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My Research 

� Naviga?ng	  and	  Explora?on	  of	  Large	  (Social)	  
Graphs	  
�  Scaling	  reachability	  to	  million	  node	  graphs	  and	  beyond	  
�  Fast	  and	  accurate	  shortest	  paths	  
� Modeling	  dynamic/temporal	  graphs	  	  
�  Visualiza?on	  of	  dynamics	  in	  large	  graphs	  

� Combining	  social	  content	  with	  graph	  analy?cs	  
� Graph	  Reading	  

�  Or	  how	  to	  turn	  graphs	  into	  text	  
� Building	  ?me-‐machines	  

�  Temporal	  text	  retrieval	  and	  analy?cs	  	  
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Social (and not so social) Graphs 

� Ubiquity	  of	  graphs	  
�  Social	  Networks	  
�  Biological	  networks	  
�  Cita?on	  networks	  
� World	  Wide	  Web	  
�  …	  
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Properties and Implications 

�  Structural	  
�  Power-‐law	  distribu?on	  of	  degrees	  
�  Low-‐diameter	  
�  Clearly	  non-‐planar	  
⇒ 	  Algorithms	  designed	  for	  near-‐planar	  graphs	  (e.g.,	  road	  
networks)	  don’t	  perform	  well	  

� Content	  
�  Heavily	  annotated	  and/or	  labeled	  
⇒ Combina?on	  of	  content-‐search	  +	  structural	  
explora?on	  is	  needed	  
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Properties and Implications 

�  Size	  
�  Very	  large	  –	  millions	  of	  nodes,	  billion	  edges	  
⇒ In-‐memory	  algorithms	  do	  not	  scale	  

�  Frequently	  used	  
�  Naviga?on	  
�  Explora?on	  
⇒ Interac?ve	  speeds	  are	  necessary	  
⇒ Visual	  explora-on	  of	  results	  
⇒ Small	  errors	  may	  be	  tolerable	  
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Ferrari for fast reachability 
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Reachability Queries 

� Given	  a	  graph	  G	  =	  (V,	  E)	  
� Consider	  two	  ver?ces,	  v	  and	  u	  in	  V	  
� Answer	  the	  ques?on:	  

�  Is	  there	  a	  path	  star?ng	  from	  v,	  ending	  at	  u?	  

� Classical	  problem	  	  
�  Recursive	  reasoning	  (Prolog,	  Datalog)	  
�  SQL	  recursion	  operator	  
�  Graph	  processing	  

�  Biological	  graphs	  
�  Call	  Graphs	  
�  Social	  Networks	  
�  …	  
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How do we answer this? 

� Online	  	  
�  Explore	  the	  graph,	  star?ng	  from	  u	  –	  find	  a	  path	  to	  v	  
�  O	  (V+E)	  ?me,	  no	  extra	  space	  
�  Slow	  and	  boring	  

� Offline	  –	  	  
�  Essen?ally	  a	  transi?ve	  closure	  computa?on	  
�  O(n2)	  space,	  O(1)	  ?me	  
�  Consider	  a	  million	  node	  graph	  

�  Worst-‐case	  we	  will	  have	  8	  x	  1012	  storage	  =	  8	  Terabytes	  
�  Facebook	  has	  (es?mated)	  750	  million	  	  1	  billion	  nodes!!	  

�  An	  Exabyte	  (1018)!	  
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Interval Labeling  
Agrawal et al. 1989 

✘ Compu?ng	  an	  op?mal	  cover	  is	  as	  hard	  as	  transi?ve	  closure	  
computa?on	  
ü Don’t	  focus	  on	  “op-mal	  cover”	  

✘ The	  resul?ng	  index	  (i.e.,	  interval	  set	  at	  each	  node)	  can	  be	  fairly	  
large	  
ü Explicit	  Space	  bound	  
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�  Condense	  the	  graph	  by	  collapsing	  SCCs	  
�  Build	  a	  spanning	  tree	  over	  the	  resul?ng	  DAG	  

�  Preorder	  traversal,	  and	  label	  the	  nodes	  
�  The	  label	  range	  at	  a	  node	  gives	  its	  reachable	  set	  using	  tree	  edges	  

�  For	  the	  remaining	  edges	  
�  Propagate	  the	  labels	  upwards	  
�  Merge	  the	  labels	  to	  reduce	  the	  number	  of	  ranges	  at	  each	  node	  



Ferrari : Flexible and Efficient Reachability 
Range Assignment for Indexing graphs 
� Approximate	  the	  interval	  set	  at	  each	  node	  

