
Architectural Considerations for Scalable Indic Document Analytics

Sai Susarla Parag Deshmukh K. Gopinath
NetApp NetApp Computer Science and Automation

Bangalore Bangalore Indian Institute of Science Bangalore
sai.susarla@gmail.com parag.d1@gmail.com gopi@csa.iisc.ernet.in

Abstract

Indic heritage knowledge is embedded in millions of manuscripts at various stages of digitization
and analysis. Though numerous powerful tools have been developed for linguistic analysis of
Samskrit texts, employing them together on large document collections and building end-user
applications is a challenge due to non-standard interfaces. This paper examines the architectural
needs of scalable Indic document analytics, and presents our experience in building an actual
system. Though it is a work in progress, we demonstrate how careful metadata design enabled us
to rapidly develop useful applications via extensive reuse of state-of-the-art analysis tools. This
paper offers an approach to standardization of linguistic analysis output, and lays out guidelines
for Indic document metadata design and storage.

1 Introduction

There is a lot of interest and activity in applying computing technology to unearth the knowledge content
of India’s heritage literature especially in Samskrit language. This has led to several research efforts
to produce analysis tools for Samskrit language content at various levels – text, syntax, semantics and
meaning (Goyal et al., 2012; Kumar, 2012; Huet, 2002; Kulkarni, 2016; Hellwig, 2009). As this field
is still in its infancy, these efforts have so far been addressing algorithmic issues in specific linguistic
analysis problems. However, as the tools mature and proliferate, it becomes imperative to make them
interoperable to solve higher order document analytics problems that involve larger document sets with
high performance. For instance, though several alternative linguistic tools exist for Samskrit text anal-
ysis (morphological analysis, grammatical checking), they use custom formats to represent input text
and analysis outcome, mainly designed for direct human consumption, and not for further machine-
processing. This inhibits the use of those tools to build end-user applications for cross-correlating texts,
glossary indices, concept search etc.

On the other hand, the number of Heritage Indic documents yet to be explored is staggering. Survey
data from National Mission for Manuscripts (NAMAMI, 2012) indicate that there are 3.5 million palm
leaf manuscripts in various centers in India. Of them about 2 million have been catalogued, but less than
102,000 texts scanned (having 10 million pages totaling 300TB in size), let alone converted to Unicode
text. In addition, The Internet Archive project has a huge collection of scanned printed Indic books. Very
few of them has been converted to text. There are also hundreds of thousands of online Unicode Samskrit
documents yet to be analyzed grammatically. Use of technology is a must to address this scale.

We believe that to take Indic knowledge exploration to the next level, there needs to be a systematic,
end-to-end, interoperability-driven architectural effort to store, exchange, parse, analyze and mine Indic
documents at large scale. Due to lack of standardized data representation and machine interfaces for
tools, Indic document analysis is unable to leverage numerous advances in data analytics that are already
available for English and other languages.

In this paper, we outline the analytics needs of heritage Indic documents, architectural needs to mine
large document sets and propose a metadata representation that enables interoperability as a first step.



Figure 1: A Workflow for Indic Document Analytics

2 Indic Document Analytics: Overview

Heritage Indic documents come in all media formats and sizes. They include palm leaf and other
manuscripts containing hand-written text preserved over millenia, books printed over the last 2 centuries,
audio/video recordings of speeches delivered by traditional scholars, and thousands of Unicode texts
available over the web. Some of these have been digitized, but not yet converted to machine-processable
text. They come in dozens of Indic scripts, languages and fonts in multiple combinations (NAMAMI,
2016), making their organization and processing an engineering challenge. In addition, much of Indic
tribal knowledge is still locked up as regional traditions yet to be recorded and captured from their prac-
titioners. Many Indic documents use languages with similar grammatical structure to Samskrit. Samskrit
literature is well known to have a rigorous linguistic discipline that makes it more amenable to machine-
processing and automated knowledge extraction than other natural languages (Goyal et al., 2012). We
use the term Indic Document Analytics (IDA) to denote services to explore the content of Indic doc-
uments at various levels – text extraction, syntactic and semantic analysis, knowledge search, mining,
representation and inference.

The potential for automated mining of Indic knowledge due to its linguistic base of Samskrit, cou-
pled with the sheer size of Indic document corpus yet to be examined, opens the opportunity to pursue
Scalable Indic Document Analytics as an impactful research area in computing. This area is inherently
multi-disciplinary, and involves rich media analytics (of audio, video, images), machine-learning, com-
putational linguistics, graph databases, knowledge modeling and scale-out cloud architecture.

Figure 1 illustrates the various stages of a typical IDA workflow covering three distinct transforma-
tions: media to text, text to concept, and concept to insight. Each of these stages produces a high volume
of metadata in the form of analysis output, content indexes and user feedback that need to be persisted.

