
1

Looping

2

Loops

n Group of statements that are executed
repeatedly while some condition
remains true

n Each execution of the group of
statements is called an iteration of the
loop

3

Example

Read 5 integers
and display their
sum

counter ← 1, sum ← 0

counter < 6

sum ← sum + n

false

true

counter = counter + 1

output sum

input n

4

Given an exam marks as input, display the
appropriate message based on the rules
below:
q If marks is greater than 49, display

“PASS”, otherwise display “FAIL”
q However, for input outside the 0-100

range, display “WRONG INPUT” and
prompt the user to input again until a
valid input is entered

Example

5

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

6

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

7

Looping: while statement

while (expression)
statement;

while (expression) {
Block of statements;

}

The condition to be tested is any expression enclosed in parentheses.
The expression is evaluated, and if its value is non-zero, the statement is
executed. Then the expression is evaluated again and the same thing
repeats. The loop terminates when the expression evaluates to 0.

8

Looping: while statement

while (expression)
statement;

while (expression) {
Block of statements;

}

expression

statement
(loop body)

False

True

9

Looping: while statement

while (expression)
statement;

while (expression) {
Block of statements;

}

expression

statement
(loop body)

False

True

The condition to be tested is any expression enclosed in parentheses.
The expression is evaluated, and if its value is non-zero, the statement is
executed. Then the expression is evaluated again and the same thing
repeats. The loop terminates when the expression evaluates to 0.

10

Example

int i = 1, n;
scanf(“%d”, &n);
while (i <= n) {

printf (“Line no : %d\n”,i);
i = i + 1;

}

11

Example

int weight;

scanf(“%d”, &weight);

while (weight > 65) {

printf ("Go, exercise, ");

printf ("then come back. \n");

printf ("Enter your weight: ");

scanf ("%d", &weight);

}

12

Sum of first N natural numbers
void main() {

int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;

}

13

SUM = 12 + 22 + 32 + …+ N2

void main() {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count * count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

14

Compute GCD of two numbers
void main() {

int A, B, temp;
scanf (“%d %d”, &A, &B);
if (A > B) {

temp = A; A = B; B = temp;
}
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
printf (“The GCD is %d”, A);

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0 è GCD is 3
gcd.c

15

Double your money
n Suppose your Rs 10000 is earning interest at

1% per month. How many months until you
double your money ?

void main() {

double my_money = 10000.0;

int n=0;

while (my_money < 20000.0) {

my_money = my_money * 1.01;

n++;

}

printf (“My money will double in %d months.\n”,n);

}

16

Maximum of positive Numbers

void main() {
double max = 0.0, next;
printf (“Enter positive numbers, end with 0 or a
negative number\n”);
scanf(“%lf”, &next);
while (next > 0) {

if (next > max) max = next;
scanf(“%lf”, &next);

}
printf (“The maximum number is %lf\n”, max) ;

}

17

Find the sum of digits of a number
void main()
{

int n, sum=0;
scanf (“%d”, &n);
while (n != 0) {

sum = sum + (n % 10);
n = n / 10;

}
printf (“The sum of digits of the number is %d \n”, sum);

}
digit-sum.c

18

n Most commonly used looping structure in C

Looping: for Statement

for (expr1; expr2; expr3)
statement;

for (expr1; expr2; expr3)
{
Block of statements;

}

expr1 (init) : initialize parameters

expr2 (test): test condition, loop
continues if expression is non-0

expr3 (update): used to alter the
value of the parameters after
each iteration

statement (body): body of loop

19

expr1
(init)

expr2
(test)

statement
(body)

expr3
(update)

False

True

20

Example: Computing Factorial

void main () {
int N, count, prod;
scanf (“%d”, &N) ;
prod = 1;
for (count = 1;count <= N; ++count)

prod = prod * count;
printf (“Factorial = %d\n”, prod) ;

}

21

Computing ex series up to N terms

void main () {

float x, term, sum;

int n, count;

scanf (“%f”, &x);

scanf (“%d”, &n);

term = 1.0; sum = 0;

for (count = 1; count < n; ++count) {

sum += term;

term *= x/count;

}

printf (“%f\n”, sum);

}

eseries-1.c

22

Computing ex series correct up to 4
decimal places

void main () {
float x, term, sum;
int cnt;
scanf (“%f”, &x) ;
term = 1.0; sum = 0;
for (cnt = 1; term >= 0.0001; ++cnt) {

sum += term;
term *= x/cnt;

}
printf (“%f\n”, sum) ;

}

eseries-2.c

23

expr1;
while (expr2) {

statement
expr3;

}

Equivalence of for and while

for (expr1; expr2; expr3)
statement;

Same as

24

void main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“%d\n”, sum) ;

}

void main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
for (count=1; count <= N; ++count)

sum = sum + count;
printf (“%d\n”, sum) ;

}

Sum of first N Natural
Numbers

25

Some observations on for

n Initialization, loop-continuation test, and update
can contain arithmetic expressions

for (k = x; k <= 4 * x * y; k += y / x)
n Update may be negative (decrement)

for (digit = 9; digit >= 0; --digit)
n If loop continuation test is initially 0 (false)

¨ Body of for structure not performed
n No statement executed

¨ Program proceeds with statement after for
structure

26

Looping: do-while statement

do
statement;

while (expression);

do {
Block of statements;

