
Scalable Network Processing
for Social Networks

Srikanta	 Bedathur	
	
based	 on	 work	 jointly	 done	 with	 Stephan	 Seufert,	 	
Avishek	 Anand	 and	 Gerhard	 Weikum	

My Research

� Naviga?ng	 and	 Explora?on	 of	 Large	 (Social)	
Graphs	
�  Scaling	 reachability	 to	 million	 node	 graphs	 and	 beyond	
�  Fast	 and	 accurate	 shortest	 paths	
� Modeling	 dynamic/temporal	 graphs	 	
�  Visualiza?on	 of	 dynamics	 in	 large	 graphs	

� Combining	 social	 content	 with	 graph	 analy?cs	
� Graph	 Reading	

�  Or	 how	 to	 turn	 graphs	 into	 text	
� Building	 ?me-‐machines	

�  Temporal	 text	 retrieval	 and	 analy?cs	 	

10/5/12 Bedathur - WOSC-IMPECS-KGP 2

Social (and not so social) Graphs

� Ubiquity	 of	 graphs	
�  Social	 Networks	
�  Biological	 networks	
�  Cita?on	 networks	
� World	 Wide	 Web	
�  …	

10/5/12 Bedathur - WOSC-IMPECS-KGP 3

Properties and Implications

�  Structural	
�  Power-‐law	 distribu?on	 of	 degrees	
�  Low-‐diameter	
�  Clearly	 non-‐planar	
⇒ 	 Algorithms	 designed	 for	 near-‐planar	 graphs	 (e.g.,	 road	
networks)	 don’t	 perform	 well	

� Content	
�  Heavily	 annotated	 and/or	 labeled	
⇒ Combina?on	 of	 content-‐search	 +	 structural	
explora?on	 is	 needed	

10/5/12 Bedathur - WOSC-IMPECS-KGP 4

Properties and Implications

�  Size	
�  Very	 large	 –	 millions	 of	 nodes,	 billion	 edges	
⇒ In-‐memory	 algorithms	 do	 not	 scale	

�  Frequently	 used	
�  Naviga?on	
�  Explora?on	
⇒ Interac?ve	 speeds	 are	 necessary	
⇒ Visual	 explora-on	 of	 results	
⇒ Small	 errors	 may	 be	 tolerable	

	

10/5/12 Bedathur - WOSC-IMPECS-KGP 5

Ferrari for fast reachability

10/5/12 Bedathur - WOSC-IMPECS-KGP 6

Reachability Queries

� Given	 a	 graph	 G	 =	 (V,	 E)	
� Consider	 two	 ver?ces,	 v	 and	 u	 in	 V	
� Answer	 the	 ques?on:	

�  Is	 there	 a	 path	 star?ng	 from	 v,	 ending	 at	 u?	

� Classical	 problem	 	
�  Recursive	 reasoning	 (Prolog,	 Datalog)	
�  SQL	 recursion	 operator	
�  Graph	 processing	

�  Biological	 graphs	
�  Call	 Graphs	
�  Social	 Networks	
�  …	

10/5/12 Bedathur - WOSC-IMPECS-KGP 7

How do we answer this?

� Online	 	
�  Explore	 the	 graph,	 star?ng	 from	 u	 –	 find	 a	 path	 to	 v	
�  O	 (V+E)	 ?me,	 no	 extra	 space	
�  Slow	 and	 boring	

� Offline	 –	 	
�  Essen?ally	 a	 transi?ve	 closure	 computa?on	
�  O(n2)	 space,	 O(1)	 ?me	
�  Consider	 a	 million	 node	 graph	

�  Worst-‐case	 we	 will	 have	 8	 x	 1012	 storage	 =	 8	 Terabytes	
�  Facebook	 has	 (es?mated)	 750	 million	 	 1	 billion	 nodes!!	

�  An	 Exabyte	 (1018)!	

