
1

1-D Arrays
Click to add text

2

Array

 Many applications require multiple data items that
have common characteristics
 In mathematics, we often express such groups of data

items in indexed form:
 x1, x2, x3, …, xn

 Array is a data structure which can represent a
collection of data items which have the same data
type (float/int/char/…)

3

int a, b, c;
scanf(“%d”, &a);
scanf(“%d”, &b);
scanf(“%d”, &c);
printf(“%d ”, c);
printf(“%d ”, b);
printf(“%d \n”, a);

int a, b, c, d;
scanf(“%d”, &a);
scanf(“%d”, &b);
scanf(“%d”, &c);
scanf(“%d”, &d);
printf(“%d ”, d);
printf(“%d ”, c);
printf(“%d ”, b);
printf(“%d \n”, a);

3 numbers
4 numbers

Example: Printing Numbers in
Reverse

4

The Problem

 Suppose we have 10 numbers to handle
 Or 20
 Or 100
 Where do we store the numbers ? Use 100 variables

??
 How to tackle this problem?
 Solution:

 Use arrays

Printing in Reverse Using Arrays
int main()
{

int n, A[100], i;
printf(“How many numbers to read? “);
scanf(“%d”, &n);
for (i = 0; i < n; ++i)

scanf(“%d”, &A[i]);
for (i = n -1; i >= 0; --i)

printf(“%d ”, A[i]);
printf(“\n”);
return 0;

}

6

Using Arrays

 All the data items constituting the group share the
same name

int x[10];
 Individual elements are accessed by specifying

the index

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

7

First example
int main()
{
int i;
int data[10];
for (i=0; i<10; i++) data[i]= i;
i=0;
while (i<10)
{

printf("Data[%d] = %d\n", i, data[i]);
i++;

}
return 0;

}

“data refers to a block of 10
integer variables, data[0], data[1],
…, data[9]

8

The result

int main()
{
int i;
int data[10];
for (i=0; i<10; i++) data[i]= i;
i=0;
while (i<10)
{
printf("Data[%d] = %d\n", i, data[i]);
i++;

}
return 0;

}

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

Array size should be a constant

Output

9

Declaring Arrays
 Like variables, the arrays used in a program must be

declared before they are used
 General syntax:

type array-name [size];
 type specifies the type of element that will be

contained in the array (int, float, char, etc.)
 size is an integer constant which indicates the

maximum number of elements that can be stored
inside the array

marks is an array that can store a maximum of 5
integers

int marks[5];

10

 Examples:
int x[10];
char line[80];
float points[150];
char name[35];

 If we are not sure of the exact size of the array,
we can define an array of a large size

int marks[50];
though in a particular run we may only be using,
say, 10 elements

11

Accessing Array Elements

 A particular element of the array can be accessed by
specifying two things:
 Name of the array
 Index (relative position) of the element in the array

 Important to remember: In C, the index of an array
starts from 0, not 1

 Example:
 An array is defined as int x[10];
 The first element of the array x can be accessed as

x[0], fourth element as x[3], tenth element as x[9], etc.

12

Contd.

 The array index can be any expression that evaluates
to an integer between 0 and n-1 where n is the
maximum number of elements possible in the array

a[x+2] = 25;
b[3*x-y] = a[10-x] + 5;

 Remember that each array element is a variable in
itself, and can be used anywhere a variable can be
used (in expressions, assignments, conditions,…)

13

How is an array stored in memory?

 Starting from a given memory location, the
successive array elements are allocated space in
consecutive memory locations

 x: starting address of the array in memory
 k: number of bytes allocated per array element

 A[i]  is allocated memory location at address x + i*k

Array A

14

A Special Operator: AddressOf (&)

 Remember that each variable is stored at a memory
location with an unique address

 Putting & before a variable name gives the starting
address of the variable (where it is stored, not the
value)

 Can be put before any variable (with no blank in
between)

int a =10;
printf(“Value of a is %d, and address of a is

%d\n”, a, &a);

15

Example

int main()
{

int i;
int data[10];
for(i=0; i<10; i++)
printf("&Data[%d] = %u\n", i, &data[i]);
return 0;

}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

16

Initialization of Arrays
 General form:

type array_name[size] = { list of values };
 Examples:

int marks[5] = {72, 83, 65, 80, 76};
char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

 The size may be omitted. In such cases the
compiler automatically allocates enough space
for all initialized elements

int flag[] = {1, 1, 1, 0};
char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

17

How to read the elements of an
array?
 By reading them one element at a time

for (j=0; j<25; j++)
scanf (“%f”, &a[j]);