� Merge	  intervals	  that	  are	  “close	  by”	  

� You	  can	  answer	  nega?ve	  reachability	  if	  target	  
node	  id	  lies	  in	  the	  interval	  gap	  

�  If	  they	  are	  within	  the	  approximated	  intervals	  
�  They	  may	  or	  may	  not	  be	  reachable	  (due	  to	  
approxima?on)	  	  

�  So,	  recursively	  go	  down	  and	  verify	  
� Op?miza?on	  goal:	  	  
Minimize	  the	  number	  of	  such	  recursive	  queries	  
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Experimental Results 
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Königsegg for Fast Navigation 
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Navigational Problems 

Given	  a	  (un)directed	  graph	  G,	  
Reaching	  from	  node	  A	  to	  B	  

�  Shortest	  path	  distance	  
�  Shortest	  path	  
�  Distances/paths	  that	  sa?sfy	  a	  constraint	  
�  All	  paths	  in-‐between	  
�  Ranked	  list	  of	  paths	  

� Variants	  of	  Single-‐source	  Shortest-‐path	  (SSSP)	  
problem	  
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Popular Solutions 

� Online	  computa?on	  
Dijkstra’s	  algorithm,	  Bellman-‐Ford,	  
Bidirec?onal,A*-‐,D*-‐Searches,	  …	  
�  Typically	  require	  the	  graph	  to	  be	  in	  memory	  
�  Consume	  huge	  amount	  of	  intermediate	  memory	  
�  Are	  extremely	  good	  on	  near-‐planar	  graphs	  

� Offline	  indexing	  (+	  approxima?on)	  
Distance	  oracles	  [Thorup	  2001]	  ,	  Transit-‐node	  rou?ng	  
[Bast	  et	  al.	  2007],	  Sketches	  [Das	  Sarma	  et	  al.	  2010]	  ,…	  
�  Generate	  approximate	  results	  
�  Only	  for	  es?ma?ng	  shortest	  path	  distances	  
�  Constant	  factor	  mul-plica-ve	  errors	  
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A Brief Sketch of Graph Sketches 
Das Sarma et al., WSDM 2010  

Query:	  dist	  (u,v)	  =	  ?	  
�  Load	  sketch(u)	  and	  sketch(v)	  
�  Look	  for	  common	  landmarks	  s.t.	  

�  dist	  (u,	  s)	  ∈	  sketch	  (u)	  
�  dist	  (s,	  v)	  ∈	  sketch	  (v)	  

�  Answer	  the	  distance	  query	  by	  
dist(u,	  s)	  +	  dist(s,	  v)	  ≈	  dist	  (u,v)	  

�  Has	  been	  shown	  to	  be	  (2c-‐1)-‐approximate,	  where	  
1	  ≤	  r	  (=	  log	  ⎣|V|⎦)	  	  ≤	  c	  
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Figure 1: Precomputation Example
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(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v)  = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node



Enriching the Graph Sketches  
Instead	  of	  storing	  just	  the	  distance,	  store	  the	  en?re	  path	  

in	  the	  sketch	  
� No	  extra	  computa?on	  during	  construc?on	  
�  Space	  overhead	  

�  A	  small	  constant-‐factor	  for	  networks	  with	  low	  diameter	  
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Figure 1: Precomputation Example
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(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v)  = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node

� Obvious	  advantage:	  	  
Get	  the	  path	  corresponding	  to	  the	  es?mated	  distance	  

�  Anything	  else…?	  
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Graphs with Social Leanings 
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Social Media for Trip Planning 

� Mining	  Distance-‐constrained	  Trips	  from	  Flickr	  
�  Shared	  photos	  on	  Flickr	  or	  Panoramio	  reflect	  
interes?ngness	  of	  loca?ons	  photographed	  
�  More	  than	  90	  million	  photos	  on	  Flickr	  are	  geotagged	  

� Ques?on:	  Can	  we	  automa?cally	  provide	  tourist	  
trails	  based	  on	  the	  social	  media?	  
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Antourage 

London Eye

Tate Gallery

Big Ben

Trafalgar Square
Picadilly Circus

British Museum

St. Paul's Cathedral

Pantheon

Trevi Fountain

Spanish Steps

Colosseum

St. Peter's Basilica

Sistine Chapel

Villa Borghese

London	  10	  km	  tour	  
	  
	  

Rome	  10	  km	  tour	  
	  
	  