10/5/12 Bedathur - WOSC-IMPECS-KGP 8

Interval Labeling
Agrawal et al. 1989

✘ Compu?ng	 an	 op?mal	 cover	 is	 as	 hard	 as	 transi?ve	 closure	
computa?on	
ü Don’t	 focus	 on	 “op-mal	 cover”	

✘ The	 resul?ng	 index	 (i.e.,	 interval	 set	 at	 each	 node)	 can	 be	 fairly	
large	
ü Explicit	 Space	 bound	

10/5/12 Bedathur - WOSC-IMPECS-KGP 9

�  Condense	 the	 graph	 by	 collapsing	 SCCs	
�  Build	 a	 spanning	 tree	 over	 the	 resul?ng	 DAG	

�  Preorder	 traversal,	 and	 label	 the	 nodes	
�  The	 label	 range	 at	 a	 node	 gives	 its	 reachable	 set	 using	 tree	 edges	

�  For	 the	 remaining	 edges	
�  Propagate	 the	 labels	 upwards	
�  Merge	 the	 labels	 to	 reduce	 the	 number	 of	 ranges	 at	 each	 node	

Ferrari : Flexible and Efficient Reachability
Range Assignment for Indexing graphs
� Approximate	 the	 interval	 set	 at	 each	 node	

� Merge	 intervals	 that	 are	 “close	 by”	

� You	 can	 answer	 nega?ve	 reachability	 if	 target	
node	 id	 lies	 in	 the	 interval	 gap	

�  If	 they	 are	 within	 the	 approximated	 intervals	
�  They	 may	 or	 may	 not	 be	 reachable	 (due	 to	
approxima?on)	 	

�  So,	 recursively	 go	 down	 and	 verify	
� Op?miza?on	 goal:	 	
Minimize	 the	 number	 of	 such	 recursive	 queries	

10/5/12 Bedathur - WOSC-IMPECS-KGP 10

Experimental Results

0	

5	

10	

15	

20	

25	

30	

35	

40	

Twimer	 Web-‐UK	

Ti
m
e	
in
	 m

s	 f
or
	 1
00
k	
ra
nd

om
	 q
ue

rie
s	

Ferrari-‐L	 Ferrari-‐G	 Grail	 Interval	 PWAH-‐8	

10/5/12 Bedathur - WOSC-IMPECS-KGP 11

Königsegg for Fast Navigation

10/5/12 Bedathur - WOSC-IMPECS-KGP 12

Navigational Problems

Given	 a	 (un)directed	 graph	 G,	
Reaching	 from	 node	 A	 to	 B	

�  Shortest	 path	 distance	
�  Shortest	 path	
�  Distances/paths	 that	 sa?sfy	 a	 constraint	
�  All	 paths	 in-‐between	
�  Ranked	 list	 of	 paths	

� Variants	 of	 Single-‐source	 Shortest-‐path	 (SSSP)	
problem	
	

10/5/12 Bedathur - WOSC-IMPECS-KGP 13

Popular Solutions

� Online	 computa?on	
Dijkstra’s	 algorithm,	 Bellman-‐Ford,	
Bidirec?onal,A*-‐,D*-‐Searches,	 …	
�  Typically	 require	 the	 graph	 to	 be	 in	 memory	
�  Consume	 huge	 amount	 of	 intermediate	 memory	
�  Are	 extremely	 good	 on	 near-‐planar	 graphs	

� Offline	 indexing	 (+	 approxima?on)	
Distance	 oracles	 [Thorup	 2001]	 ,	 Transit-‐node	 rou?ng	
[Bast	 et	 al.	 2007],	 Sketches	 [Das	 Sarma	 et	 al.	 2010]	 ,…	
�  Generate	 approximate	 results	
�  Only	 for	 es?ma?ng	 shortest	 path	 distances	
�  Constant	 factor	 mul-plica-ve	 errors	

10/5/12 Bedathur - WOSC-IMPECS-KGP 14

A Brief Sketch of Graph Sketches
Das Sarma et al., WSDM 2010

Query:	 dist	 (u,v)	 =	 ?	
�  Load	 sketch(u)	 and	 sketch(v)	
�  Look	 for	 common	 landmarks	 s.t.	

