Stack and Queue

Part-I|

" 000
Queue

Data structure with First-In First-Out (FIFO) behavior

ses(0_ e

* JE
Typical Operations
on Queue

isempty: determines if the queue is empty
isfull: determines if the queue is full
in case of a bounded size queue
front: returns the element at front of the queue
enqueue: inserts an element at the rear

dequeue: removes the element in front

REAR

Enqueue

|

l

Dequeue

FRONT

Possible Implementations

Linear Arrays:

(static/dynamicaly allocated)

front I I rear

Linked Lists: Use a linear
linked list with insert rear

and delete_front operations

Circular Arrays:
(static/dynamically allocated)

front
rear

Can be implemented by a 1-d
array using modulus operations

Circular Queue

3] [4]

1] 6]
[0] [7]

front=0
rear=0

Circular Queue

=4
31 [4] rear =
After insertion
(] 161 & ’ 6/ ofA B,C,D

[0] 171 front=0 [0] [7]

front=0
rear=0

" A
Circular Queue
[4] rear=4
3] [4]
2] 151 121
’ After insertion
i} (61 lll (6] of A,B,C,D
[0] 171 front=0 [01 [7]
front=0
rear=0
|4] rear =4
front=2

12]
After deletion of
] [6] of A,B

[0]

front: index of queue-head (always empty)
rear: index of last element, unless rear = front

13] [4] rear=3 front=4
131 [4]
. . 2] [5]
m 6l " "
frontg)(]) " [0] 7
rear=0 Queue Empty Queue Full

Queue Empty Condition: front == rear
Queue Full Condition: front == (rear + 1) % MAX_Q_SIZE

Creating and Initializing a Circular

Queue

Declaration

#define MAX_Q_SIZE 100
typedef struct {
int key; /* just an example, can have
any type of fields depending
on what is to be stored */
} element;
typedef struct {
element listfMAX_Q_SIZE];
int front, rear;
} queue;

Create and Initialize

queue Q;
Q.front = 0;
Q.rear = 0;

Operations

{

}

int isfull (queue *q)

if (9->front == ((g->rear + 1) %

MAX_Q_SIZE))

return 1;
return O;

int isempty (queue *q)

{

}

if (g->front == g->rear)
return 1;
return O;

10

Operations Practice Problems
e{'eme"t front(queue *q) « Implement the Queue as a linked list.
return g->list[(q->front + 1) % MAX_Q_SIZE]; * Implement a Priority Queue which maintains the
} items in an order (ascending/ descending) and
: " has additional functions like remove_max and
void enqueue(queue *q, element e) .
(remove_min
g->rear = (q->rear +1)% S @ RE IR T) * Maintain a Doctor’s appointment list
MAX_Q_SIZE; {
q->list[q->rear] = e; q-> front =
} (q-> front + 1)%
MAX_Q_SIZE;
}

11 12

