
MTH 222 Theory of Computation

Solutions of the exercises that appeared in the End Semester Examination

Total marks: 50 December 4, 2002 Time: 3 + � hours

1. (a) L

1

:= f� 2 fa; b; g

�

j �

a

(�) = �

b

(�) = �

(�)g, is recursive-but-non-context-free, where �
x

(�)

denotes the number of occurrences of x 2 fa; b; g in � 2 fa; b; g

�. If L
1

is context-free, consider the

pumping lemma constant n for L
1

(Better use the stronger version of the lemma.) and using the string

a

n

b

n

n

2 L

1

arrive at a contradiction. So L
1

is not context-free. It is R.E., since we can design a TM M

1

to accept L
1

. One may go for a four-tape machine, where the numbers of occurrences of a, b and are

counted and stored in tapes 2 through 4 as the strings 0�a(�), 0�b(�) and 0

�

(�). Subsequently the lengths of

these strings can be easily compared. Clearly M
1

can be so constructed as to halt on every input. Thus L
1

is recursive as well.

(b) L
2

:= fa; b; g

�

n L

1

is context-free-but-not-regular. If L
2

is regular, L
1

=

�

L

2

will also be regular, but

by Part (a) L
1

is not even context-free. One can write L
2

= L

21

[L

22

, where L
21

(resp. L
22

) consists of all

strings � 2 fa; b; g

� with �
a

(�) 6= �

b

(�) (resp. �
b

(�) 6= �

(�)). Since context-free languages are closed

under union, it is sufficient to show that L
21

and L

22

are context-free. To this end I will construct a CFG

G = (fa; b; g; fS;A;B;C;Eg; S;R) for L
21

with the following rules:

S ! A j B

E ! C j CaEbC j CbEaC j EE

A ! CaE j CaA j CbAA

B ! CbE j CbB j CaBB

C ! � j C

An analogous CFG for L
22

can be written.

(c) It is an easy matter to check that L(T) = b

� and it follows that L
3

= L(G) = L(S) = (abb

�

)

�. Thus

L

3

is regular-and-infinite.

(d) L
4

is non-R.E. For a proof of this let us look at its complement L
5

:=

�

L

4

. Since there are R.E. languages

(like �

�) containing � and those (like ;) not containing �, it follows from Rice’s theorem that L
5

is not

recursive. Converting hM

i

i to hM

i

; �i = hM

i

i111 can be easily done by a TM (that halts eventually on

every input). Now we can feed hM

i

; �i to the universal TM U . If � 2 L(M

i

), U accepts hM
i

; �i and halts.

If � =2 L(M

i

), then U either halts without accepting or does not halt at all on the input hM
i

; �i. To sum

up the converter (of hM
i

i to hM

i

; �i) in conjunction with U gives us a TM for accepting L

5

. Thus L
5

is

R.E.-but-not-recursive. If L
4

=

�

L

5

were R.E., then L
4

would be recursive, a contradiction.

2. Let M = (Q

M

;�;�; Æ

M

; s

M

; F

M

;t) be a TM with the property that Æ
M

(q;X), if defined, is of the form

(p; Y;R). Let L := L(M). I will design an �-NFA N = (Q

N

;�[f$g; Æ

N

; s

N

; F

N

) to accept the language

L$ for some symbol $ =2 �. But then the quotient language L$=$ = L will also be regular.

Take Q

N

:= Q

M

U

Q

0

M

U

ff

0

N

; f

N

g. Here jQ

0

M

j = jQ

M

j. If Q
M

= fq

1

; : : : ; q

m

g, let us denote

Q

0

M

= fq

0

1

; : : : ; q

0

m

g, i.e., there is a one-to-one correspondence of q
i

2 Q

M

with q0
i

2 Q

0

M

. In fact, both

q

i

and q0
i

represent the same state of M , q
i

stands for the case that the head of M is scanning a non-blank

symbol and q0
i

for the case that the head of M is scanning a blank. Also take s
N

:= s

M

and F
N

:= ff

N

g.

The transitions in Æ
N

are as follows:

� For every non-accepting state q 2 Q

M

add a transition q ! q

0 labeled �. When M moves to the blank

portion of the tape, N would make this move.

