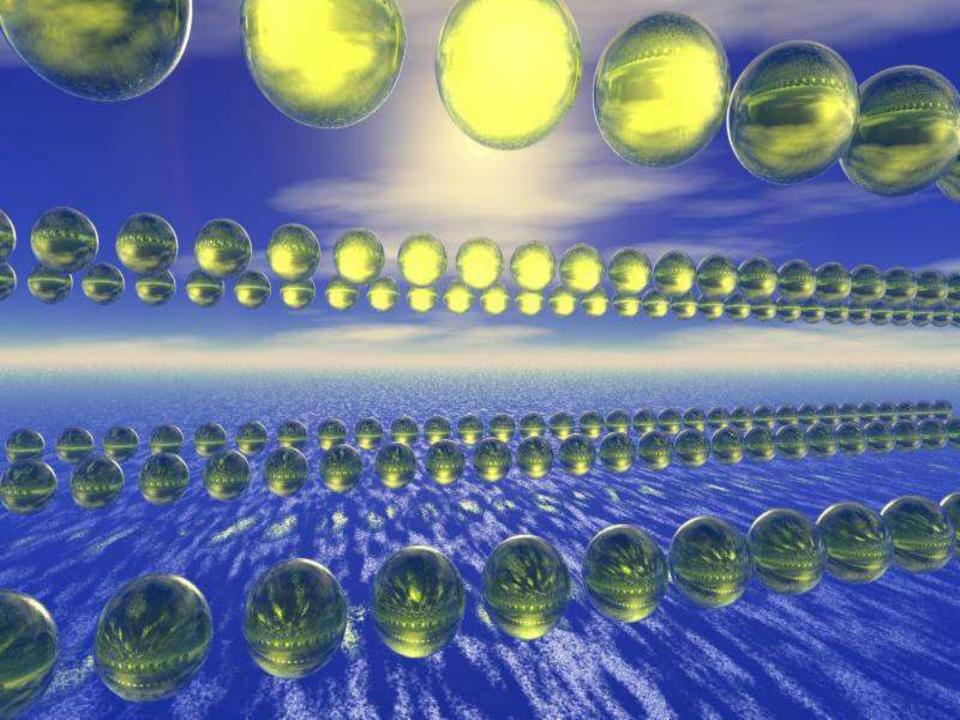
Winter School on Lattice-Based Cryptography and ApplicationsBar-Ilan University, Israel19/2/2012

cuon to n Regev 20 (Tel Aviv University and CNRS, ENS-Paris)

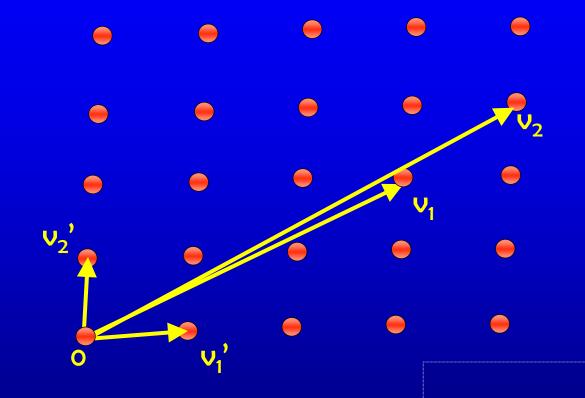




0

We call v_µ...,v_n a basis of L

Basis is not Unique



History

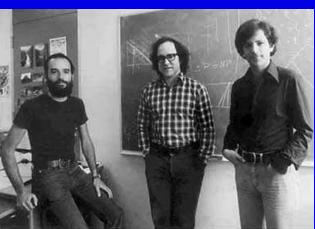
Geometric objects with rich mathematical structure

 Considerable mathematical interest, starting from early work by Gauss 1801, Hermite 1850, and Minkowski 1896.