2.1 Requirements of an IDA Platform
In addition to scalability and performance to handle millions of documents by thousands of simultaneous
users, an IDA platform must have the following properties:

Durability: It must provide both data and metadata persistence, so users can build on prior analysis by
others.

Extensibility: The platform must support functional extensions to its services via APIs. It should also
provide well-documented data formats and interfaces to incorporate existing and new analytics tools
into its fold. This allows existing analysis tools to be reused in larger contexts than intended origi-
nally.



Crowd-sourcing: Ambiguity is inherent in natural language understanding. To help resolve ambiguity
in analysis and enable users to enrich each other’s knowledge through the platform, it must accept
human feedback and adapt to it (analogous to Wikipedia). However to reduce user burden, the IDA
system must have built-in intelligence to auto-apply suggested corrections to similar contexts.

3 Architectural Considerations for IDA

We now discuss several architectural implications of the above requirements.

3.1 Human-assisted Analytics
Machine processing of Indic documents is still prone to errors and ambiguity, For instance, morpholog-
ical analysis (Kulkarni, 2016; Huet, 2002) of a Samskrit sentence produces alternative semantic trees
sometimes running into hundreds. Text segmentation to detect words from a punctuation-free Indic
character sequence can also generate multiple alternative segmentations. Such tools still need human
intervention both to supply the context to prune the choices during analysis, and to select a meaningful
option from analysis output. Further, system adaptation needs to be built in to create self-improving
analyzers. All this requires a mechanism to capture human feedback persistently and incorporate it into
analysis. The IDA architecture should provide user-feedback-driven adaptation as a value-addition on
top of individual analysis tools, and define standard interfaces to exchange that information with the
tools.

3.2 Handling Data Diversity
The input data for an IDA workflow are source documents, which are mostly read-only content. The
document analysis tools augment original content with one or more alternate views (e.g., morphological
analysis of a sentence, a concept map, an OCR output). When a user annotates those views, some of
them become irreplaceable and hence must be stored durably. From a mutability standpoint, an IDA
system must deal with three types of content with different rates of churn:

Read-only Source Content that is written once and never updated,

Mutable System-inferred Content that can be reproduced by re-running analytics, and

Mutable Human-supplied Content including user annotations and corrections to system-inferred con-
tent.

IDA’s data store should clearly demarcate these three types and treat them differently to avoid imbalance
in storage performance. Also, for the same source content, there could be multiple alternate views at
multiple levels of semantics and granularity that need to be tracked as such. For instance, there could be
a sentence-level analysis, paragraph-level analysis and global analysis that coexist for a document.

3.3 Storage Considerations
Rich media documents (audio, video, images, HTML markup text) can be bulky in size, but are read-only.
Scalable object stores such as Ceph (RedHat, 2016) are well-suited to such data. Machine-generated
analysis output is semi-structured (typically hierarchical key-value markup such as JSON (JSON, 2000)
or XML). An example can be found in Algorithm 1. Such data is not only retrieved often for visu-
alization, but also needs to be frequently deleted and recreated as part of analysis workflows. Human
annotations require durable persistence, and are not as heavily updated. Fast and scalable semi-structured
databases such as NoSQL and graph stores (Neo4j, 2016) are suited for analytics output. Due to their di-
verse access characteristics, machine-generated and user-supplied content must be segregated in storage
for good performance.

3.4 Designing a Canonical Representation for Document Metadata
Standardizing the format of metadata is essential for interoperability of document analysis tools. Recog-
nizing the inherent diversity in Indic document metadata as outlined above is key to designing its right



representation for high-performance analytics. In general, a hierarchical key-value representation such as
JSON or XML is suitable as output format due to its flexibility and nesting structure. Typical document
analysis metadata consists of the following parts:

Source Document Segments: Segment is a portion of the source document to be analyzed, and is iden-
tified by its source coordinates. The format of the coordinates varies based on the media type: e.g.,
Bounding box coordinates in case of a scanned page, time interval in case of an audio/video stream,
or text offset and size in case of Unicode text. Document segments can be identified explicitly
by users, via automatic segmentation, or via user corrections to auto-generated segments. In case
of user-modified segments, their coordinates must be stored persistently, e.g., paragraph bounding
boxes in a scanned page. Finally, segments can be nested within other segments. This enables
hierarchical analysis.

Annotation: An annotation describes the output of analysis of a source document segment, typically
as a set of attribute-value pairs. Annotations must be tagged as system-inferred, user-supplied or
user-endorsed. The latter indicates that the user has accepted a system-inferred annotation as valid.
Multiple alternate annotations can exist for a given segment, and some of them might be user-
endorsed. Annotations can themselves be nested, e.g., a sentence’s annotation contains its individual
word annotations. Such nesting is indicated by the nesting structure of their referred segments. For
re-running analytics on a document segment, a frequent prior operation is to remove earlier system-
inferred annotations and all their nested annotations.

