{M}\left(p_{l+1}, X_{1} X_{2} \ldots X_{l} X_{l+1} \underline{\underline{\sqcup}}\right) \vdash_{M} \cdots \vdash_{M}\left(f, X_{1} X_{2} \ldots X_{l} X_{l+1} \ldots X_{l+k} \sqcup\right)$ for some $k \geqslant 2, p_{i} \in Q_{M} \backslash F_{M}$ and $f \in F_{M}$. In this case N accepts $\alpha \$$ following the sequence of moves $p_{1} \xrightarrow{a_{1}} p_{2} \xrightarrow{a_{2}} \cdots \xrightarrow[\rightarrow]{a_{l}} p_{l+1} \xrightarrow[\rightarrow]{\epsilon} p_{l+1}^{\prime} \xrightarrow[\rightarrow]{\epsilon} p_{l+2}^{\prime} \xrightarrow[\rightarrow]{\epsilon} \cdots \xrightarrow[\rightarrow]{\epsilon} f^{\prime} \xrightarrow[\rightarrow]{\mathbb{S}} f_{N}$.
Now consider that M rejects α. First suppose that M does not halt on input α, i.e., M never reaches any state $f \in F_{M}$. Therefore N also can not reach any f or f^{\prime} and nor to f_{N} as well. Then suppose that M halts in a non-accepting state $q \in Q_{M} \backslash F_{M} . N$, while in state $p \in Q_{M} \backslash F_{M}$, can always choose the ϵ-transition $p \rightarrow p^{\prime}$. But there are no transitions of N from any $p^{\prime} \in Q_{M}^{\prime}$ to any $r \in Q_{M}$. Also N never consumes a real input during the transitions between the states of Q_{M}^{\prime}, whereas it consumes only the end-of-string marker $\$$ for switching from some states of Q_{M}^{\prime} to f_{N}. Thus N is bound to go to a stuck position (or end up in an infinite loop inside Q_{M}^{\prime}), if it chooses the move $p \rightarrow p^{\prime}$ before all symbols of α are read. Therefore if M halts before scanning all the input symbols, N also can not accept $\alpha \$$. If M moves past the input, N must also use some ϵ-transition $p \rightarrow p^{\prime}$, since no ϵ-transitions of N are defined among the states of Q_{M}. Therefore if M halts in state q while scanning the blank, N also halts in q^{\prime}, because there are no ϵ-moves of N from q^{\prime}. In all the cases N rejects $\alpha \$$.
Finally note that every string accepted by N is of the form $\alpha \$$ for some $\alpha \in \Sigma^{*}$. It follows that $\mathcal{L}(N)=L \$$.

3. I will design a TM N with four semi-infinite onedimensional tapes such that $\mathcal{L}(N)=\mathcal{L}(M)$. Since $\mathcal{L}(N)$ is R.E., the result follows. The working of N is described schematically as in the adjacent diagram.

The two-dimensional tape of M is simulated in the first tape of N. Let us plan to use the bijection $\varphi: \mathbb{N} \rightarrow \mathbb{N}$, $\varphi(i, j)=1+\frac{1}{2}\left[(i+j)^{2}-i-3 j\right]$, for this purpose. If we number the cells of the tape of M by the pair $(i, j) \in \mathbb{N}^{2}$, where i denotes the row number and j the column number, then the (i, j)-th cell of M is stored in the $\varphi(i, j)$-th cell of the first tape of N.

The second and third tapes of N hold the coordinates (i.e., the position (i, j)) of the head of M. A simple way to do this is to store the strings 0^{i} and 0^{j}.

A scratch tape is used for intermediate calculations. If necessary one may go for more than one (but only
finitely many) scratch tapes. Let me assume that only one scratch tape is sufficient (in fact, it is!) and makes it easy enough to handle all the calculations that I will describe below.
The input string $\alpha:=a_{1} \ldots a_{n}$ is provided to N on Tape 1 starting from the leftmost cell of that tape. In order to simulate the initial configuration of M, N first relocates a_{i} to the $\varphi(1, i)$-th cell for all $i=1, \ldots, n$. The scratch tape (or tapes) can be used for these relocations. All other cells of the first tape of N are made empty. Then M 's first head is positioned at the first cell of the first tape. N 's finite control mimics the states of M, i.e., N initializes its finite control to the start state of M.
In order to simulate a move of M, N scans its first tape and also consults its current state (which is the same as M 's current state). If M does not specify a transition in this situation, N halts without accepting. Otherwise N simulates M 's (unique) move as follows:

- N changes its state as M would do.
- N replaces the symbol of the cell scanned by its first head as M would do.
- Depending on the move of M from the (i, j)-th cell to the $\left(i^{\prime}, j^{\prime}\right)$-th cell, N adjusts its first head and the contents of its second and third tapes as follows. The new coordinates $\left(i^{\prime}, j^{\prime}\right)$ of M 's head is related to the old coordinates (i, j) as follows:

Move of M	$\left(i^{\prime}, j^{\prime}\right)$	$\varphi\left(i^{\prime}, j^{\prime}\right)-\varphi(i, j)$
North	$(i-1, j)$	$-(i+j-1)$
East	$(i, j+1)$	$+(i+j-1)$
West	$(i, j-1)$	$-(i+j-2)$
South	$(i+1, j)$	$+(i+j)$

The first head of N should be moved right by $\varphi\left(i^{\prime}, j^{\prime}\right)-\varphi(i, j)$ cells. (A negative value of $\varphi\left(i^{\prime}, j^{\prime}\right)-\varphi(i, j)$ indicates a left movement.) N reads i and j from its second and third tapes and computes in its scratch tape the quantity $\varphi\left(i^{\prime}, j^{\prime}\right)-\varphi(i, j)$ as shown in the third column of the above table. It then moves its first head by an appropriate amount and in the appropriate direction. It then replaces the contents of its second and third tapes from 0^{i} and 0^{j} to $0^{i^{\prime}}$ and $0^{j^{\prime}}$. For all the moves of M 's head one of i and j remains unaltered, the other either increases or decreases by 1 . Thus it is only necessary to add or delete one 0 from one of the second and third tapes.

- Finally N checks if the updated state is an accepting state for M. If so, N accepts and halts. If not, N simulates the next move of M.
It is clear from the above description that N accepts a string α, if and only if M accepts α and therefore $\mathcal{L}(N)=\mathcal{L}(M)$. One can convert N to a standard one-tape one-head TM with a one-dimensional tape (infinite in both directions) using the procedures described in the lectures. Thus $\mathcal{L}(N)=\mathcal{L}(M)$ is R.E.

4. (a) First let me provide a characterization of the members of $L_{g t}$. $\alpha \# \beta$ with $\alpha, \beta \in\{0,1\}^{+}$is in $L_{g t}$, if and only if $\alpha=0^{i} \gamma 1 \mu$ and $0^{k} \beta=0^{j} \gamma 0 \nu$ for some $i, j, k \in \mathbb{Z}_{+}$(the leading zeros), $\gamma, \mu, \nu \in\{0,1\}^{*}$ with $|\mu|=|\nu|$. The grammar for $L_{g t}$ can be designed in a manner similar to the $\alpha \alpha$ language described in the lectures. The rules are given below. A brief explanation of the intended purpose of each rule is also provided.

$$
\begin{array}{ll}
S \rightarrow C U V & \begin{array}{l}
C \text { generates } 0^{i} \text { of } \alpha, U \text { is responsible for the two occurrences } \\
\text { of } \gamma \text { and } V \text { for } 1 \mu \text { and } 0 \nu .
\end{array} \\
U \rightarrow D|U A 0| U B 1 & \begin{array}{l}
D \text { generates } \# 0^{j} \text { and also acts as the 'center'. } U \text { generates the } \\
\text { strings } D((A 0) \cup(B 1))^{*} . \text { Later each } A \text { will be converted to a } \\
0 \text { and each } B \text { to } 1, \text { once it meets } D \text { and goes to the left of } D .
\end{array} \\
V \rightarrow B 0|V A 0| V A 1|V B 0| V B 1 & V \text { generates the strings } B 0((A \cup B)(0 \cup 1))^{*} . \text { The part } B 0 \\
\text { makes the final terminal string of the proper form, whereas } \\
((A \cup B)(0 \cup 1))^{*} \text { will lead to } \mu \text { and } \nu \text { after } A \text { 's and } B \text { 's travel }
\end{array}
$$

$$
\begin{aligned}
0 A & \rightarrow A 0 & & A \text { can penetrate through } 0 \text { 's. } \\
1 A & \rightarrow A 1 & & A \text { can penetrate through } 1 \text { 's. } \\
D A & \rightarrow 0 D & & A \text { meets } D \text { from right, goes to the left of } D \text { after getting transformed to } 0 . \\
0 B & \rightarrow B 0 & & B \text { can penetrate through } 0 \text { 's. } \\
1 B & \rightarrow B 1 & & B \text { can penetrate through } 1 \text { 's. } \\
D B & \rightarrow 1 D & & B \text { meets } D \text { from right, goes to the left of } D \text { after getting transformed to } 1 . \\
C & \rightarrow C 0 \mid \epsilon & & C \text { generates the leading zeros for } \alpha \text { and then vanishes. } \\
D & \rightarrow D 0 & & D \text { generates leading zeros }\left(0^{j}\right) \text { for } \beta . \\
D 00 & \rightarrow D 0 & & D \text { can also erase leading zeros }\left(0^{k}\right) \text { from } \beta, \text { but this should not result in an } \\
D 01 & \rightarrow D 1 & & \text { empty } \beta . \text { So delete a leading zero, if something appears after it. } \\
D & \rightarrow \# & & \text { Finally } D \text { gets transformed to the separator } \# .
\end{aligned}
$$