- Recently, many interesting applications in computer science:
 - LLL algorithm approximates the shortest vector in a lattice [LenstraLenstraLovàsz82]. Used for:
 - Factoring polynomials over rationals,
 - Solving integer programs in a fixed dimension,
 - Finding integer relations:

6.73205080756887**...** = √3 + 5

- Modern economy is based on cryptography
- Cryptography is everywhere:
 - In credit cards, passports, mobile phones, Internet,...
- Most systems are based on the RSA cryptosystem, developed by Rivest, Shamir, and Adleman in 1977



Bank of America

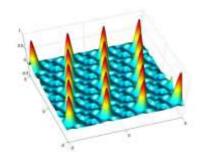
Higher Standards

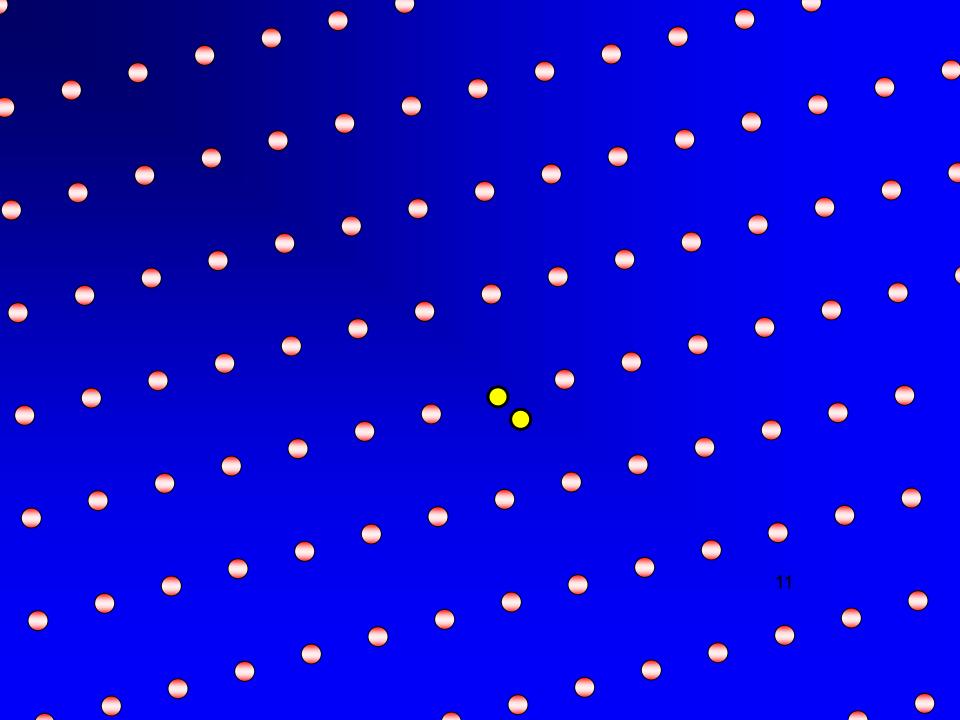
Lattices and Cryptography (1)

- LLL can be used as a cryptanalysis tool (i.e., to break cryptography):
 - Knapsack-based cryptosystem [LagariasOdlyzko'85]
 - Variants of RSA [Håstad'85, Coppersmith'01]

Lattices and Cryptography (2)

- Lattices can also be used to create cryptography
- This started with a breakthrough of Ajtai in 1996
- Cryptography based on lattices has many advantages compared with 'traditional' cryptography like RSA:
 - It has strong, mathematically proven, security
 - It is resistant to quantum computers
 - In some cases, it is much faster





Why use lattice-based cryptography

Lattice-based crypto

- Provably secure
- Security based on a worstcase problem
- ③ Based on hardness of lattice problems
- ③ (Still) Not broken by quantum algorithms
- ② Very simple computations
- Can do more things

'Standard' cryptography

- Ot always provable...
- Security based on an average-case problem
- Based on hardness of factoring, discrete log, etc.
- Broken by quantum algs
- Require modular exponentiation etc.

