
1

Stack and Queue

Part-II

1

Queue

In
Out

Data structure with First-In First-Out (FIFO) behavior

In

AC B
AB

2

2

Typical Operations
on Queue Enqueue

REAR
on Queue

isempty: determines if the queue is empty
isfull: determines if the queue is full

in case of a bounded size queue
f h l f f h

Enqueue

front: returns the element at front of the queue
enqueue: inserts an element at the rear
dequeue: removes the element in front

3

Dequeue

FRONT

Possible Implementations
Li ALinear Arrays:
(static/dynamicaly allocated)

Circular Arrays:
(static/dynamically allocated)

front rear

front rear

Linked Lists: U li

4

Can be implemented by a 1-d
array using modulus operations

Linked Lists: Use a linear
linked list with insert_rear
and delete_front operations

3

Circular Queue
[3] [4]

[1]

[2]

[0]

[5]

[6]

[7]

front=0
rear=0

5

Circular Queue
[3] [4] rear = 4

C D[3] [4]

front=0 [0]

[1]

[2] [5]

[6]

[7]

After insertion
of A, B, C, DA

B

[1]

[2]

[0]

[5]

[6]

[7]

front=0
rear=0

6

4

Circular Queue
[3] [4] rear = 4

C D[3] [4]

front=0 [0]

[1]

[2] [5]

[6]

[7]

After insertion
of A, B, C, DA

B

[1]

[2]

[0]

[5]

[6]

[7]

front=2
[2]

[3]

[5]

[4] rear = 4
C D

front=0
rear=0

7
[0]

[1]

[2] [5]

[6]

[7]

After deletion of
of A, B

front: index of queue-head (always empty)
rear: index of last element, unless rear = front

[2]

[3]

[5]

[4] front=4rear = 3
[4]

[2]

[3]

[5]

front=0
rear=0

[0]

[1] [6]

[7]

Queue Empty Queue Full

[0]

[1] [6]

[7]

8

Queue Empty Condition: front == rear
Queue Full Condition: front == (rear + 1) % MAX_Q_SIZE

5

Creating and Initializing a Circular
Queue

#define MAX_Q_SIZE 100
typedef struct {

int key; /* just an example, can have

Declaration

Create and Initialize

int key; / just an example, can have
any type of fields depending
on what is to be stored */

} element;
typedef struct {

queue Q;

Q.front = 0;

Q.rear = 0;

9

element list[MAX_Q_SIZE];
int front, rear;

} queue;

Operations
int isfull (queue *q)
{

if (q->front == ((q->rear + 1) %
MAX Q SIZE))MAX_Q_SIZE))

return 1;
return 0;

}
int isempty (queue *q)
{

if (q->front == q->rear)

10

if (q->front == q->rear)
return 1;

return 0;
}

6

Operations
element front(queue *q)

void enqueue(queue *q element e)

element front(queue q)
{

return q->list[(q->front + 1) % MAX_Q_SIZE];
}

void enqueue(queue *q, element e)
{

q->rear = (q->rear + 1)%
MAX_Q_SIZE;

q->list[q->rear] = e;

void dequeue(queue *q)
{

q-> front =

11

q [q] ;
}

q
(q-> front + 1)%

MAX_Q_SIZE;
}

Practice Problems
I l t th Q li k d li t• Implement the Queue as a linked list.

• Implement a Priority Queue which maintains the
items in an order (ascending/ descending) and
has additional functions like remove_max and _
remove_min

• Maintain a Doctor’s appointment list

12

