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• A lattice is a set of points 
 

        L={a1v1+…+anvn| ai integers} 
 

 for some linearly independent 
vectors v1,…,vn in Rn 
 

• We call v1,…,vn a basis of L 
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• Geometric objects with rich mathematical structure 

• Considerable mathematical interest, starting from 
early work by Gauss 1801, Hermite 1850, and 
Minkowski 1896.  

History 
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• Recently, many interesting applications in 
computer science: 
– LLL algorithm - approximates the shortest vector in a 

lattice [LenstraLenstraLovàsz82]. Used for: 

• Factoring polynomials over rationals, 

• Solving integer programs in a fixed dimension, 

• Finding integer relations: 

 

History 
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Cryptography 
• Modern economy is based on cryptography 

• Cryptography is everywhere: 
– In credit cards, passports, mobile phones, Internet,… 

• Most systems are based on the 
RSA cryptosystem, developed 
by Rivest, Shamir, and 
Adleman in 1977 
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Lattices and Cryptography (1) 
• LLL can be used as a cryptanalysis tool (i.e., to 

break cryptography): 
– Knapsack-based cryptosystem [LagariasOdlyzko’85] 

– Variants of RSA [Håstad’85, Coppersmith’01] 
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Lattices and Cryptography (2) 
• Lattices can also be used to create cryptography 

• This started with a breakthrough of Ajtai in 1996 

• Cryptography based on lattices has many 
advantages compared with ‘traditional’ 
cryptography like RSA: 
– It has strong, mathematically proven, security 

– It is resistant to quantum computers 

– In some cases, it is much faster 
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 ‘Standard’   cryptography  
 Not always provable… 

 Security based on an 
average-case problem 

 Based on hardness of 
factoring, discrete log, etc. 

 Broken by quantum algs 

 Require modular 
exponentiation etc. 

 

Why use lattice-based cryptography 
 Lattice-based crypto 
 Provably secure 

 Security based on a worst-
case problem 

 Based on hardness of lattice 
problems 

 (Still) Not broken by 
quantum algorithms 

 Very simple computations 

 Can do more things 



• Security proof: a reduction from solving a hard problem to 
breaking the cryptographic function 

• A security proof gives a strong evidence that our 
cryptographic function has no fundamental flaws 

• Can also give hints as to choice of parameters 
 

• Example: One-wayness of modular squaring 
– Somehow choose N=pq for two large primes p,q 
– f(x)=x2 mod N 
– If we can compute square roots mod N  
 then we can factor N 

 

Provable Security 



• How do you pick a “good” N in RSA? 
• Just pick p,q as random large primes and set N=pq? 

– (1978) Largest prime factors of p-1,q-1 should be large 
– (1981) p+1 and q+1 should have a large prime factor 
– (1982) If the largest prime factor of p-1 and q-1 is p' and q', then 

p'-1 and q'-1 should have large prime factors 
– (1984) If the largest prime factor of p+1 and q+1 is p' and q', then 

p'-1 and q'-1 should have large prime factors 

• Bottom line: currently, none of this is relevant 

Average-case hardness is not so nice… 



• The cryptographic function is hard provided  
almost all N are hard to factor 

Provable security based on average-
case hardness 

N fN 



• The cryptographic function is hard provided  the lattice problem is 
hard in the worst-case 

• This is a much stronger security guarantee 
• It assures us that our distribution is correct 

Provable security based on worst-case 
hardness 

L fL 
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Modern Lattice-based Crypto 
• The seminal work of Ajtai and Ajtai-Dwork in 1996 showed the 

power of lattice-based crypto, but the resulting systems were 
extremely inefficient (keys require gigabytes, slow,…), cumbersome 
to use, and nearly impossible to extend 

• Recent work [MicciancioR03,R05,…] identified two key problems called 
Short Integer Solution (SIS) and Learning With Errors (LWE) that 
lead to very efficient constructions and are extremely versatile 

• Another line of work [Micciancio02, PeikertRosen06, 

LyubashevskyMicciancio06,…] gives extremely efficient constructions from 
ideal lattices (Ring-LWE and Ring-SIS) 



Introduction to Lattices 



Basis:  
    v1,…,vn linearly independent 

vectors in Rn 

 
The lattice L is     
   L={a1v1+…+anvn| ai integers} 
 
Also denoted L(B) where B is an 

n*n matrix with columns 
v1,…,vn. 

 
Equivalently, one can define a 

lattice as a discrete additive 
subgroup of Rn 
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Lattice Bases 



21 

Equivalent Bases 
• When do two bases generate the same lattice? 

– We can clearly permute the vectors 𝑣𝑖 ↔ 𝑣𝑗 

– We can negate a vector 𝑣𝑖 ← −𝑣𝑖 

– We can add an integer multiple of one vector to another, 

𝑣𝑖 ← 𝑣𝑖 + 𝑘𝑣𝑗  for some 𝑘 ∈  
• More succinctly, we can multiply B from the right by any 

unimodular matrix U (i.e., an integer matrix of 
determinant ±1) 

• Thm: Two bases B1,B2 are equivalent  

 iff B2=B1U for a unimodular U 



Periodic Function on R 

  

• f:   with period 2 (equivalently f: /(2 ) ) 

• Enough to store values on [0,2) and read x at x mod 2 



Periodic Function on R2 

  

• f: n
  with period L (equivalently, f: n/L ) 
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The Fundamental Parallelepiped 

P(B)={a1b1+…+anbn| ai in [0,1(} 
 
If x=a1b1+…+anbn then 
x mod P(B) :=  
     (a1 mod 1)b1+…+(an mod 1)bn 
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Other Fundamental Regions 
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Determinant 
• Def: The determinant of a lattice L(B) is det(L):=|det(B)| 