Provable Security

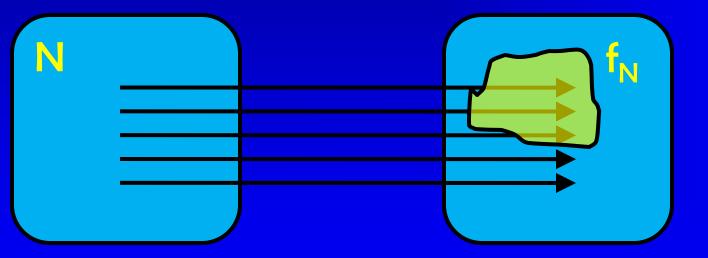
- Security proof: a reduction from solving a hard problem to breaking the cryptographic function
- A security proof gives a strong evidence that our cryptographic function has no fundamental flaws
- Can also give hints as to choice of parameters
- Example: One-wayness of modular squaring
 - Somehow choose N=pq for two large primes p,q
 - f(x)=x² mod N
 - If we can compute square roots mod N then we can factor N

Average-case hardness is not so nice...

- How do you pick a "good" N in RSA?
- Just pick p,q as random large primes and set N=pq?
 - (1978) Largest prime factors of p-1,q-1 should be large
 - (1981) p+1 and q+1 should have a large prime factor
 - (1982) If the largest prime factor of p-1 and q-1 is p' and q', then p'-1 and q'-1 should have large prime factors
 - (1984) If the largest prime factor of p+1 and q+1 is p' and q', then p'-1 and q'-1 should have large prime factors
- Bottom line: currently, none of this is relevant

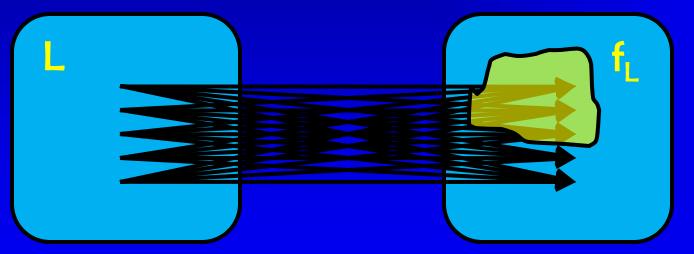
Provable security based on averagecase hardness

• The cryptographic function is hard provided almost all N are hard to factor



Provable security based on worst-case hardness

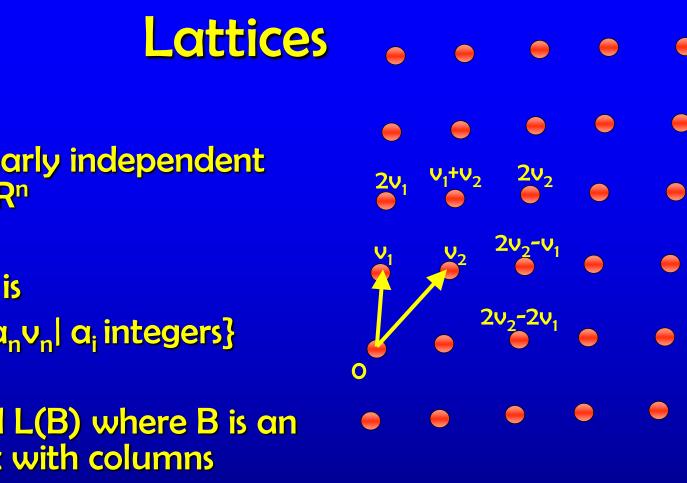
- The cryptographic function is hard provided the lattice problem is hard in the worst-case
- This is a much stronger security guarantee
- It assures us that our distribution is correct



