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Lattices ., . o

* A lattice is a set of points

L={a,v.+..+a v _| a.integers} v, ViV F2 g
for some linearly independent v v, 2%

vectors v,,...,v, in R" o
2V,-2V, -

* We call v,,....v, a basis of L o



Basis is not Unique




History

e Geometric objects with rich mathematical structure

e Considerable mathematical interest, starting from
early work by Gauss 1801, Hermite 1850, and
Minkowski 1896.




History

e Recently, many interesting applications in
computer science:

— LLL algorithm - approximates the shortest vector in a
lattice [Lenstralenstralovasz82]. Used for:

e Factoring polynomials over rationails,
e Solving integer programs in a fixed dimension,

e Finding integer relations:
>

_6.73205080756887... =\3+5




Cryptography

e Modern economy is based on cryptography

e Cryptography is everywhere:
— In credit cards, passports, mobile phones, Internet,...

e Most systems are based on the
RSA cryptosystem, developed
by Rivest, Shamir, and RS A
Adleman in 1977
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Lattices and Cryptography (1)

e LLL can be used as a cryptanalysis tool (i.e., to
break cryptography):

— Knapsack-based cryptosystem [LagariasOdlyzko’85]
— Variants of RSA [Hastad’s5, Coppersmith’o1]




Lattices and Cryptography (2)

e Lattices can also be used to create cryptography
e This started with a breakthrough of Ajtai in 1996

e Cryptography based on lattices has many
advantages compared with ‘traditional’
cryptography like RSA:

— It has strong, mathematically proven, security
— |t is resistant to quantum computers
— In some cases, it is much faster

" WARNING ™.

”'STRONG |
. CRYPTO |







Why use lattice-based cryptography

Lattice-based crypto

‘Standard’ cryptography

© Provably secure

© Security based on a worst-
case problem

© Based on hardness of lattice
problems

© (Still) Not broken by
quantum algorithms

© Very simple computations
© Can do more things

® Not always provable...

® Security based on an
average-case problem

© Based on hardness of
factoring, discrete log, etc.

® Broken by quantum algs

® Require modular
exponentiation etc.



Provable Security

Security proof: a reduction from solving a hard problem to
breaking the cryptographic function

A security proof gives a strong evidence that our
cryptographic function has no fundamental flaws

Can also give hints as to choice of parameters

Example: One-wayness of modular squaring
— Somehow choose N=pq for two large primes p,q
- f(x)=x2mod N
— If we can compute square roots mod N

then we can factor N



Average-case hardness is not so nice...

e How do you pick a “good” N in RSA?

e Just pick p,g as random large primes and set N=pqg?
— (1978) Largest prime factors of p-1,g-1 should be large
— (1981) p+1 and g+1 should have a large prime factor

— (1982) If the largest prime factor of p-1 and g-1is p' and g', then
p'-1 and g'-1 should have large prime factors

— (1984) If the largest prime factor of p+1 and g+l is p' and g', then
p'-1 and g'-1 should have large prime factors

e Bottom line: currently, none of this is relevant



Provable security based on average-
case hardness

e The cryptographic function is hard provided
almost all N are hard to factor




Provable security based on worst-case
hardness

e The cryptographic function is hard provided the lattice problem is
hard in the worst-case

e This is a much stronger security guarantee
e It assures us that our distribution is correct




Modern Lattice-based Crypto

e The seminal work of Ajtai and Ajtai-Dwork in 1996 showed the
power of lattice-based crypto, but the resulting systems were
extremely inefficient (kReys require gigabytes, slow,...), cumbersome
to use, and nearly impossible to extend

e Recent work [MicciancioR03,R05....] identified two key problems called
Short Integer Solution (51S) and Learning With Errors (LWE) that
lead to very efficient constructions and are extremely versatile

e Another line of work [Micciancio02, PeikertRosen06,

LyubashevskyMicciancio06,...] gives extremely efficient constructions from
ideal lattices (Ring-LWE and Ring-SIS)




Introduction to Lattices



Lattices

Basis:

V,,...,v, linearly independent
vectors in R"

The lattice L is

L={av+..+ta v | a.integers}

Also denoted L(B) where B is an

n*n matrix with columns
V]’.O.’Vn.

Equivalently, one can define a

lattice as a discrete additive
subgroup of R"



RS ») " "
Lattice Bases
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X X X
(1,1)
X
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(0,0) (2,0)
X X 20




Equivalent Bases

e When do two bases generate the same lattice?
— We can clearly permute the vectors v; & v;

— We can negate a vector v; « —v;
— We can add an integer multiple of one vector to another,

v; < v; + kv; forsome k € Z

e More succinctly, we can multiply B from the right by any
unimodular matrix U (i.e., an integer matrix of
determinant +1)

e Thm: Two bases B,,B, are equivalent

iff B,=B,U for a unimodular U



Periodic Function on R

o f.IR >R with period 27t (equivalently f:IR/(27Z)2>R)
e Enough to store values on [0,21) and read x at x mod 2x©