� For every accepting state f 2 F

M

add a transition f ! f

0

N

labeled �. Since there are no transitions of

M from the state f (a valid assumption), N can switch only to f 0
N

, once it reaches any accepting state of

M . But at that time M need not have scanned the entire input, whereas N must see its entire input before

accepting. Thus we add a self-loop from f

0

N

to itself labeled by each a 2 �. Finally N reads $ and accepts,

i.e., there is a transition f 0
N

! f

N

labeled $.

� M may choose to accept, when it is in the blank portion of the tape following the input. Thus for each

accepting state f 2 F

M

we add the transition f 0 ! f

N

labeled by $. Note that once N reaches the states in

Q

0

M

, M never reads any non-blank symbol in its tape and hence the transition f 0 ! f

0

N

would be incorrect

(since there is a self-loop f

0

N

! f

0

N

labeled by the input alphabet). This is the reason why I separated f

N

and f 0
N

.

� For each transition Æ
M

(q; a) = (p; Y;R) of M with a 2 � add the transition q ! p labeled a. Using these

transitions N simulates the moves of M , while M is scanning the non-blank portion of the tape.

� For each transition Æ

M

(q;t) = (p; Y;R) of M add the transition q

0

! p

0 labeled �. This simulates M ’s

behavior, when M is scanning a blank.

That’s it! Though almost clear from the description above, let us prove formally that L(N) = L$.

First consider some � = a

1

: : : a

l

2 L. Since M accepts �, it goes to one of its final states while

processing �. If this happens before M starts scanning a blank �, the sequence of ID’s of M will look like

(p

1

; a

1

a

2

: : : a

l

) `

M

(p

2

;X

1

a

2

a

3

: : : a

l

) `

M

� � � `

M

(f;X

1

X

2

: : : X

k

a

k+1

: : : a

l

), where p
i

2 Q

M

n F

M

,

f 2 F

M

and k 6 l. (Note that k = l means that the last ID should be rewritten as (f;X
1

X

2

: : : X

l

t).) Then

N accepts �$ using the moves p
1

a

1

!

p

2

a

2

!

p

3

a

3

!

� � �

a

k

!

f

�

!

f

0

N

a

k+1

!

f

0

N

a

k+2

!

� � �

a

l

!

f

0

N

$

!

f

N

.

Now assume that M accepts � after entering the blank region of the tape following the input. Then

the sequence of ID’s for N would look like (p

1

; a

1

a

2

: : : a

l

) `

M

(p

2

;X

1

a

2

a

3

: : : a

l

) `

M

� � � `

M

(p

l+1

;X

1

X

2

: : : X

l

t) `

M

(p

l+1

;X

1

X

2

: : : X

l

X

l+1

t) `

M

� � � `

M

(f;X

1

X

2

: : : X

l

X

l+1

: : : X

l+k

t) for

some k > 2, p
i

2 Q

M

n F

M

and f 2 F

M

. In this case N accepts �$ following the sequence of moves

p

1

a

1

!

p

2

a

2

!

� � �

a

l

!

p

l+1

�

!

p

0

l+1

�

!

p

0

l+2

�

!

� � �

�

!

f

0

$

!

f

N

.

Now consider that M rejects �. First suppose that M does not halt on input �, i.e., M never reaches any

state f 2 F

M

. Therefore N also can not reach any f or f 0 and nor to f
N

as well. Then suppose that M halts

in a non-accepting state q 2 Q

M

n F

M

. N , while in state p 2 Q

M

n F

M

, can always choose the �-transition

p! p

0. But there are no transitions of N from any p0 2 Q

0

M

to any r 2 Q

M

. Also N never consumes a real

input during the transitions between the states of Q0

M

, whereas it consumes only the end-of-string marker

$ for switching from some states of Q0

M

to f

N

. Thus N is bound to go to a stuck position (or end up in

an infinite loop inside Q0

M

), if it chooses the move p ! p

0 before all symbols of � are read. Therefore if

M halts before scanning all the input symbols, N also can not accept �$. If M moves past the input, N

must also use some �-transition p ! p

0, since no �-transitions of N are defined among the states of Q
M

.

Therefore if M halts in state q while scanning the blank, N also halts in q0, because there are no �-moves of

N from q

0. In all the cases N rejects �$.

Finally note that every string accepted by N is of the form �$ for some � 2 �

�. It follows that L(N) = L$.