 The ampersand (&) is necessary
 The elements can be entered all in one line or in

different lines

18

A Warning

 In C, while accessing array elements, array bounds
are not checked

 Example:
int marks[5];
:
:
marks[8] = 75;

 The above assignment would not necessarily cause an
error

 Rather, it may result in unpredictable program results,
which are very hard to debug

19

Reading into an array
int main() {

const int MAX_SIZE = 100;
int i, size;
float marks[MAX_SIZE];
float total;
scanf("%d",&size);
for (i=0, total=0; i<size; i++)
{

scanf("%f",&marks[i]);
total = total + marks[i];

}
printf("Total = %f \n Avg = %f\n", total,

total/size);
return 0;

}

4

2.5

3.5

4.5

5

Total = 15.500000

Avg = 3.875000

Output

20

How to print the elements of an
array?
 By printing them one element at a time

for (j=0; j<25; j++)
printf (“\n %f”, a[j]);

 The elements are printed one per line
printf (“\n”);
for (j=0; j<25; j++)

printf (“ %f”, a[j]);
 The elements are printed all in one line (starting with a

new line)

21

How to copy the elements of one
array to another?

 By copying individual elements
for (j=0; j<25; j++)

a[j] = b[j];

 The element assignments will follow the rules
of assignment expressions

 Destination array must have sufficient size

22

Example 1: Find the minimum of a
set of 10 numbers

int main()
{

int a[10], i, min;

for (i=0; i<10; i++)
scanf (“%d”, &a[i]);

min = a[0];
for (i=1; i<10; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);
return 0;

}

23

const int size = 10;

int main()
{

int a[size], i, min;

for (i=0; i<size; i++)
scanf (“%d”, &a[i]);

min = a[0];
for (i=1; i<size; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);
return 0;

}

Alternate Version 1

Change only one
line to change the

problem size

24

#define size 10

int main()
{

int a[size], i, min;

for (i=0; i<size; i++)
scanf (“%d”, &a[i]);

min = a[0];
for (i=1; i<size; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);
return 0;

}

Alternate Version 2

Change only one
line to change the

problem size

Used #define macro

25

#define macro
 #define X Y
 Preprocessor directive
The #include you have been using is also a

preprocessor directive
 Compiler will first replace all occurrences of

string X with string Y in the program, then
compile the program

 Similar effect as read-only variables (const), but
no storage allocated

26

int main()
{

int a[100], i, min, n;

scanf (“%d”, &n); /* Number of elements */
for (i=0; i<n; i++)

scanf (“%d”, &a[i]);

min = a[0];
for (i=1; i<n; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);
return 0;

}

Alternate Version 3

Define an array of
large size and use
only the required

number of elements

27

Example 2:
Computing
cgpa

const int nsub = 6;

int main()
{

int grade_pt[nsub], cred[nsub], i, gp_sum=0,
cred_sum=0;

double gpa;

for (i=0; i<nsub; i++)
scanf (“%d %d”, &grade_pt[i], &cred[i]);

for (i=0; i<nsub; i++)
{

gp_sum += grade_pt[i] * cred[i];
cred_sum += cred[i];

}
gpa = ((float) gp_sum) / cred_sum;
printf (“\n Grade point average: is %.2lf”, gpa);
return 0;

}

Handling two arrays
at the same time

28

Things you cannot do

 You cannot
 use = to assign one array variable to another

a = b; /* a and b are arrays */
 use == to directly compare array variables

if (a = = b) ………..
 directly scanf or printf arrays

printf (“……”, a);

29

Character Arrays and Strings
char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' };

 C[0] gets the value 'a', C[1] the value 'b', and so on.
The last (7th) location receives the null character ‘\0’

 Null-terminated (last character is ‘\0’) character arrays
are also called null-terminated strings or just strings.

 Strings can be initialized in an alternative way. The
last declaration is equivalent to:

char C[8] = "abhijit";
 The trailing null character is missing here. C

automatically puts it at the end if you define it like this
 Note also that for individual characters, C uses single

quotes, whereas for strings, it uses double quotes

30

Reading strings: %s format
int main()
{

char name[25];
scanf("%s", name);
printf("Name = %s \n", name);
return 0;

}

%s reads a string into a character array
given the array name or start address.

It ends the string with the special “null” character ‘\0’.

