
1

Expressions

2

Expressions
n Variables and constants linked with operators

¨ Arithmetic expressions
n Uses arithmetic operators
n Can evaluate to any value

¨ Logical expressions
n Uses relational and logical operators
n Evaluates to 1 or 0 (true or false) only

¨ Assignment expression
n Uses assignment operators
n Evaluates to value depending on assignment

3

Arithmetic Operators
n Binary operators

¨ Addition: +
¨ Subtraction: –
¨ Division: /
¨ Multiplication: *
¨ Modulus: %

n Unary operators
¨ Plus: +
¨ Minus: –

2*3 + 5 – 10/3
–1 + 3*25/5 – 7
distance / time
3.14* radius * radius
a * x * x + b*x + c
dividend / divisor
37 % 10

Examples

4

Contd.
n Suppose x and y are two integer variables,

whose values are 13 and 5 respectively

x + y 18
x – y 8
x * y 65
x / y 2

x % y 3

5

n All operators except % can be used with
operands of all of the data types int, float,
double, char (yes! char also! We will see
what it means later)

n % can be used only with integer operands

6

Type of Value of an Arithmetic
Expression
n If all operands of an operator are integer

(int variables or integer constants), the
value is always integer
¨Example: 9/5 will be 1, not 1.8
¨Example:

int a=9, b=5;
printf(“%d”, a/b)

will print 1 and not 1.8

7

n If at least one operand is real, the value is real
¨Caution: Since floating-point values are rounded to

the number of significant digits permissible, the final
value is an approximation of the final result

¨ Example: 1/ 3.0 * 3.0 may have the value 0.99999
and not 1.0

8

Assignment Expression
n Uses the assignment operator (=)

n General syntax:

variable_name = expression

n Left of = is called l-value, must be a modifiable
variable

n Right of = is called r-value, can be any expression

n Examples:
velocity = 20

b = 15; temp = 12.5

A = A + 10

v = u + f * t

s = u * t + 0.5 * f * t * t

9

Contd.
n An assignment expression evaluates to a

value same as any other expression
n Value of an assignment expression is the

value assigned to the l-value
n Example: value of

¨a = 3 is 3
¨b = 2*4 – 6 is 2
¨n = 2*u + 3*v – w is whatever the arithmetic

expression 2*u + 3*v – w evaluates to given
the current values stored in variables u, v, w

10

Contd.
n Several variables can be assigned the same

value using multiple assignment operators
a = b = c = 5;
flag1 = flag2 = ‘y’;
speed = flow = 0.0;

n Easy to understand if you remember that
¨ the assignment expression has a value
¨ Multiple assignment operators are right-to-left

associative

11

More Assignment Operators
n +=, -=, *=, /=, %=
n Operators for special type of assignments
n a += b is the same as a = a + b
n Same for -=, *=, /=, and %=
n Exact same rules apply for multiple

assignment operators

12

More Operators: Increment (++)
and Decrement (--)
n Both of these are unary operators; they

operate on a single operand
n The increment operator causes its operand

to be increased by 1
¨ Example: a++, ++count

n The decrement operator causes its operand
to be decreased by 1.
¨ Example: i--, --distance

13

Pre-increment versus post-
increment
n Operator written before the operand (++i, --i))

¨ Called pre-increment operator (also sometimes
called prefix ++ and prefix --)

¨ Operand will be altered in value before it is utilized
in the program

n Operator written after the operand (i++, i--)
¨ Called post-increment operator (also sometimes

called postfix ++ and postfix --)
¨ Operand will be altered in value after it is utilized in

the program

14

Contd.
n Suppose x and y are two integer variables,

whose values are 5 and 10 respectively.

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

Type Casting

n Convert a variable from one data type to
another data type

n Cast operator: (type_name) expression

15

Cont.

#include <stdio.h>
int main() {

int a = 25, b = 10;
float result;
result = a/b;
printf(“The result is %f\n”, result);
return 0;

}
16

What is the output?

