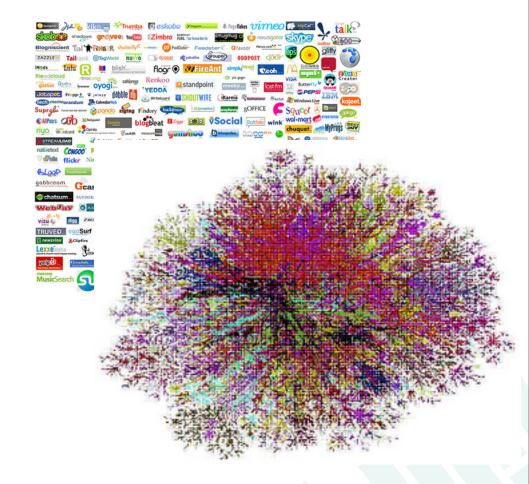
Scalable Network Processing for Social Networks

Srikanta Bedathur

based on work jointly done with Stephan Seufert, Avishek Anand and Gerhard Weikum

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI



- Navigating and Exploration of Large (Social) Graphs
 - Scaling reachability to million node graphs and beyond
 - Fast and accurate shortest paths
 - Modeling dynamic/temporal graphs
 - Visualization of dynamics in large graphs
- Combining social content with graph analytics
- Graph Reading
 - Or how to turn graphs into text
- Building time-machines
 - Temporal text retrieval and analytics

- Ubiquity of graphs
 - Social Networks
 - Biological networks
 - Citation networks
 - World Wide Web

Properties and Implications

- Structural
 - Power-law distribution of degrees
 - Low-diameter
 - Clearly non-planar
 - ⇒ Algorithms designed for near-planar graphs (e.g., road networks) don't perform well
- Content
 - Heavily annotated and/or labeled
 - ⇒Combination of content-search + structural exploration is needed

Properties and Implications

- Size
 - Very large millions of nodes, billion edges

⇒In-memory algorithms do not scale

- Frequently used
 - Navigation
 - Exploration
 - ⇒Interactive speeds are necessary
 - ⇒Visual exploration of results
 - ⇒Small errors may be tolerable

Ferrari for fast reachability

Reachability Queries

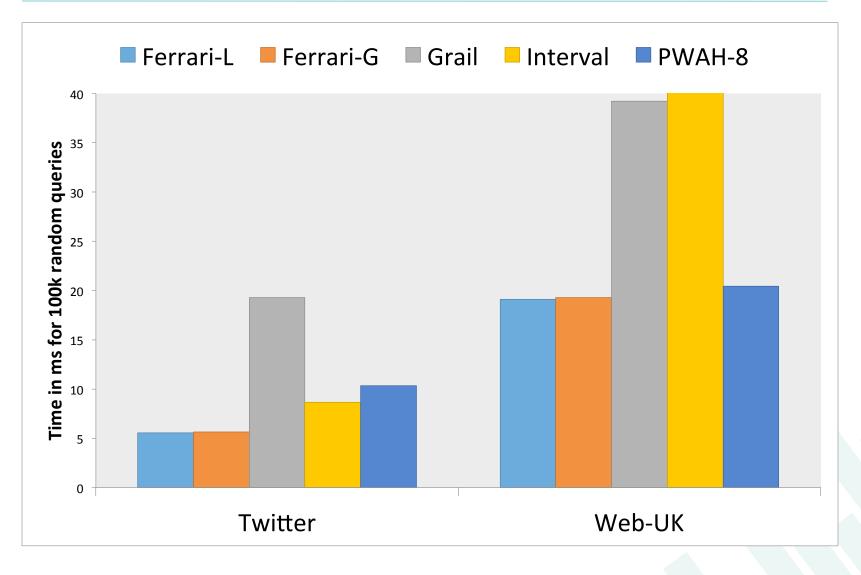
- Given a graph G = (V, E)
- Consider two vertices, v and u in V
- Answer the question:
 - Is there a path starting from v, ending at u?
- Classical problem
 - Recursive reasoning (Prolog, Datalog)
 - SQL recursion operator
 - Graph processing
 - Biological graphs
 - Call Graphs
 - Social Networks

How do we answer this?