• Notice that this is well defined since  

 |det(BU)|=|det(B)det(U)|=|det(B)| 

• The determinant is the volume of the fundamental 
parallelepiped, and hence is the reciprocal of the density 



Successive Minima 

• 𝜆1 𝐿  denotes the length of the shortest vector in L 

• More generally, 𝜆𝑘 𝐿  denotes the smallest radius of a ball 
containing k linearly independent vectors 



Gram-Schmidt Orthogonalization 
• Given a sequence of vectors v1,…,vn their GSO ṽ1,…,ṽn is 

defined by projecting each vector on the orthogonal 
complement of the previous vectors 

• So ṽ1=v1, ṽ2=v2-v2 ,ṽ1ṽ1/||ṽ1||2, etc. 

0 

v1 v ̃2 

v2 
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The GS Fundamental Region 



Gram-Schmidt Orthogonalization 
• Since ṽ1,…,ṽn are orthogonal, we can normalize them to 

get an orthonormal basis ṽ1/||ṽ1||,…,ṽn/||ṽn|| 

• Written in this basis, the vectors v1,…,vn are 
| 𝑣 1 | ∗ ⋯ ∗

0 | 𝑣 2 | ∗

⋮ ⋱ ⋮
0 0 ⋯ | 𝑣 𝑛 |

 

• (This is known as the QR decomposition) 

• Lemma 1: The lattice generated by  

 v1,…,vn has determinant  | 𝑣 𝑖 | 

• Lemma 2: 𝜆1 is at least min | 𝑣 𝑖 | 



Minkowski’s Theorem 

• Thm (Blichfeld): For any lattice Λ and set S of volume 
>det(Λ) there exist z1,z2S,z1z2 such that z1-z2Λ 



Minkowski’s Theorem 
• Thm (Minkowski): For any lattice Λ and convex zero-

symmetric set S of volume >2ndet(Λ), there exists a lattice 
point in S 

• Proof: Let z1,z2S/2 such that z1-z2Λ. 

    Therefore 2z1S and also -2z2S.  

    So we get z1-z2S 

z1 
z2 

2z1 

-2z2 
S 



Minkowski’s Theorem 
• Cor (Minkowski): For any lattice Λ, 

𝜆1 Λ ≤ 𝑛 ∙ det Λ
1
𝑛 

• Proof: Use fact that volume of ball of radius 𝑛 is greater 
than 2n. (This is true because it contains [-1,1]n) 
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• Given a basis B and a vector v, it is easy to decide if v is in 
L(B) 

• Similarly, given two bases B1 and B2, it is easy to decide if 
L(B1)=L(B2) 

• Contrary to these algebraic problems, geometric problems 
seem much harder! 

 

 

Computational Problems 
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• SVP𝛾: Given B, find a vector in L(B) of length ≤ 𝛾𝜆1(𝐿 𝐵 ) 

• GapSVP𝛾: Given a lattice, decide if 𝜆1 (i.e., the length of 
the shortest nonzero vector) is: 
– YES: less than 1 

– NO: more than 𝛾 
 

 

Shortest Vector Problem (SVP) 

0 

v2 

v1 
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• SIVP𝛾: Given B, find n linearly independent vectors in L(B) 
of length ≤ 𝛾𝜆𝑛(𝐿 𝐵 ) 

 

 

Shortest Independent Vectors Problem (SIVP) 

0 

v2 

v1 
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• CVP𝛾: Given B and a point v, find a lattice point that is at most 𝛾 

times farther than the closest lattice point 
• SVP𝛾 is not harder than CVP𝛾 [GoldreichMicciancioSafraSeifert99] 
• BDD: find closest lattice point, given that v is already “pretty close” 

 
 
 

Closest Vector Problem (CVP) 

0 

v2 

v1 

v 



• Algorithms: 
– Exact algorithm in time 2n 

[AjtaiKumarSivakumar02,MicciancioVoulgaris10,…] 

– Polytime algorithms for gap 2n loglogn/logn 

[LLL82,Schnorr87,AjtaiKumarSivakumar02] 

– No better quantum algorithm known 

• NP-hardness: 
– GapCVP: nc/loglogn […,DinurKindlerRazSafra03] 

– GapSVP: nc/loglogn  

 [Ajtai97,Micciancio01,Khot04,HavivR07] 

 

 

Summary of Known Results 
1 2n loglogn/logn 

NP-hard P 

nc/loglogn 



Summary of Known Results 

• Cryptography: 
– One-way functions based on GapSVPn 

[Ajtai96,…,MicciancioR05,…] 

– Public key cryptosystems [AjtaiDwork97,R04,R05,…]  

• Limits on inapproximability: 
– GapCVP(n/logn) 2 NP∩coAM   

 [GoldreichGoldwasser98] 

– GapCVPn 2 NP∩coNP [AharonovR05] 

 

1 2n loglogn/logn 

NP-hard P 

n 

NP∩coNP 

nc/loglogn n 

Cryptography 

[Ajtai96,AjtaiDwork97…] 



• Approximating lattice problems (SVP, SIVP,…) to 
within poly(n) factors is believed to be hard: 
– Best known algorithm runs in time 2n 

[AjtaiKumarSivakumar02] 

– No better quantum algorithm known! 

– On the other hand, not believed to be NP-hard (for 
approximation factors beyondn) [GoldreichGoldwasser00, 
AharonovR04] 

 

Summary of Computational Aspects 
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Thanks !! 