31

Example: Finding length of a string
#define SIZE 25
int main()
{

int i, length=0;
char name[SIZE];
scanf("%s", name);
printf("Name = %s \n", name);
for (i=0; name[i]!='\0'; i++)

length++;
printf(“Length = %d\n", length);
return 0;

}

Satyanarayana

Name = Satyanarayana

Length = 13

Note that character strings read
in %s format end with ‘\0’

Output

32

Example: Counting the number of a’s
#define SIZE 25
int main()
{

int i, count=0;
char name[SIZE];
scanf("%s", name);
printf("Name = %s \n", name);
for (i=0; name[i]!='\0'; i++)

if (name[i] == 'a') count++;
printf("Total a's = %d\n", count);
return 0;

}

Satyanarayana

Name = Satyanarayana

Total a's = 6

Note that character strings read
in %s format end with ‘\0’

Output

33

Example: Palindrome Checking
int main()
{

int i, flag, count=0;
char name[25];
scanf("%s", name); /* Read Name */
for (i=0; name[i]!='\0'; i++); /* Find Length of String */
count=i; flag = 0;
/* Loop below checks for palindrome by comparison*/
for(i=0; i<count; i++)

if (name[i]!=name[count-i-1])
flag = 1;

if (flag ==0) printf ("%s is a Palindrome\n", name);
else printf("%s is NOT a Palindrome\n", name);
return 0;

}

34

Use of 1D Arrays in
Sorting

35

Sorting Data Items
 A Sorting technique is used to rearrange a given array

elements according to a comparison operator on the
elements.

 Consider a set of data items
 Each item may have more than one field

 Example: a student record with name, roll no, CGPA,…

 Sort the set in ascending/descending order of some key value
(some value of the data)
 Sort a set of integers (the key value is the value of the integer)
 Sort a set of student records according to roll no (the key value is roll

no, though a student record has other values too)

36

Assumptions

 For the sorting techniques, we will take the input as
an array of integers

 The sorting technique will reposition the elements in
the array such that they are sorted in ascending order

 Same technique can be used to sort any other data
type or sort in descending order

37

Different Sorting Techniques
 Selection sort
 Bubble sort
 Insertion sort
 Mergesort
 Quicksort
 Heapsort
 Bucket sort
 ….

Will be discussed later
in this course

38

Selection Sort

39

Selection sort
 Step 1 − Set MIN to location 0

 Step 2 − Search the minimum element in the list

 Step 3 − Swap with value at location MIN

 Step 4 − Increment MIN to point to next element

 Step 5 − Repeat until list is sorted

40

Selection sort
Input: 64 25 12 22 11

11 25 12 22 64

11 12 25 22 64

11 12 22 25 64

11 12 22 25 64

41

Selection sort
int main()
{

int i, j, min_indx, data[100], n, t;

scanf(“%d”, &n);
for (i = 0; i < n; i++) scanf(“%d”, &data[i]);

for (i = 0; i < n-1; i++)
{
min_indx = i;

for (j = i+1; j < n; j++) {
if (data[j] < data[min_indx]) min_indx = j;}

t = data[i]; data[i] = data[min_indx]; data[min_indx] = t;
}

}

42

Bubble Sort

43

Bubble sort
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the

adjacent elements if they are in wrong order.
Example: Input: 5 1 4 2 8

First Pass:
(5 1 4 2 8) –> (1 5 4 2 8)
(1 5 4 2 8) –> (1 4 5 2 8)
(1 4 5 2 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 4 2 5 8)

Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

44

Bubble sort
int main()
{

int i, j, data[100], n;

scanf(“%d”, &n);
for (i = 0; i < n; i++) scanf(“%d”, &data[i]);

for (i = 0; i < n-1; i++) {
for (j = 0; j < n-i-1; j++) {

if (data[j] > data[j+1]) {
t = data[j]; data[j] = data[j+1]; data[j+1] = t;}

}
}

}

45

Practice Problems
1. Read in an integer n (n < 25). Read n integers in an array A. Then do the following

(write separate programs for each, only the reading part is common).
1. find the sum of the absolute values of the integers.
2. Copy the positive and negative integers in the array into two additional arrays

B and C respectively. Print A, B, and C.
3. Exchange the values of every pair of values from the start (so exchange A[0]

and A[1], A[2] and A[3] and so on). If the number of elements is odd, the last
value should stay the same.

2. Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m
integers in an array B. Then do the following (write separate programs for each,
only the reading part is common).

1. Find if there are any two elements x, y in A and an element z in B, such that x
+ y = z

2. Copy in another array C all elements that are in both A and B (intersection)
3. Copy in another array C all elements that are in either A and B (union)
4. Copy in another array C all elements that are in A but not in B (difference)

3. Read in two null-terminated strings A and B (using %s. Assume max characters <
25 in each). Create another string C that is the concatenation of A and B (A
followed by B). Print A, B, C using %s

4. Read in two null-terminated strings A and B. Check if A is lexicographically smaller,
larger, or equal to B and print appropriate messages in each case.