�  dist	 (u,	 s)	 ∈	 sketch	 (u)	
�  dist	 (s,	 v)	 ∈	 sketch	 (v)	

�  Answer	 the	 distance	 query	 by	
dist(u,	 s)	 +	 dist(s,	 v)	 ≈	 dist	 (u,v)	

�  Has	 been	 shown	 to	 be	 (2c-‐1)-‐approximate,	 where	
1	 ≤	 r	 (=	 log	 ⎣|V|⎦)	 	 ≤	 c	

10/5/12 Bedathur - WOSC-IMPECS-KGP 15

Figure 1: Precomputation Example

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(a) Vertex v and seed set
S = {s1, s2, s3}

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(b) BFS from S in forward
direction reaches v

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v) = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node

Enriching the Graph Sketches
Instead	 of	 storing	 just	 the	 distance,	 store	 the	 en?re	 path	

in	 the	 sketch	
� No	 extra	 computa?on	 during	 construc?on	
�  Space	 overhead	

�  A	 small	 constant-‐factor	 for	 networks	 with	 low	 diameter	

10/5/12 Bedathur - WOSC-IMPECS-KGP 16

Figure 1: Precomputation Example

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(a) Vertex v and seed set
S = {s1, s2, s3}

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(b) BFS from S in forward
direction reaches v

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v) = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node

� Obvious	 advantage:	 	
Get	 the	 path	 corresponding	 to	 the	 es?mated	 distance	

�  Anything	 else…?	

Twitter
[

]

[
]

10/5/12 Bedathur - WOSC-IMPECS-KGP 17

Orkut
[

]

[
]

10/5/12 Bedathur - WOSC-IMPECS-KGP 18

Graphs with Social Leanings

10/5/12 Bedathur - WOSC-IMPECS-KGP 19

Social Media for Trip Planning

� Mining	 Distance-‐constrained	 Trips	 from	 Flickr	
�  Shared	 photos	 on	 Flickr	 or	 Panoramio	 reflect	
interes?ngness	 of	 loca?ons	 photographed	
�  More	 than	 90	 million	 photos	 on	 Flickr	 are	 geotagged	

� Ques?on:	 Can	 we	 automa?cally	 provide	 tourist	
trails	 based	 on	 the	 social	 media?	

10/5/12 Bedathur - WOSC-IMPECS-KGP 20

Antourage

London Eye

Tate Gallery

Big Ben

Trafalgar Square
Picadilly Circus

British Museum

St. Paul's Cathedral

Pantheon

Trevi Fountain

Spanish Steps

Colosseum

St. Peter's Basilica

Sistine Chapel

Villa Borghese

London	 10	 km	 tour	
	
	

Rome	 10	 km	 tour	
	
	

� Alternate	 sources	
�  Indian	 context	

� Mul2ple	 languages	
� Mixed	 languages	

Outlook

10/5/12 Bedathur - WOSC-IMPECS-KGP 21

Current work

�  Scalable	 Graph	 Processing	
�  Basic	 graph	 algorithmic	 blocks	
�  Developing	 an	 interac-ve	 graph	 toolkit	 for	 large	 graphs	

� Thema-c	 tourist	 guidance	 systems	
�  Driven	 en-rely	 by	 social	 media	
�  “Stuck”	 at	 extrac-on	 from	 noisy	 text	

� Bringing	 graphs	 to	 masses	
�  Query	 on	 graphs,	 turn	 results	 to	 text	 summaries	

10/5/12 Bedathur - WOSC-IMPECS-KGP 22

Questions?

10/5/12 Bedathur - WOSC-IMPECS-KGP 23

Sketching the Graph Sketches
Das Sarma et al., WSDM 2010

Figure 1: Precomputation Example

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(a) Vertex v and seed set
S = {s1, s2, s3}

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(b) BFS from S in forward
direction reaches v

v
v1

s1
v2

v3

v4

v5

v6

s2

s3

(c) BFS from S in backward
direction reaches v

Direction Landmark Path

⇧ s1 (s1, v1, v)
⌃ s2 (v, v5, s2)
...

...
...