} while (expression);

statement

expression

False

True

27

Example

Problem: Prompt user to input “month” value, keep
prompting until a correct value of month is given
as input

do {
printf (“Please input month {1-12}”);
scanf (“%d”, &month);

} while ((month < 1) || (month > 12));

28

Decimal to binary conversion
(prints binary in reverse order)
void main() {

int dec;
scanf (“%d”, &dec);
do
{

printf (“%2d”, (dec % 2));
dec = dec / 2;

} while (dec != 0);
printf (“\n”);

}

29

Echo characters typed on screen
until end of line
void main () {

char echo ;
do {

scanf (“%c”, &echo);
printf (“%c”,echo);

} while (echo != ‘\n’) ;
}

30

Specifying “Infinite Loop”

while (1) {
statements

}

for (; ;)
{

statements
}

do {
statements

} while (1);

31

The break Statement

n Break out of the loop body { }
¨can use with while, do while, for, switch
¨does not work with if, else

n Causes immediate exit from a while,
do/while, for or switch structure

n Program execution continues with the
first statement after the structure

32

An Example

void main() {
int fact, i;
fact = 1; i = 1;
while (i<10) {/* run loop –break when fact >100*/

fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
++i;

}
}

33

Test if a number is prime or not
void main() {

int n, i=2;
scanf (“%d”, &n);
while (i < n) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
break;

}
++i;

}
if (i == n) printf (“%d is a prime \n”, n);

}

34

More efficient??
void main() {

int n, i = 2, flag = 0;
double limit;
scanf (“%d”, &n);
limit = sqrt(n);
while (i <= limit) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
flag = 1; break;

}
i = i + 1;

}
if (flag == 0) printf (“%d is a prime \n”, n);

}

35

The continue Statement
n Skips the remaining statements in the body of

a while, for or do/while structure
¨Proceeds with the next iteration of the loop

n while and do/while loop
¨Loop-continuation test is evaluated

immediately after the continue statement is
executed

n for loop
¨expr3 is evaluated, then expr2 is evaluated

36

An Example with break and
continue
void main() {

int fact = 1, i = 1;
while (1) {

fact = fact * i;
++i;
if (i <=10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;
}

}

37

Some Loop Pitfalls

while (sum <= NUM) ;
sum = sum+2;

for (i=0; i<=NUM; ++i);
sum = sum+i;

for (i=1; i!=10; i=i+2)
sum = sum+i;

double x;
for (x=0.0; x<2.0; x=x+0.2)

printf(“%.18f\n”, x);

38

Nested Loops: Printing a 2-D
Figure
n How would you print the following

diagram?
* * * * *
* * * * *
* * * * *

repeat 3 times
print a row of 5 *’s

repeat 5 times
print *

39

Nested Loops
const int ROWS = 3;
const int COLS = 5;
...
row = 1;
while (row <= ROWS) {

/* print a row of 5 *’s
*/

...
++row;

}

row = 1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col = 1;
while (col <= COLS) {

printf (“* “);
col++;

}
printf(“\n”);
++row;

}

outer
loop

inner
loop

40

2-D Figure: with for loop

Print
* * * * *
* * * * *
* * * * *

const int ROWS = 3;
const int COLS = 5;
....
for (row=1; row<=ROWS; ++row) {

for (col=1; col<=COLS; ++col) {
printf(“* ”);

}
printf(“\n”);

}

41

Another 2-D Figure

Print
*
* *
* * *
* * * *
* * * * *

const int ROWS = 5;
....
int row, col;
for (row=1; row<=ROWS; ++row) {

for (col=1; col<=row; ++col) {
printf(“* ”);

}
printf(“\n”);

}

2d-figure.c

42

Yet Another One

Print
* * * * *

* * * *
* * *

* *
*

const int ROWS = 5;
....
int row, col;
for (row=0; row<ROWS; ++row) {

for (col=1; col<=row; ++col)
printf(" ");

for (col=1; col<=ROWS-row; ++col)
printf("* ");

printf ("\n");
}

43

break and continue with nested
loops

n For nested loops, break and continue are
matched with the nearest loops (for, while, do-
while)

n Example:
while (i < n) {

for (k=1; k < m; ++k) {
if (k % i == 0) break;

}
i = i + 1;

}
Breaks here

44

Example
void main()
{

int low, high, desired, i, flag = 0;
scanf(“%d %d %d”, &low, &high, &desired);
i = low;
while (i < high) {

for (j = i+1; j <= high; ++j) {
if (j % i == desired) {

flag = 1;
break;

}
}
if (flag == 1) break;
i = i + 1;

}
}

Breaks here

Breaks here

45

The comma operator
n Separates expressions
n Syntax

expr-1, expr-2, …,expr-n
¨ expr-1, expr-2,…are all expressions

n Is itself an expression, which evaluates to the value of
the last expression in the sequence

n Since all but last expression values are discarded, not
of much general use

n But useful in for loops, by using side effects of the
expressions

46

Example
n We can give several expressions separated by

commas in place of expr1 and expr3 in a for
loop to do multiple assignments for example

for (fact=1, i=1; i<=10;++ i)
fact = fact * i;

for (sum=0, i=1; i<=N; ++i)
sum = sum + i * i;