Modern Lattice-based Crypto

- The seminal work of Ajtai and Ajtai-Dwork in 1996 showed the power of lattice-based crypto, but the resulting systems were extremely inefficient (keys require gigabytes, slow,...), cumbersome to use, and nearly impossible to extend
- Recent work [MicciancioR03,R05,...] identified two key problems called Short Integer Solution (SIS) and Learning With Errors (LWE) that lead to very efficient constructions and are extremely versatile
- Another line of work [MicciancioO2, PeikertRosenO6, LyubashevskyMicciancioO6,...] gives <u>extremely efficient</u> constructions from <u>ideal lattices</u> (Ring-LWE and Ring-SIS)

Introduction to Lattices



Basis:

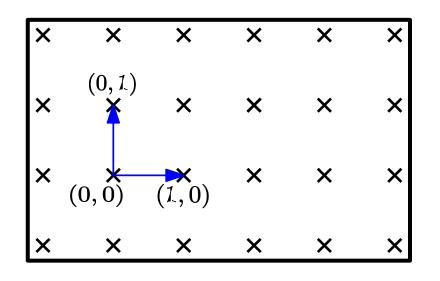
 v_1, \dots, v_n linearly independent vectors in Rⁿ

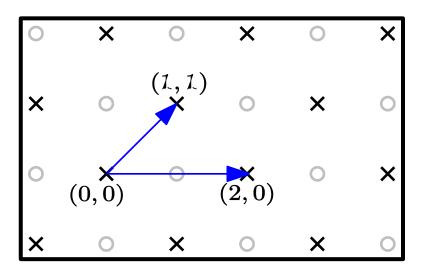
The lattice L is $L=\{a_1v_1+...+a_nv_n \mid a_i \text{ integers}\}$

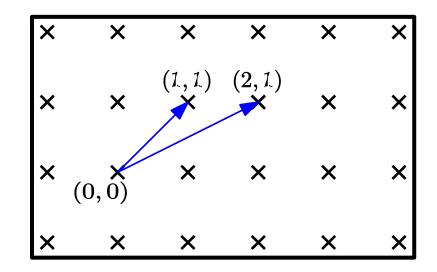
Also denoted L(B) where B is an n*n matrix with columns V_1, \dots, V_n

Equivalently, one can define a lattice as a discrete additive subgroup of Rⁿ

Lattice Bases





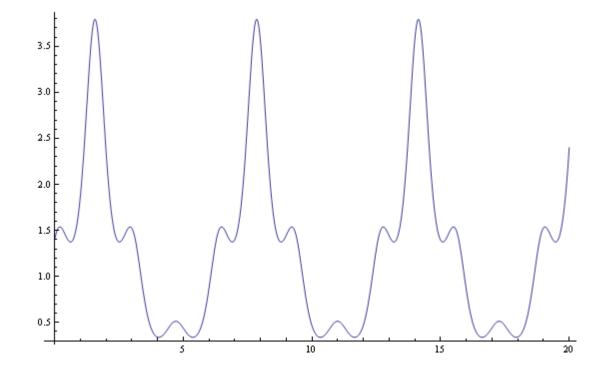


Equivalent Bases

- When do two bases generate the same lattice?
 - We can clearly permute the vectors $v_i \leftrightarrow v_j$
 - We can negate a vector $v_i \leftarrow -v_i$
 - We can add an integer multiple of one vector to another, $v_i \leftarrow v_i + kv_j$ for some $k \in \mathbb{Z}$
- More succinctly, we can multiply B from the right by any unimodular matrix U (i.e., an integer matrix of determinant ±1)
- <u>Thm</u>: Two bases B₁, B₂ are equivalent iff B₂=B₁U for a unimodular U