(d) Resulting entries in Sketch(v)

there exists, for every vertex in the sequence, an edge to its
subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi � V, 1 ⌅ i ⌅ l + 1, (1)

(vi, vi+1) � E, 1 ⌅ i < l. (2)

For a node v � V of the graph we denote by S(v) the set of
the successors of v in G, that is the set of vertices w � V
with (v,w) � E. Thus, we can express requirement (??)
equivalently as vi+1 � S(vi), 1 ⌅ i < l.
We write |p| = l to denote the length of the path p. For
vertices u, v � V , let P(u, v) be the set of all paths that start
in u and end in v. The distance from u to v, denoted by
dist(u, v), is the number of edges in the shortest such path –
or infinity if v is not reachable from u:

dist(u, v) :=

�
argminp⇥P(u,v) |p| if P(u, v) = ⌦,
⌥ else.

(3)

Path Approximation. Given two vertices u, v � V , let p
denote a shortest path (note that there could be many) from
u to v, that is, a path starting in u and ending in v with
length |p| = dist(u, v). Furthermore, let q be an arbitrary
path from u to v. By regarding q as an approximation of
the shortest path p, we can define the approximation error
of this path as

error(q) :=
|q|� |p|

|p| =
|q|� dist(u, v)

dist(u, v)
� [0,⌥]. (4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and
q = (v1, v2, . . . , vl2+1) denote paths of lenghts l1 and l2
respectively. Suppose ul1+1 = v1, that is, the last node in
path p equals the first node in path q. Then, we can create
new path, denoted by p⇤ q, of length l1+ l2 by concatenating
the paths p and q:

p ⇤ q = (u1, u2, . . . , ul1 , ul1+1) ⇤ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl�2+1). (5)

2.2 Sketch Algorithm
The sketch algorithm [?] approximates the shortest path
distance between two given nodes in general graphs using
a landmark-based approach. In order to answer a distance
query for a pair of nodes (s, d) in real time, the algorithm
employs a two-staged approach: a precomputation step to
generate sketches (distances from all vertices to so-called
landmark nodes) beforehand, and an approximation step
that uses this precomputed data to provide a very fast ap-
proximation of the node distance at query time. It works

by combining the two distances dist(s, l) , dist(l, d) of the
query nodes to/from a selected landmark node l into the
approximated distance

d̃(s, d) ⌅ dist(s, l) + dist(l, d) .

Therefore, in the original paper [?], the authors suggest to
store for every node v the distances dist(v, ·) and dist(·, v)
from (to) the node to (from) certain landmark nodes as the
result of the precomputation. This set of node-landmark
distances is called sketch of a node.
Instead of keeping just the distances, we modify the precom-
putation step to store the distances along with the actual
paths. The diameters of social networks are usually small [?],
so the paths are expected to be relatively short. Therefore,
the storage overhead of maintaining full path information
as part of the sketch is not substantial – our experiments
show that it is no more than twice the sketch with only
distance information. Obviously, we do not incur any addi-
tional computational overhead during the precomputation
step, since we require no more information than generated
by the breadth-first search and reverse breadth-first search
steps of sketch computation.
Also note that while the original algorithm returns an esti-
mate of the distance between the query nodes, our algorithm
returns more than just one approximate path between the
query nodes, namely a queue of such paths (sorted in ascend-
ing order by path length). By providing many candidate
paths, this modification could prove useful in scenarios where
– for example – constraints on certain nodes/edges must be
satisfied.
In this section we explain these two building blocks of the
(modified) sketch algorithm in detail:

2.2.1 Precomputation
The precomputation step involves sampling some sets of
nodes, computing for every node in the graph a shortest
path to and from a member of this set and storing the thus
obtained set of paths on external memory. These paths will
be used in the approximation step later. The preprocessing,
illustrated in Figure ??, works as follows:

1. Seed Set Sampling
Let r := �log (n)� where n = |V |. We uniformly
sample r + 1 sets of nodes (called seed sets) of sizes
1, 2, 22, . . . , 2r respectively. The selected sets are de-
noted by S0, S1, . . . , Sr.

