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Stack and Queue

Part-II
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Queue
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Data structure with First-In First-Out (FIFO) behavior

In

AC B
AB

2



2

Typical Operations 
on Queue Enqueue

REAR
on Queue

isempty: determines if the queue is empty
isfull: determines if the queue is full 

in case of a bounded size queue
f h l f f h

Enqueue

front: returns the element at front of the queue
enqueue: inserts an element at the rear 
dequeue: removes the element in front 
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Dequeue

FRONT

Possible Implementations
Li ALinear Arrays: 
(static/dynamicaly allocated)

Circular Arrays:
(static/dynamically allocated)

front rear

front rear

Linked Lists: U li
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Can be implemented by a 1-d 
array using modulus  operations

Linked Lists: Use a linear
linked list with insert_rear
and delete_front operations
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Circular Queue
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Circular Queue
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Circular Queue
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After deletion of
of A, B

front: index of queue-head (always empty)
rear: index of last element, unless rear = front
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Queue Empty Condition: front == rear
Queue Full Condition: front == (rear + 1) % MAX_Q_SIZE
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Creating and Initializing a Circular 
Queue

#define MAX_Q_SIZE 100
typedef struct {

int key; /* just an example, can have

Declaration

Create and Initialize

int key; /  just an example, can have 
any type of fields depending 
on what is to be stored */

}  element;
typedef struct {

queue Q;

Q.front = 0;

Q.rear = 0;
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element list[MAX_Q_SIZE];
int front, rear;

} queue;

Operations
int isfull (queue *q)
{

if (q->front == ((q->rear + 1) % 
MAX Q SIZE))MAX_Q_SIZE))

return 1;
return 0;

}
int isempty (queue *q)
{

if (q->front == q->rear)
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if (q->front == q->rear)
return 1;

return 0;
}
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Operations
element front( queue *q )

void enqueue( queue *q element e)

element front( queue q )
{

return q->list[(q->front + 1) % MAX_Q_SIZE];
}

void enqueue( queue *q, element e)
{

q->rear = (q->rear  + 1)% 
MAX_Q_SIZE;

q->list[q->rear] = e;

void dequeue( queue *q )
{

q-> front = 
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q [q ] ;
}

q
(q-> front + 1)% 

MAX_Q_SIZE;
}

Practice Problems
I l t th Q li k d li t• Implement the Queue as a linked list.

• Implement a Priority Queue which maintains the 
items in an order (ascending/ descending) and 
has additional functions like remove_max and _
remove_min

• Maintain a Doctor’s appointment list
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