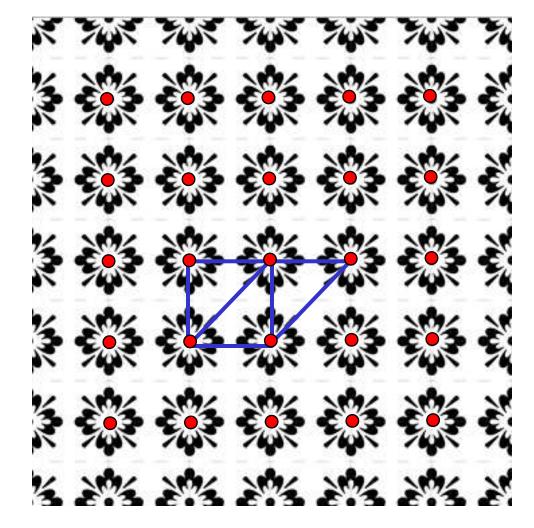
Periodic Function on R

- f: $\mathbb{R} \rightarrow \mathbb{R}$ with period 2π (equivalently f: $\mathbb{R}/(2\pi\mathbb{Z}) \rightarrow \mathbb{R}$)
- Enough to store values on [0,2 π) and read x at x mod 2 π

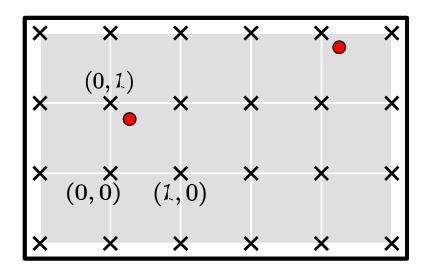


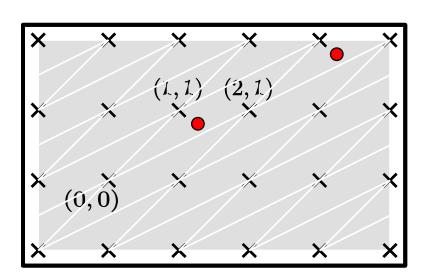
Periodic Function on R²

• $f:\mathbb{R}^n \to \mathbb{R}$ with period L (equivalently, $f:\mathbb{R}^n/L \to \mathbb{R}$)