Periodic Function on R?
o f:R"2>R with period L (equivalently, f:R"/L2>R)
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I'he Fundamental Parallelepiped

X X X X XX X X X X X o X
(0,1) (L1 (2,1)
X X X X X X X OX. X X X
o o
X X X X X X X X X X X
(0,0) (1,0) (0,0)
X X X X X X X X X X X X

P(B)={ab+..ta b | a,in [0,1)}

If x=a,b,+...+ta b, then
x mod P(B) :=
(a, mod 1)b;+...+(a, mod 1)b,, 2
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Determinant

e Def: The determinant of a lattice L(B) is det(L):=Idet(B)|
e Notice that this is well defined since
|det(BU)|=|det(B)det(U)|=Idet(B)I

e The determinant is the volume of the fundamental
parallelepiped, and hence is the reciprocal of the density



Successive Minima

e A,(L) denotes the length of the shortest vector in L

e More generally, A, (L) denotes the smallest radius of a ball
containing Rk linearly independent vectors




Gram-Schmidt Orthogonalization

¢ Given a sequence of vectors v,,...v, their GSO v,,...,u_ is
defined by projecting each vector on the orthogonal
complement of the previous vectors

® 50 v=v, v,=u,~(v, vpv//llv I3 etc.
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Gram-Schmidt Orthogonalization

Since v,,...,.v_ are orthogonal, we can normalize them to
get an orthonormalbasis v /l|v.ll,....v /l|v_[|

Written in this basis, the vectors v,,....v_ are
ol * e %
0 ezl b
0 0 - ||l

(This is known as the OR decomposition)

Lemma 1: The lattice generated by
V,,..,v. has determinant [] || ;||

Lemma 2: 4, is at least min || 7;]|



Minkowski’s Theorem

e Thm (Blichfeld): For any lattice A and set S of volume
>det(A) there exist z,,z,5,z#z, such that z-z,e A




Minkowski’s Theorem

e Thm (MinkowsRi): For any lattice A and convex zero-

symmetric set S of volume >2"det(A), there exists a lattice
point in S

o Proof: Let z,,z,€5/2 such that z-z,€ A.
Therefore 2z,€S and also -2z, €5.
So we get z-z,e95




Minkowski's Theorem
o Cor (Minkowski): For any lattice A,

1
A(A) < n-det(A)n
o Proof: Use fact that volume of ball of radius \/n is greater

than 2", (This is true because it contains [-1,1]")
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Computational Problems

e Given a basis B and a vector v, it is easy to decide if v is in
L(B)

e Similarly, given two bases B, and B,,, it is easy to decide if
L(B,)=L(B,)

e Contrary to these algebraic problems, geormetric problems
seem much harder!



Shortest Vector Problem (SVP)

o SVP,: Given B, find a vector in L(B) of length < y4,(L(B))

o GapSVP,: Given a lattice, decide if 4, (i.e., the length of
the shortest nonzero vector) is:
— YES: less than 1
— NO: more than y




Shortest Independent Vectors Problem (SIVP)

o SIVP,: Given B, find n linearly independent vectors in L(B)
of length < yA (L(B))




Closest Vector Problem (CVP)

e CVP,: Given B and a point v, find a lattice point that is at most y
times farther than the closest lattice point

° SVPV is not harder than CVPV [GoldreichMicciancioSafraSeifertQQ]
e BDD: find closest lattice point, given that v is already “pretty close”

<0




Summary of Known Results

1 n¢/loglogn ~n loglogn/logn
| R | >
— —
NP-hard P

e Algorithms:
— Exact algorithm in time 2"

[ AjtaiKumarSivakumaro2,MicciancioVoulgaris1o,...]

— Polytime algorithms for gap 2" leglogn/logn
[LLLS2,Schnorrs7,AjtaiKumarSivakumaro2]

— No better qguantum algorithm known

e NP-hardness:

— GapCVP: n¢/ledloan T | DinurKindlerRazSafrao3]
—_ GapSVP: nc/loglogn
[Ajtaio7,Micciancioo1,Khoto4,HavivRO7]



Summary of Known Results

1 n</loglogn \/n . N loglogn/logn
| | ! ‘ e I >
| NPNncoNP Cryptography |
NP-hard P

[Ajtaio6,AjtaiDwork97...]
e Cryptography:

— One-way functions based on GapSVP,
[Ajtaife,....MicciancioRO05,...]

— Public key cryptosystems [AjtaiDwork9o7,R04,R05.,...]
e Limits on inapproximability:
— GapCVP . 100m € NPNcoAM

[ GoldreichGoldwasseros]
— GGpCVp\/n & NPNcoNP [AharonovRos]



Summary of Computational Aspects

e Approximating lattice problems (SVP, SIVP,...) to
within poly(n) factors is believed to be hard:

— Best known algorithm runs in time 2"
[AjtaiKumarSivakumaro2]

— No better quantum algorithm known!

— On the other hand, not believed to be NP-hard (for

approximation factors beyond \/n) [GoldreichGoldwasseroo0,
AharonovR04]



Thanks !!