� Alternate	  sources	  
�  Indian	  context	  

� Mul2ple	  languages	  
� Mixed	  languages	  



Outlook 
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Current work 

�  Scalable	  Graph	  Processing	  
�  Basic	  graph	  algorithmic	  blocks	  
�  Developing	  an	  interac-ve	  graph	  toolkit	  for	  large	  graphs	  

� Thema-c	  tourist	  guidance	  systems	  
�  Driven	  en-rely	  by	  social	  media	  
�  “Stuck”	  at	  extrac-on	  from	  noisy	  text	  

� Bringing	  graphs	  to	  masses	  
�  Query	  on	  graphs,	  turn	  results	  to	  text	  summaries	  
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Questions?  
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Sketching the Graph Sketches  
Das Sarma et al., WSDM 2010 

Figure 1: Precomputation Example
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(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v)  = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node
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Let	  G=(V,E)	  be	  a	  directed	  graph	  
1.  Set	  r	  =	  log	  ⎣|V|⎦	  
2.  Sample	  r+1	  sets	  of	  nodes	  (uniformly	  at	  random)	  of	  sizes:	  

1,	  2,	  22,	  23,	  …	  ,	  2r	  

3.  For	  every	  u	  ∈V	  and	  for	  every	  set	  S	  	  
1.  Find	  the	  closest	  nodes	  to	  u	  in	  S	  (landmarks)	  

landmark	  h1	  ∈	  S:	  dist	  (u,	  h1)	  =	  dist	  (u,	  S)	  
landmark	  h2	  ∈	  S:	  dist	  (h2,	  u)	  =	  dist	  (S,	  u)	  

2.  Store	  these	  in	  sketches:	  	  
Sketch(u)	  =	  <u>	  <distance>	  <h1>;	  <h2>	  <distance>	  <u>	  

4.  Repeat	  steps	  2-‐3	  k-‐?mes	  



Answering Queries using Sketches 

Query:	  dist	  (u,v)	  =	  ?	  
�  Load	  sketch(u)	  and	  sketch(v)	  
�  Look	  for	  common	  landmarks	  s.t.	  

�  dist	  (u,	  s)	  ∈	  sketch	  (u)	  
�  dist	  (s,	  v)	  ∈	  sketch	  (v)	  

� Answer	  the	  distance	  query	  by	  
dist(u,	  s)	  +	  dist(s,	  v)	  ≈	  dist	  (u,v)	  

� Has	  been	  shown	  to	  be	  (2c-‐1)-‐approximate,	  where	  
1	  ≤	  r	  ≤	  c	  
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Limitations 

� Each	  round	  of	  sampling	  needs	  to	  traverse	  the	  
whole	  graph	  repeatedly	  
�  k=10	  is	  suggested!	  

�  Is	  only	  an	  es?mator	  of	  the	  distance	  
�  Obtaining	  the	  actual	  path	  requires	  interleaved	  access	  
to	  the	  graph	  and	  its	  sketch	  

� Empirically	  observed	  errors	  are	  high	  for	  social	  
networks	  
�  Factor	  2	  –	  3	  error	  is	  not	  tolerable	  
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Navigation 

� Dealing	  with	  dynamics	  
�  How	  to	  efficiently	  update	  sketches	  when	  graph	  is	  
updated?	  

� Dealing	  with	  constraints	  over	  edges/nodes	  
�  State-‐of-‐the-‐art	  resorts	  to	  online	  computa?on	  
�  Current	  index	  solu?ons	  do	  not	  scale	  [Jin	  et	  al.	  2010]	  

� Guarantees	  on	  the	  result	  quality	  
�  Integra?on	  with	  distributed	  graph	  databases	  (like	  
Pregel,	  Trinity,	  Neo4J,	  etc.)	  
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Exploration 

� Usability	  study	  of	  graph	  mining	  algorithms	  
�  How	  well	  they	  support	  visual	  explora?on?	  
�  Develop	  a	  real-‐world	  benchmark	  

�  Inclusion	  of	  addi?onal	  “interes?ngness”	  measures	  
�  Edge-‐weights	  
�  Density	  [Sozio	  &	  Gionis,	  2010]	  

� Explore	  meta-‐heuris?cs	  for	  size-‐constrained	  
problems	  [Jain,	  Seufert	  and	  Bedathur,	  2010]	  
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� Current	  work:	  
�  Adding	  constraints	  
� Make	  it	  more	  disk-‐friendly	  
�  Explore	  its	  use	  in	  distributed	  graph	  reasoning	  

10/5/12 Bedathur - WOSC-IMPECS-KGP 29 