The Fundamental Parallelepiped

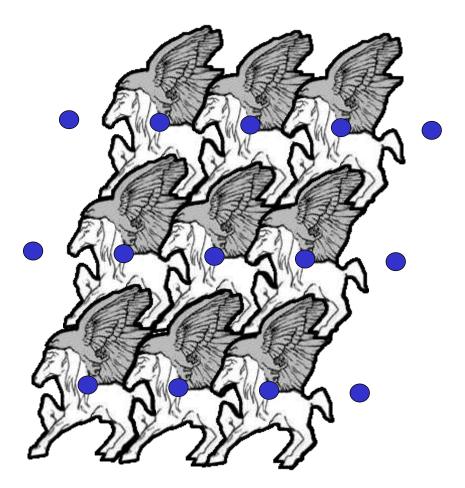


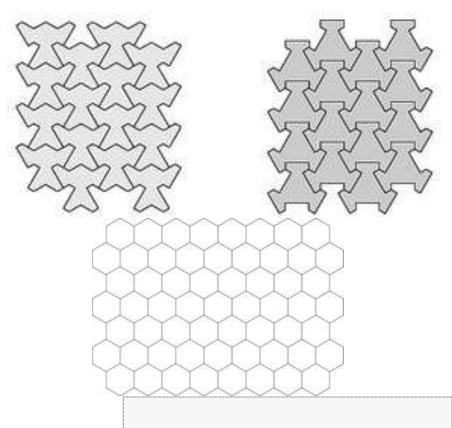


 $P(B) = \{a_1b_1 + ... + a_nb_n | a_i \text{ in } [0,1)\}$

If x=a₁b₁+...+a_nb_n then x mod P(B) := (a₁ mod 1)b₁+...+(a_n mod 1)b_n

Other Fundamental Regions





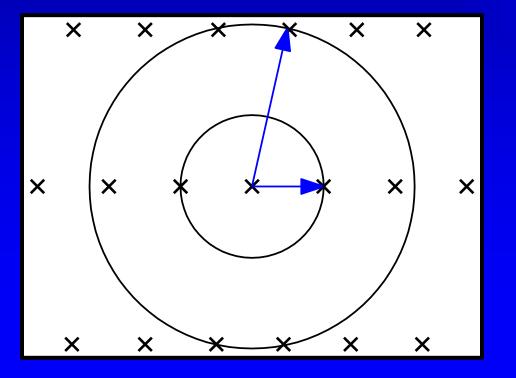
Determinant

- Def: The determinant of a lattice L(B) is det(L):=|det(B)|
- Notice that this is well defined since |det(BU)|=|det(B)det(U)|=|det(B)|
- The determinant is the volume of the fundamental parallelepiped, and hence is the reciprocal of the density

Successive Minima

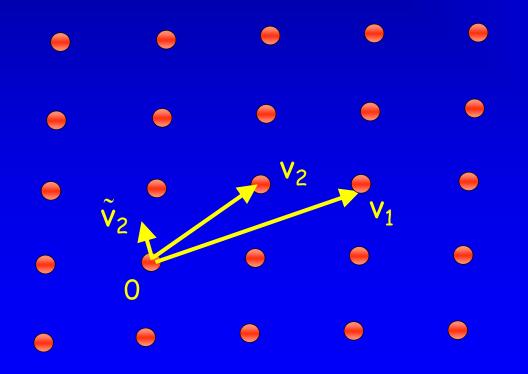
- $\lambda_1(L)$ denotes the length of the shortest vector in L
- More generally, λ_k(L) denotes the smallest radius of a ball containing k linearly independent vectors

nonzero

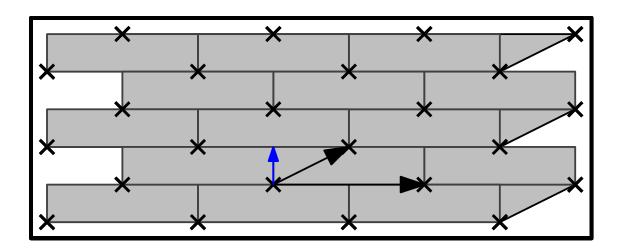


Gram-Schmidt Orthogonalization

- Given a sequence of vectors v₁,...,v_n their GSO v₁,...,v_n is defined by projecting each vector on the orthogonal complement of the previous vectors
- So $\tilde{v}_1 = v_1$, $\tilde{v}_2 = v_2 \langle v_2, \tilde{v}_1 \rangle \tilde{v}_1 / ||\tilde{v}_1||^2$, etc.

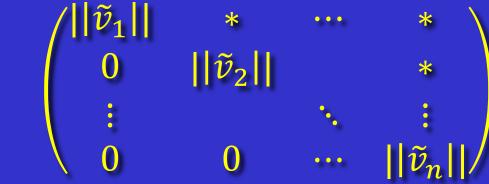


The GS Fundamental Region



Gram-Schmidt Orthogonalization

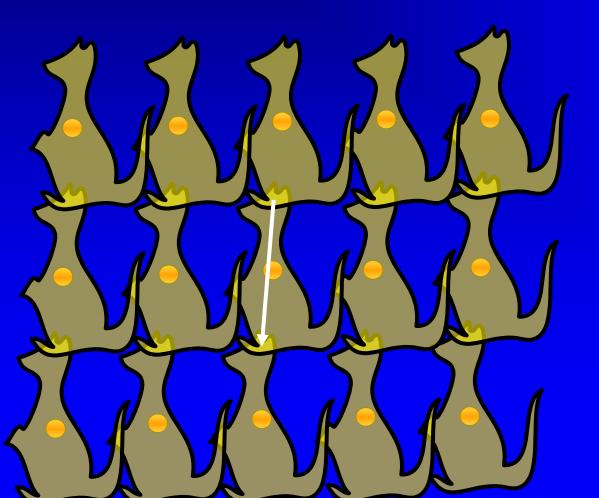
- Since v
 ₁,...,v
 _n are orthogonal, we can normalize them to get an orthonormal basis v
 ₁/||v
 ₁||,...,v
 _n||v
 _n||
- Written in this basis, the vectors v₁,...,v_n are