- Online
 - Explore the graph, starting from u find a path to v
 - O (V+E) time, no extra space
 - Slow and boring
- Offline
 - Essentially a transitive closure computation
 - O(n²) space, O(1) time
 - Consider a million node graph
 - Worst-case we will have 8 x 10¹² storage = 8 Terabytes
 - Facebook has (estimated) 750 million 1 billion nodes!!
 - An Exabyte (10¹⁸)!

- Condense the graph by collapsing SCCs
- Build a spanning tree over the resulting DAG
 - Preorder traversal, and label the nodes
 - The label range at a node gives its reachable set using tree edges
- For the remaining edges
 - Propagate the labels upwards
 - Merge the labels to reduce the number of ranges at each node
- Computing an optimal cover is as hard as transitive closure computation

✓ Don't focus on "optimal cover"


- X The resulting index (i.e., interval set at each node) can be *fairly* large
 - ✓ Explicit Space bound

Ferrari : Flexible and Efficient Reachability Range Assignment for Indexing graphs

- Approximate the interval set at each node
 - Merge intervals that are "close by"
- You can answer negative reachability if target node id lies in the interval gap
- If they are within the approximated intervals
 - They may or may not be reachable (due to approximation)
 - So, recursively go down and verify
- Optimization goal:
 Minimize the number of such recursive queries

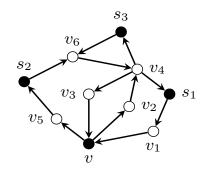
Experimental Results

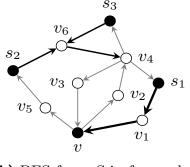
Königsegg for Fast Navigation

Given a (un)directed graph G,

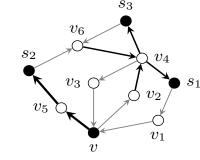
Reaching from node A to B

- Shortest path distance
- Shortest path
- Distances/paths that satisfy a constraint
- All paths in-between
- Ranked list of paths
- Variants of Single-source Shortest-path (SSSP) problem


Popular Solutions



- Online computation
 Dijkstra's algorithm, Bellman-Ford,
 Bidirectional,A*-,D*-Searches, ...
 - Typically require the graph to be in memory
 - Consume *huge* amount of intermediate memory
 - Are extremely good on near-planar graphs
- Offline indexing (+ approximation) Distance oracles [Thorup 2001], Transit-node routing [Bast et al. 2007], Sketches [Das Sarma et al. 2010],...
 - Generate approximate results
 - Only for estimating shortest path distances
 - Constant factor multiplicative errors


A Brief Sketch of Graph Sketches Das Sarma et al., WSDM 2010

- (a) Vertex v and seed set $S = \{s_1, s_2, s_3\}$
- (b) BFS from S in forward direction reaches v

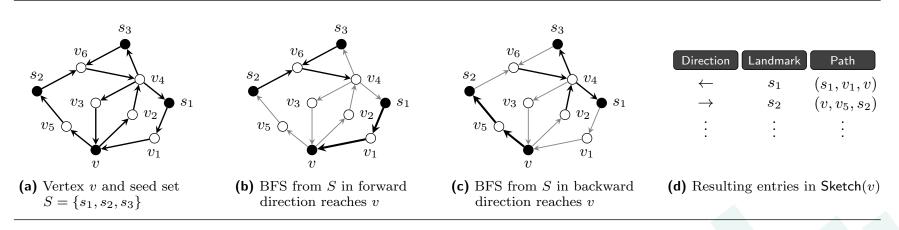
Direction	Landmark	Path
\leftarrow	s_1	(s_1, v_1, v)
\rightarrow	s_2	(v, v_5, s_2)
•	•	•
•	•	•
•	•	•