Storing segment information and annotations separately enables their independent modification. Algo-
rithms 2 and 1 show two example analysis results from a Grammar RESTful service (VedaVaapi, 2016)
we built on top of Samsaadhani toolkit (Kulkarni, 2016). The query in Algorithm 2 requests morphologi-
cal analysis of the word ’gachChati’ in Samskrit but hints that it needs a subanta form. The Samsaadhanii
analyzer in the backend returns two subanta and one ti~Nanta forms, but the RESTful service prunes the
backend results to two based on requestor’s hint. The query in Algorithm 1 requests for a ’loT’ lakaara
transformation of ’gachChati’ as a verb in bahu vachanam. To compute the latter, the transform API
implementation invokes the morph analyzer to get the verb root, then the verb-form generator of Sam-
saadhanii and composes the reply. The ability to take hints and prune the analysis results can thus be
used to guide the underlying linguistic tools in the desired manner. These hints can be user-supplied,
or inferred from the larger context of a sentence (such as from previous sentences in a passage being
analyzed).

4 Implementation

We are prototyping a scalable Indic Document Analytics service called Vedavaapi that embodies the key
architectural principles outlined earlier. The objective of Vedavaapi is to enable end-user applications that
accelerate study of heritage Indic texts. Its approach is to reuse existing linguistic and other analytics
tools where possible, apply them to large document collections by bridging gaps in metadata and tools.
Figure 2 illustrates the architecture of Vedavaapi service. It employs a micro-services-based architecture
with the backend metadata stored in a scale-out MongoDB document database (MongoDB, 2016).

To evaluate the flexibility of this approach, we have built two prototype applications so far:

1. A sentence synthesizer to assist in Samskrit learning. To enable this, we developed a Grammar
REST API (VedaVaapi, 2016) that uses the Samsaadhani toolkit for Samskrit Linguistic analysis
(Kulkarni, 2016). The API returns its analysis of words and sentences using a JSON-formatted
annotation metadata based on the principles outlined in the previous section, and illustrated in Al-
gorithms 1 and 2. Given a Samskrit sentence in Unicode text, the synthesizer uses the API to trans-
form its words into other grammatical forms, suppresses some of the words, quizzes the learner and
evaluates their answers.



Algorithm 1 Example Grammar RESTful API query and its results in JSON format. An annotation is
an output of such an analysis that refers to the original word.

A Grammar RESTful API t o t r a n s f o r m word ’ gachCha t i ’ :
h t t p : / / v e d a v a a p i . o rg / grammar / t r a n s f o r m ?

word= g a c h C h a t i&e n c o d i n g = I t r a n s&t y p e = t i ~ Nanta&
o u t _ l a k a r a = loT&o u t _ v a c h a n a =bahu

and i t s r e s p o n s e :
{

" r e s u l t " : {
" d h a t u " : "gamL^ i .N" ,
" e n c o d i n g " : " I t r a n s " ,
" gana " : " bhvAdiH " ,
" l a k a r a " : " loT " ,
" meaning " : " g a t a u " ,
" p a d i " : " p a r a s m a i " ,
" p rayoga " : " k a r t a r i " ,
" p u r u s h a " : " p ra thama " ,
" r e s u l t " : " gachChantu " ,
" r o o t " : "gam " ,
" vachana " : " bahu "

} ,
" s t a t u s " : " ok "

}

Figure 2: Vedavaapi: An example IDA architecture. The components highlighted in red are currently
implemented. IndicDocs is the previous name of Vedavaapi.



Figure 3: Textract: A Visual Text Extraction Application on Vedavaapi platform.

2. A web-based human-assisted text extraction tool (Textract, 2016) for manuscript and scanned
printed text images that is agnostic to language, script and font. This tool helps build a crowd-
sourced corpus of image-to-text mappings for training existing OCR engines on unknown scripts,
fonts and languages. We have employed the document metadata schema for image documents. We
have a simple image auto-segmenter that detects the word segments from scanned text. The tool
invokes the segmenter and lets user annotate detected segments with typed text. The system then
auto-propagates the text to similar-looking character segments in the rest of the book, and lets the
user correct any misidentified characters manually. For auto-propagation, we currently employ very
simple image template matching, which can be replaced by sophisticated OCR engines. This illus-
trates a complete end-to-end workflow and the benefits of tools that operate on common document
metadata.
Figure 3 shows a screenshot of this application auto-segmenting a Telugu book photographed using
a Smartphone. Each of the green colored rectangles is stored as a segment with its coordinates {x,
y, width, height} in the page’s image. The tool currently relies on a user to supply what area of
the image constitutes an unbroken character sequence such as a paragraph. Once demarcated, those
segments can then be annotated with their constituent text. The same segment’s text can later be
analyzed and annotated at grammatical level, semantic level and conceptual summary level.