- (This is known as the QR decomposition)
- Lemma 1: The lattice generated by $v_{\nu}...,v_n$ has determinant $\prod ||\tilde{v}_i||$
- Lemma 2: λ_1 is at least min $||\tilde{v}_i||$

Minkowski's Theorem

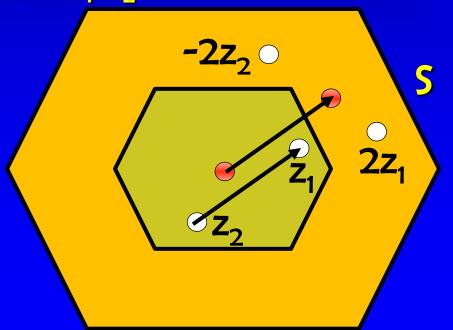
• <u>Thm (Blichfeld)</u>: For any lattice Λ and set S of volume >det(Λ) there exist $z_1, z_2 \in S, z_1 \neq z_2$ such that $z_1 - z_2 \in \Lambda$



Minkowski's Theorem

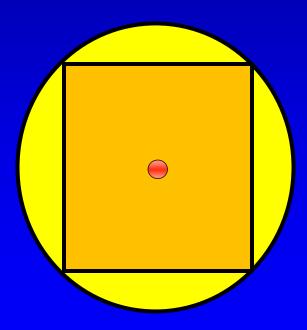
- <u>Thm (Minkowski)</u>: For any lattice Λ and convex zerosymmetric set S of volume >2ⁿdet(Λ), there exists a lattice point in S
- Proof: Let $z_1, z_2 \in S/2$ such that $z_1 z_2 \in \Lambda$. Therefore $2z_1 \in S$ and also $-2z_2 \in S$.

So we get $z_1 - z_2 \in S$



Minkowski's Theorem

- <u>Cor (Minkowski)</u>: For any lattice Λ , $\lambda_1(\Lambda) \leq \sqrt{n} \cdot \det(\Lambda)^{\frac{1}{n}}$
- Proof: Use fact that volume of ball of radius \sqrt{n} is greater than 2ⁿ. (This is true because it contains [-1,1]ⁿ)

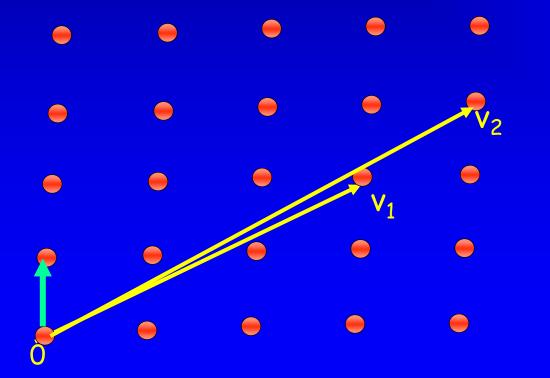


Computational Problems

- Given a basis B and a vector v, it is easy to decide if v is in L(B)
- Similarly, given two bases B₁ and B₂, it is easy to decide if L(B₁)=L(B₂)
- Contrary to these *algebraic* problems, *geometric* problems seem much harder!