2. Shortest Path Computation
For each of the sampled seed sets Si and every node

10/5/12 Bedathur - WOSC-IMPECS-KGP 24

Let	 G=(V,E)	 be	 a	 directed	 graph	
1.  Set	 r	 =	 log	 ⎣|V|⎦	
2.  Sample	 r+1	 sets	 of	 nodes	 (uniformly	 at	 random)	 of	 sizes:	

1,	 2,	 22,	 23,	 …	 ,	 2r	

3.  For	 every	 u	 ∈V	 and	 for	 every	 set	 S	 	
1.  Find	 the	 closest	 nodes	 to	 u	 in	 S	 (landmarks)	

landmark	 h1	 ∈	 S:	 dist	 (u,	 h1)	 =	 dist	 (u,	 S)	
landmark	 h2	 ∈	 S:	 dist	 (h2,	 u)	 =	 dist	 (S,	 u)	

2.  Store	 these	 in	 sketches:	 	
Sketch(u)	 =	 <u>	 <distance>	 <h1>;	 <h2>	 <distance>	 <u>	

4.  Repeat	 steps	 2-‐3	 k-‐?mes	

Answering Queries using Sketches

Query:	 dist	 (u,v)	 =	 ?	
�  Load	 sketch(u)	 and	 sketch(v)	
�  Look	 for	 common	 landmarks	 s.t.	

�  dist	 (u,	 s)	 ∈	 sketch	 (u)	
�  dist	 (s,	 v)	 ∈	 sketch	 (v)	

� Answer	 the	 distance	 query	 by	
dist(u,	 s)	 +	 dist(s,	 v)	 ≈	 dist	 (u,v)	

� Has	 been	 shown	 to	 be	 (2c-‐1)-‐approximate,	 where	
1	 ≤	 r	 ≤	 c	

10/5/12 Bedathur - WOSC-IMPECS-KGP 25

Limitations

� Each	 round	 of	 sampling	 needs	 to	 traverse	 the	
whole	 graph	 repeatedly	
�  k=10	 is	 suggested!	

�  Is	 only	 an	 es?mator	 of	 the	 distance	
�  Obtaining	 the	 actual	 path	 requires	 interleaved	 access	
to	 the	 graph	 and	 its	 sketch	

� Empirically	 observed	 errors	 are	 high	 for	 social	
networks	
�  Factor	 2	 –	 3	 error	 is	 not	 tolerable	

10/5/12 Bedathur - WOSC-IMPECS-KGP 26

Navigation

� Dealing	 with	 dynamics	
�  How	 to	 efficiently	 update	 sketches	 when	 graph	 is	
updated?	

� Dealing	 with	 constraints	 over	 edges/nodes	
�  State-‐of-‐the-‐art	 resorts	 to	 online	 computa?on	
�  Current	 index	 solu?ons	 do	 not	 scale	 [Jin	 et	 al.	 2010]	

� Guarantees	 on	 the	 result	 quality	
�  Integra?on	 with	 distributed	 graph	 databases	 (like	
Pregel,	 Trinity,	 Neo4J,	 etc.)	
	

10/5/12 Bedathur - WOSC-IMPECS-KGP 27

Exploration

� Usability	 study	 of	 graph	 mining	 algorithms	
�  How	 well	 they	 support	 visual	 explora?on?	
�  Develop	 a	 real-‐world	 benchmark	

�  Inclusion	 of	 addi?onal	 “interes?ngness”	 measures	
�  Edge-‐weights	
�  Density	 [Sozio	 &	 Gionis,	 2010]	

� Explore	 meta-‐heuris?cs	 for	 size-‐constrained	
problems	 [Jain,	 Seufert	 and	 Bedathur,	 2010]	

10/5/12 Bedathur - WOSC-IMPECS-KGP 28

� Current	 work:	
�  Adding	 constraints	
� Make	 it	 more	 disk-‐friendly	
�  Explore	 its	 use	 in	 distributed	 graph	 reasoning	

10/5/12 Bedathur - WOSC-IMPECS-KGP 29