5 Future Directions

The metadata architecture laid out in this paper enables several powerful applications including text
search within scanned documents, sentence tagging, concept mapping, discourse analysis and auto-
glossaries of shaastra texts. Moreover, all of them need human guidance for accurate results. We believe
the architectural choices suggested in this paper enable supervised operation to be transparently added to
existing analytics tools. We plan to build a semantic concept mapping tool for Indic shaastra texts as an
example to validate this hypothesis.

6 Conclusions

In this paper, we have discussed issues in building scalable Indic document analytics services, and pre-
sented metadata organization decisions that enable interoperability, rapid development and scaling. We



Algorithm 2 Example Grammar RESTful API query and its results. An annotation is an output of such
an analysis that refers to the original word.

A Grammar RESTful API t o a n a l y z e ’ gachCha t i ’ a s a s u b a n t a word :
h t t p : / / v e d a v a a p i . o rg / grammar / p r o p e r t i e s ?

word= g a c h C h a t i&e n c o d i n g = I t r a n s&t y p e = s u b a n t a
and i t s r e s p o n s e :
{

" r e s u l t " : {
" e n c o d i n g " : " I t r a n s " ,
" i n p u t " : " g a c h C h a t i " ,
" o u t _ e n c o d i n g " : " I t r a n s " ,
" r e s u l t " : [

{
" l e v e l " : 2 ,
" l i n g a " : "puM" ,
" r o o t " : " gachChat " ,
" s u b t y p e " : "kR^ i d a n t a " ,
" t y p e " : " s u b a n t a " ,
" vachana " : " eka " ,
" v i b h a k t i " : 7

} ,
{

" l e v e l " : 2 ,
" l i n g a " : "napuM " ,
" r o o t " : " gachChat " ,
" s u b t y p e " : "kR^ i d a n t a " ,
" t y p e " : " s u b a n t a " ,
" vachana " : " eka " ,
" v i b h a k t i " : 7

}
] ,
" t y p e " : " s u b a n t a "

} ,
" s t a t u s " : " ok "

}



have approached Indic document analytics from a systems architecture perspective. Though we do not
have a computational linguistics background, we feel that these two disciplines can complement each
other to enable large-scale exploration of Indic knowledge repositories. The first step is standardization
of tool interfaces and data exchange formats. Our initial experience indicates that this is possible and
yields rich dividends.

Acknowledgements

Our heartfelt gratitude and thanks to Prof. Amba Kulkarni for providing access to her excellent toolkit
to build on, and for encouraging us to write about this work. The foundation for this work was laid two
years ago by a generous grant from Samskrit Promotion Foundation to develop an earlier prototype of
the textract utility. Our sincere thanks to Sri Ravikiran Sarvadevabhatla, senior PhD candidate of SERC
at IISc Bangalore whose insights during brainstorming helped shape the Vedavaapi vision. We deeply
appreciate the discussions and numerous application ideas by Sri MVR Sastry of Samskrita Bharati,
especially the grammar-based application for Samskrit E-learning.

References
Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed platform for

Sanskrit processing. In 24th International Conference on Computational Linguistics (COLING), Mumbai.

Oilver Hellwig. 2009. Extracting dependency trees from sanskrit texts. Sanskrit Computational Linguistics 3,
LNAI 5406, pages 106–115.

Gérard Huet. 2002. The Zen computational linguistics toolkit: Lexicon structures and morphology computations
using a modular functional programming language. In Tutorial, Language Engineering Conference LEC’2002.

JSON. 2000. Introducing json. http://www.json.org/.

Amba Kulkarni. 2016. Samsaadhanii: A Sanskrit Computational Toolkit. http://sanskrit.uohyd.ac.in/.

Anil Kumar. 2012. Automatic Sanskrit Compound Processing. Ph.D. thesis, University of Hyderabad.

MongoDB. 2016. MongoDB NoSQL Database. http://www.mongodb.com/.

NAMAMI. 2012. Performance Summary of the National Mission for Manuscripts, New Delhi, India.
http://namami.org/Performance.htm.

NAMAMI. 2016. National manuscript mission, new delhi, india. http://namami.org/.

Neo4j. 2016. neo4j: The World’s leading Graph Database. http://www.neo4j.com/.

RedHat. 2016. Ceph Object Storage. http://www.ceph.com/.

Textract. 2016. VedaVaapi: Text Extraction from Images. http://vedavaapi.org/textract/.

VedaVaapi. 2016. VedaVaapi: Samskrit Grammar Service. http://vedavaapi.org/grammar/.