3. I will design a TM N with four semi-infinite one-

dimensional tapes such that L(N) = L(M). Since

L(N) is R.E., the result follows. The working of N is

described schematically as in the adjacent diagram.

The two-dimensional tape of M is simulated in the first

tape of N . Let us plan to use the bijection ' : N ! N ,

'(i; j) = 1 +

1

2

[(i + j)

2

� i � 3j℄, for this purpose.

If we number the cells of the tape of M by the pair

(i; j) 2 N

2 , where i denotes the row number and j the

column number, then the (i; j)-th cell of M is stored in

the '(i; j)-th cell of the first tape of N .

The second and third tapes of N hold the coordinates

(i.e., the position (i; j)) of the head of M . A simple way

to do this is to store the strings 0i and 0

j .

Finite

M

Row

Control

Column

Tape of

Scratch

A scratch tape is used for intermediate calculations. If necessary one may go for more than one (but only

finitely many) scratch tapes. Let me assume that only one scratch tape is sufficient (in fact, it is!) and makes

it easy enough to handle all the calculations that I will describe below.

The input string � := a

1

: : : a

n

is provided to N on Tape 1 starting from the leftmost cell of that tape. In

order to simulate the initial configuration of M , N first relocates a
i

to the '(1; i)-th cell for all i = 1; : : : ; n.

The scratch tape (or tapes) can be used for these relocations. All other cells of the first tape of N are made

empty. Then M ’s first head is positioned at the first cell of the first tape. N ’s finite control mimics the states

of M , i.e., N initializes its finite control to the start state of M .

In order to simulate a move of M , N scans its first tape and also consults its current state (which is the

same as M ’s current state). If M does not specify a transition in this situation, N halts without accepting.

Otherwise N simulates M ’s (unique) move as follows:

� N changes its state as M would do.

� N replaces the symbol of the cell scanned by its first head as M would do.

� Depending on the move of M from the (i; j)-th cell to the (i

0

; j

0

)-th cell, N adjusts its first head and the

contents of its second and third tapes as follows. The new coordinates (i0; j0) of M ’s head is related to the

old coordinates (i; j) as follows:

Move of M (i

0

; j

0

) '(i

0

; j

0

)� '(i; j)

North (i� 1; j) �(i+ j � 1)

East (i; j + 1) +(i+ j � 1)

West (i; j � 1) �(i+ j � 2)

South (i+ 1; j) +(i+ j)

The first head of N should be moved right by '(i0; j0)�'(i; j) cells. (A negative value of '(i0; j0)�'(i; j)

indicates a left movement.) N reads i and j from its second and third tapes and computes in its scratch tape

the quantity '(i0; j0) � '(i; j) as shown in the third column of the above table. It then moves its first head

by an appropriate amount and in the appropriate direction. It then replaces the contents of its second and

third tapes from 0

i and 0

j to 0

i

0

and 0

j

0

. For all the moves of M ’s head one of i and j remains unaltered,

the other either increases or decreases by 1. Thus it is only necessary to add or delete one 0 from one of the

second and third tapes.

� Finally N checks if the updated state is an accepting state for M . If so, N accepts and halts. If not, N

simulates the next move of M .

It is clear from the above description that N accepts a string �, if and only if M accepts � and therefore

L(N) = L(M). One can convert N to a standard one-tape one-head TM with a one-dimensional tape

(infinite in both directions) using the procedures described in the lectures. Thus L(N) = L(M) is R.E.

4. (a) First let me provide a characterization of the members of L
gt

. �#� with �; � 2 f0; 1g

+ is in L

gt

,

if and only if � = 0

i

1� and 0

k

� = 0

j

0� for some i; j; k 2 Z

+

(the leading zeros), ; �; � 2 f0; 1g

�

with j�j = j�j. The grammar for L
gt

can be designed in a manner similar to the �� language described

in the lectures. The rules are given below. A brief explanation of the intended purpose of each rule is also

provided.

S ! CUV C generates 0i of �, U is responsible for the two occurrences

of and V for 1� and 0�.

U ! D j UA0 j UB1 D generates #0

j and also acts as the ‘center’. U generates the

strings D((A0)[(B1))

�. Later each A will be converted to a

0 and each B to 1, once it meets D and goes to the left of D.