Since $\mathcal{L}(S)$ contains strings consisting only of terminals, each A and B generated by U and V must vanish. The only way this can be done is by an interaction with D, which puts 0 's and 1 's of α in the intended positions. Also D can vanish only after converting all A 's and B 's. C does not play any rôle in the alignment of A 's and B 's and hence it can vanish at any point of time (after generating the $i 0$'s of α). It follows that $\mathcal{L}(S)=L_{g t}$.
(b) The TM $M_{g t}$ I am going to design for accepting $L_{g t}$ is a two-tape TM. The second tape is used as a scratch tape in order to speed up certain computations. To start with $M_{g t}$ checks if the input is in the correct format, i.e., in the format $\alpha \# \beta$ with $\alpha, \beta \in\{0,1\}^{+}$. This check can be done by a single pass through the input string. If the input is not of the correct format, $M_{g t}$ halts without accepting.
$M_{g t}$ then copies β to the second tape and removes the suffix $\# \beta$ from the first tape. Thus the two arguments for the comparison are now separated and placed in different tapes. A single-tape TM (with both the operands α and β on the same tape) can very well do whatever $M_{g t}$ is going to do next, but introduction of the second tape makes the computation more efficient and the description easier.
$M_{g t}$ now deletes all leading zeros from α. The head for the first tape is positioned at the beginning of α and as long as the head scans a zero it keeps on replacing it by the blank and moving right. If the head meets a 1 , then it stops removing leading zeros. If it meets the blank, then α is of the from $0^{i} . M_{g t}$ then writes a single zero to represent $\operatorname{val}(\alpha)=0$.
In an analogous way $M_{g t}$ then deletes leading zeros from β. Let us denote the strings left in the tapes now by α^{\prime} and β^{\prime}. We clearly have $\operatorname{val}(\alpha)=\operatorname{val}\left(\alpha^{\prime}\right)$ and $\operatorname{val}(\beta)=\operatorname{val}\left(\beta^{\prime}\right)$.
$M_{g t}$ then compares the lengths of α^{\prime} and β^{\prime}. If $\left|\alpha^{\prime}\right|>\left|\beta^{\prime}\right|$, then $M_{g t}$ accepts and halts. If $\left|\alpha^{\prime}\right|<\left|\beta^{\prime}\right|$, then $M_{g t}$ halts without accepting. This leaves us with the case $\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right|$. Let $\alpha^{\prime}=a_{1} \ldots a_{m}$ and $\beta^{\prime}=b_{1} \ldots b_{m}$ for some $n \in \mathbb{N}$. $M_{g t}$ then compares a_{1} with b_{1}, a_{2} with b_{2} and so on, till it detects $a_{i} \neq b_{i}$ for some i. If $a_{i}=1$ and $b_{i}=0$, then $M_{g t}$ accepts and halts. If $a_{i}=0$ and $b_{i}=1$, then $M_{g t}$ halts without accepting. If $a_{j}=b_{j}$ for all $j=1, \ldots, m$, then the two operands are equal and $M_{g t}$ halts without accepting.
(c) $L_{g t}$ is recursive, since the machine $M_{g t}$ of Part (2) halts on any input. More specifically if n is the length of the input $(\alpha \# \beta)$, then the two-tape machine halts after $\mathrm{O}(n)$ moves. Each logical step of the operation of M (checking the validity of the input format, copying β to the second tape, erasing $\# \beta$ from the first tape, deleting leading zeros from α and β, comparing the lengths of α^{\prime} and β^{\prime} and finally comparing the individual bits of α^{\prime} and β^{\prime}) can be carried out using $\mathrm{O}(n)$ moves. $M_{g t}$ has to reposition its heads for only a constant number of times and each such repositioning is doable with $\mathrm{O}(n)$ moves. One can convert this two-tape TM to a one-tape TM which requires $\mathrm{O}\left(n^{2}\right)$ moves. In any case the acceptance or rejection decision of the machine comes in finite time for any input.