Cont.

#include <stdio.h>
int main() {

int a = 25, b = 10;
float result;
result = a/b;
printf(“The result is %f\n”, result);
return 0;

}
17

What is the output?
The result is 2.000000

Cont. (Apply Type Cast)

#include <stdio.h>
int main() {

int a = 25, b = 10;
float result;
result = (float) a/b;
printf(“The result is %f\n”, result);
return 0;

}
18

What is the output?

Cont. (Apply Type Cast)

#include <stdio.h>
int main() {

int a = 25, b = 10;
float result;
result = (float) a/b;
printf(“The result is %f\n”, result);
return 0;

}
19

What is the output?
The result is 2.500000

Implicit casting

n Compiler can implicitly cast the values in
an expression based on the declared
variable type

n Implicit casting sequence priority:
¨int -> long -> float -> double

20

Implicit Casting

int a = 10;
float b = 2.0

n The implicit type for (a*b) is float

Rule: The final type of an expression is
the highest priority type among all the
variable types in the expression

21

Cont.

#include <stdio.h>
int main() {

int a = 25;
float b = 10.0;
float result;
result = a/b;
printf(“The result is %f\n”, result);
return 0;

} 22

What is the output?

Cont.

#include <stdio.h>
int main() {

int a = 25;
float b = 10.0;
float result;
result = a/b;
printf(“The result is %f\n”, result);
return 0;

} 23

What is the output?
The result is 2.500000

24

Logical Expressions

n Uses relational and logical operators in
addition

n Informally, specifies a condition which can
be true or false

n Evaluates to value 0 or 1
¨0 implies the condition is false
¨1 implies the condition is true

25

Relational Operators
n Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

26

Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ’M’) && (age >= 21))

((marks >== 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(! (grade == ’A’))

27

Examples
10 > 20 is false, so value is 0
25 < 35.5 is true, so value is 1
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is 1

n When arithmetic expressions are used on either
side of a relational operator, the arithmetic
expressions will be evaluated first and then the
results compared

a + b > c – d is the same as (a+b) > (c+d)

28

Logical Operators
¨Logical AND (&&)

n Evalutes to 1 if both the operands are non-zero
¨Logical OR (||)

n Result is true if at least one of the operands is
non-zero

X Y X && Y X | | Y
0 0 0 0
0 non-0 0 non-0

non-0 0 0 non-0
non-0 non-0 non-0 non-0

29

Contd

n Unary negation operator (!)
¨Single operand
¨Value is 0 if operand is non-zero
¨Value is 1 if operand is 0

30

Example
n (4 > 3) && (100 != 200)

¨ 4 > 3 is true, so value 1
¨ 100 != 200 is true so value 1
¨ Both operands 1 for &&, so final value 1

n (!10) && (10 + 20 != 200)
¨ 10 is non-0, so value !10 is 0
¨ 10 + 20 != 200 is true so value 1
¨ Both operands NOT 1 for &&, so final value 0

n (!10) || (10 + 20 != 200)
¨ Same as above, but at least one value non-0, so

final value 1

31

A Special Operator: AddressOf (&)
n Remember that each variable is stored at a

location with an unique address
n Putting & before a variable name gives the

address of the variable (where it is stored, not
the value)

n Can be put before any variable (with no blank in
between)

int a =10;
printf(“Value of a is %d, and address of a is

%d\n”, a, &a);

32

Statements in a C program
n Parts of C program that tell the computer what to do
n Different types

¨ Declaration statements
n Declares variables etc.

¨ Assignment statement
n Assignment expression, followed by a ;

¨ Control statements
n For branching and looping, like if-else, for, while, do-

while (to be seen later)
¨ Input/Output

n Read/print, like printf/scanf

33

Example

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b)

larger = a;
printf(“Larger number is %d\n”, larger);

Declaration statement

Assignment
statement

Control
statement

Input/Output
statement