V ! B0 j VA0 j VA1 j VB0 j VB1 V generates the strings B0((A [B)(0 [1))

�. The part B0

makes the final terminal string of the proper form, whereas

((A[B)(0[1))

� will lead to � and � after A’s and B’s travel

left, meet the center D, go to the left of D and get converted

to 0’s and 1’s respectively.

0A ! A0 A can penetrate through 0’s.

1A ! A1 A can penetrate through 1’s.

DA ! 0D A meets D from right, goes to the left of D after getting transformed to 0.

0B ! B0 B can penetrate through 0’s.

1B ! B1 B can penetrate through 1’s.

DB ! 1D B meets D from right, goes to the left of D after getting transformed to 1.

C ! C0 j � C generates the leading zeros for � and then vanishes.

D ! D0 D generates leading zeros (0j) for �.

D00 ! D0 D can also erase leading zeros (0k) from �, but this should not result in an

D01 ! D1 empty �. So delete a leading zero, if something appears after it.

D ! # Finally D gets transformed to the separator #.

Since L(S) contains strings consisting only of terminals, each A and B generated by U and V must vanish.

The only way this can be done is by an interaction with D, which puts 0’s and 1’s of � in the intended

positions. Also D can vanish only after converting all A’s and B’s. C does not play any rôle in the

alignment of A’s and B’s and hence it can vanish at any point of time (after generating the i 0’s of �). It

follows that L(S) = L

gt

.

(b) The TM M

gt

I am going to design for accepting L

gt

is a two-tape TM. The second tape is used as a

scratch tape in order to speed up certain computations. To start with M
gt

checks if the input is in the correct

format, i.e., in the format �#� with �; � 2 f0; 1g

+. This check can be done by a single pass through the

input string. If the input is not of the correct format, M
gt

halts without accepting.

M

gt

then copies � to the second tape and removes the suffix #� from the first tape. Thus the two arguments

for the comparison are now separated and placed in different tapes. A single-tape TM (with both the

operands � and � on the same tape) can very well do whatever M
gt

is going to do next, but introduction of

the second tape makes the computation more efficient and the description easier.

M

gt

now deletes all leading zeros from �. The head for the first tape is positioned at the beginning of � and

as long as the head scans a zero it keeps on replacing it by the blank and moving right. If the head meets

a 1, then it stops removing leading zeros. If it meets the blank, then � is of the from 0

i. M
gt

then writes a

single zero to represent val(�) = 0.

In an analogous way M
gt

then deletes leading zeros from �. Let us denote the strings left in the tapes now

by �0 and �0. We clearly have val(�) = val(�

0

) and val(�) = val(�

0

).

M

gt

then compares the lengths of �0 and �0. If j�0j > j�

0

j, then M
gt

accepts and halts. If j�0j < j�

0

j, then

M

gt

halts without accepting. This leaves us with the case j�0j = j�

0

j. Let �0 = a

1

: : : a

m

and �0 = b

1

: : : b

m

for some n 2 N . M
gt

then compares a
1

with b
1

, a
2

with b
2

and so on, till it detects a
i

6= b

i

for some i. If

a

i

= 1 and b
i

= 0, then M
gt

accepts and halts. If a
i

= 0 and b
i

= 1, then M
gt

halts without accepting. If

a

j

= b

j

for all j = 1; : : : ;m, then the two operands are equal and M
gt

halts without accepting.

(c) L

gt

is recursive, since the machine M
gt

of Part (2) halts on any input. More specifically if n is the length

of the input (�#�), then the two-tape machine halts after
O

(n) moves. Each logical step of the operation of

M (checking the validity of the input format, copying � to the second tape, erasing #� from the first tape,

deleting leading zeros from � and �, comparing the lengths of �0 and �0 and finally comparing the individual

bits of �0 and �0) can be carried out using
O

(n) moves. M
gt

has to reposition its heads for only a constant

number of times and each such repositioning is doable with
O

(n) moves. One can convert this two-tape

TM to a one-tape TM which requires
O

(n

2

) moves. In any case the acceptance or rejection decision of the

machine comes in finite time for any input.

Dr. Abhijit Das, Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India