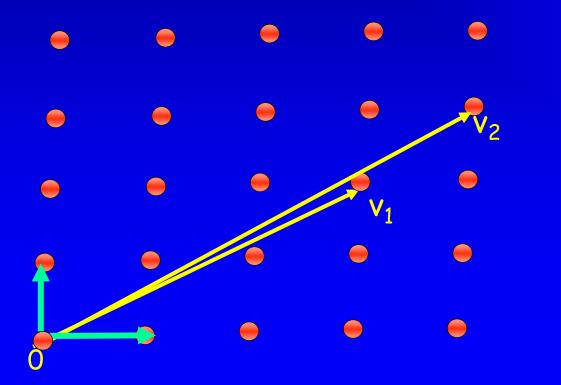
Shortest Vector Problem (SVP)

- SVP_{γ}: Given B, find a vector in L(B) of length $\leq \gamma \lambda_1(L(B))$
- GapSVP_γ: Given a lattice, decide if λ₁ (i.e., the length of the shortest nonzero vector) is:
 - YES: less than 1
 - NO: more than γ



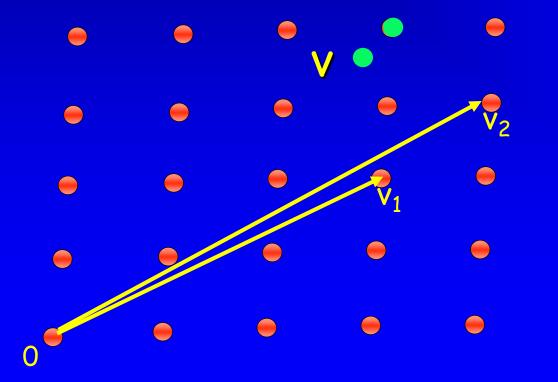
Shortest Independent Vectors Problem (SIVP)

• SIVP_{γ}: Given B, find n linearly independent vectors in L(B) of length $\leq \gamma \lambda_n(L(B))$



Closest Vector Problem (CVP)

- CVP_γ: Given B and a point ν, find a lattice point that is at most γ times farther than the closest lattice point
- SVP_{γ} is not harder than CVP_{γ} [GoldreichMicciancioSafraSeifert99]
- BDD: find closest lattice point, given that v is already "pretty close"



Summary of Known Results

n^{c/loglogn}

2^{n loglogn/logn}

NP-hard

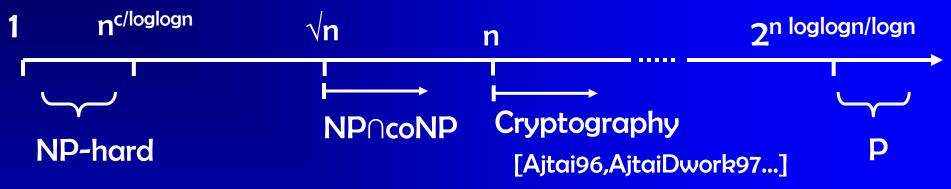
- Algorithms:
 - Exact algorithm in time 2ⁿ
 [AjtaiKumarSivakumarO2,MicciancioVoulgaris10,...]
 - Polytime algorithms for gap 2^{n loglogn/logn}

[LLL82,Schnorr87,AjtaiKumarSivakumar02]

- No better quantum algorithm known
- NP-hardness:
 - GapCVP: n^{c/loglogn} [...,DinurKindlerRazSafraO3]
 - GapSVP: n^{c/loglogn}

[Ajtai97,Micciancio01,Khot04,HavivR07]

Summary of Known Results



- Cryptography:
 - One-way functions based on GapSVP_n
 [Ajtai96,...,MicciancioR05,...]
 - Public key cryptosystems [AjtaiDwork97,R04,R05,...]
- Limits on inapproximability:
 - $GapCVP_{\sqrt{(n/logn)}} \in NP \cap coAM$
 - [GoldreichGoldwasser98]
 - GapCVP $_{\sqrt{n}} \in NP \cap coNP$ [AharonovR05]

Summary of Computational Aspects

- Approximating lattice problems (SVP, SIVP,...) to within poly(n) factors is believed to be hard:
 - Best known algorithm runs in time 2ⁿ [AjtaiKumarSivakumar02]
 - No better quantum algorithm known!
 - On the other hand, not believed to be NP-hard (for approximation factors beyond \sqrt{n} [GoldreichGoldwasser00, AharonovR04]

Thanks !!

THE REAL PROPERTY.