(c) BFS from S in backward direction reaches v

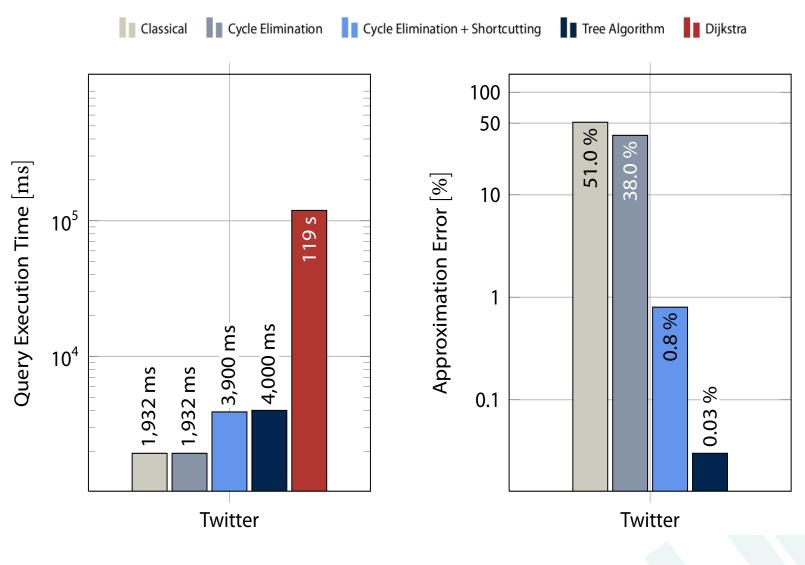
(d) Resulting entries in $\mathsf{Sketch}(v)$

Query: *dist (u,v) = ?*

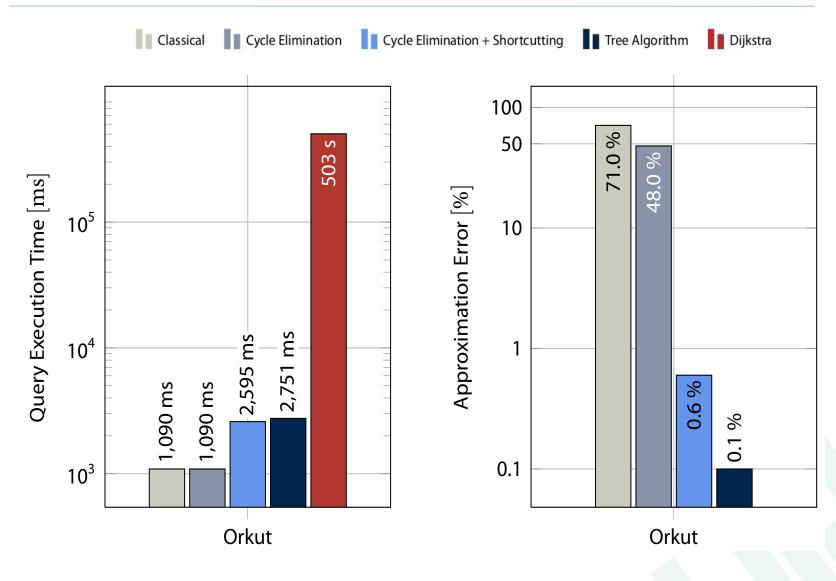
- Load sketch(u) and sketch(v)
- Look for common landmarks s.t.
 - dist $(u, s) \in$ sketch (u)
 - dist (s, v) \in sketch (v)
- Answer the distance query by *dist(u, s) + dist(s, v) ≈ dist (u,v)*
- Has been shown to be (2c-1)-approximate, where


 $1 \le r \ (= \log \lfloor |V| \rfloor) \le c$

Enriching the Graph Sketches

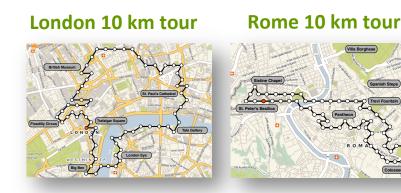

Instead of storing just the distance, store the entire path in the sketch

- No extra computation during construction
- Space overhead
 - A small constant-factor for networks with low diameter


- Obvious advantage: Get the path corresponding to the estimated distance
- Anything else ...?

Twitter

Orkut

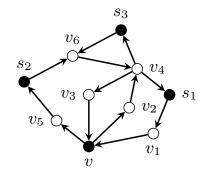

Graphs with Social Leanings

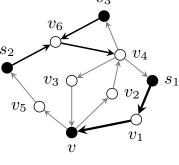
Social Media for Trip Planning

- Mining Distance-constrained Trips from Flickr
 - Shared photos on Flickr or Panoramio reflect interestingness of locations photographed
 - More than 90 million photos on Flickr are geotagged
- Question: Can we automatically provide tourist trails based on the social media?

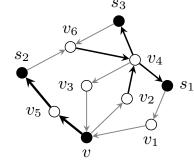
- Alternate sources
- Indian context
 - Multiple languages
 - Mixed languages

Outlook




- Scalable Graph Processing
 - Basic graph algorithmic blocks
 - Developing an interactive graph toolkit for large graphs
- Thematic tourist guidance systems
 - Driven entirely by social media
 - "Stuck" at extraction from noisy text
- Bringing graphs to masses
 - Query on graphs, turn results to text summaries

Questions?


Sketching the Graph Sketches Das Sarma et al., WSDM 2010

(a) Vertex v and seed set $S = \{s_1, s_2, s_3\}$ (b) BFS from S in forward direction reaches v

Direction	Landmark	Path
\leftarrow	s_1	(s_1, v_1, v)
\rightarrow	s_2	(v, v_5, s_2)
:	:	•
•	•	•

(c) BFS from S in backward direction reaches v

(d) Resulting entries in Sketch(v)

Let G=(V,E) be a directed graph

- 1. Set $r = \log \lfloor |V| \rfloor$
- Sample r+1 sets of nodes (uniformly at random) of sizes:
 1, 2, 2², 2³, ..., 2^r
- 3. For every $u \in V$ and for every set S
 - 1. Find the closest nodes to u in S (landmarks) landmark $h1 \in S$: dist (u, h1) = dist (u, S) landmark h2 \in S: dist (h2, u) = dist (S, u)
 - 2. Store these in sketches: Sketch(u) = <u> <distance> <h1>; <h2> <distance> <u>
- 4. Repeat steps 2-3 k-times

Answering Queries using Sketches

Query: *dist (u,v) = ?*

- Load sketch(u) and sketch(v)
- Look for common landmarks s.t.
 - dist $(u, s) \in$ sketch (u)
 - dist (s, v) \in sketch (v)
- Answer the distance query by *dist(u, s) + dist(s, v) ≈ dist (u,v)*
- Has been shown to be (2c-1)-approximate, where

 $1 \le r \le c$

Limitations

- Each round of sampling needs to traverse the whole graph repeatedly
 - k=10 is suggested!
- Is only an estimator of the distance
 - Obtaining the actual path requires interleaved access to the graph and its sketch
- Empirically observed errors are high for social networks
 - Factor 2 3 error is not tolerable

Navigation

- Dealing with dynamics
 - How to efficiently update sketches when graph is updated?
- Dealing with constraints over edges/nodes
 - State-of-the-art resorts to online computation
 - Current index solutions do not scale [Jin et al. 2010]
- Guarantees on the result quality
- Integration with distributed graph databases (like Pregel, Trinity, Neo4J, etc.)

Exploration

- Usability study of graph mining algorithms
 - How well they support visual exploration?
 - Develop a real-world benchmark
- Inclusion of additional "interestingness" measures
 - Edge-weights
 - Density [Sozio & Gionis, 2010]
- Explore meta-heuristics for size-constrained problems [Jain, Seufert and Bedathur, 2010]

- Current work:
 - Adding constraints
 - Make it more disk-friendly
 - Explore its use in distributed graph reasoning