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Number 
Representation
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Number System :: The Basics

n We are accustomed to using the so-called 
decimal number system

¨ Ten digits ::  0,1,2,3,4,5,6,7,8,9
¨ Every digit position has a weight which is a 

power of 10

¨ Base or radix is 10

Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 
10-1 +  7 x 10-2
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Binary Number System
n Two digits:

¨ 0 and 1
¨ Every digit position has a weight which is a 

power of 2
¨ Base or radix is 2

n Example:
110 =  1 x 22 +  1 x 21 +  0 x 20

101.01 =  1 x 22 +  0 x 21 +  1 x 20 +  0 x 2-1 +  
1 x 2-2
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Positional Number Systems (General)

Decimal Numbers:
v 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
v 136.25 = 1 ´ 102  +  3 ´ 101  +  6 ´ 100 +  2 ´ 10–1   +  3 ´ 10–2  
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Positional Number Systems (General)

Decimal Numbers:
v 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
v 136.25 = 1 ´ 102  +  3 ´ 101  +  6 ´ 100 +  2 ´ 10–1   +  3 ´ 10–2  

Binary Numbers:
v 2 Symbols {0,1}, Base or Radix is 2
v 101.01 = 1 ´ 22  +  0 ´ 21  +  1 ´ 20 +  0 ´ 2–1   +  1 ´ 2–2  
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Positional Number Systems (General)

Decimal Numbers:
v 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
v 136.25 = 1 ´ 102  +  3 ´ 101  +  6 ´ 100 +  2 ´ 10–1   +  5 ´ 10–2  

Binary Numbers:
v 2 Symbols {0,1}, Base or Radix is 2
v 101.01 = 1 ´ 22  +  0 ´ 21  +  1 ´ 20 +  0 ´ 2–1   +  1 ´ 2–2  

Octal Numbers:
v 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8
v 621.03 = 6 ´ 82  +  2 ´ 81  +  1 ´ 80 +  0 ´ 8–1   +  3 ´ 8–2  



7

Positional Number Systems (General)

Decimal Numbers:
v 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
v 136.25 = 1 ´ 102  +  3 ´ 101  +  6 ´ 100 +  2 ´ 10–1   +  3 ´ 10–2  

Binary Numbers:
v 2 Symbols {0,1}, Base or Radix is 2
v 101.01 = 1 ´ 22  +  0 ´ 21  +  1 ´ 20 +  0 ´ 2–1   +  1 ´ 2–2  

Octal Numbers:
v 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8
v 621.03 = 6 ´ 82  +  2 ´ 81  +  1 ´ 80 +  0 ´ 8–1   +  3 ´ 8–2  

Hexadecimal Numbers:
v 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16
v6AF.3C = 6 ´ 162  +  10 ´ 161  +  15 ´ 160 +  3 ´ 16–1   +  12 ´ 16–2  
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Binary-to-Decimal Conversion
n Each digit position of a binary number has 

a weight
¨Some power of 2

n A binary number:
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

Corresponding value in decimal:

D = S bi 2i
i = -m

n-1
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Examples
101011  è 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

.0101      è 0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

101.11    è 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

= 5.75
(101.11)2 = (5.75)10
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Decimal to Binary: Integer Part
nConsider the integer and fractional parts separately.
nFor the integer part:

nRepeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
nArrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base NumbRem

(89)10 = (1011001)2
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Decimal to Binary: Integer Part
nConsider the integer and fractional parts separately.
nFor the integer part:

nRepeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
nArrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base NumbRem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

(66)10 = (1000010)2
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Decimal to Binary: Integer Part
nConsider the integer and fractional parts separately.
nFor the integer part:

nRepeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
nArrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base NumbRem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

2 239
2 119 1
2 59 1
2 29 1
2 14 1
2 7 0
2 3 1
2 1 1

0 1

(66)10 = (1000010)2 (239)10 = (11101111)2
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Decimal to Binary: Fraction Part
nRepeatedly multiply the given fraction by 2.

nAccumulate the integer part (0 or 1).
nIf the integer part is 1, chop it off.

nArrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2
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Decimal to Binary: Fraction Part
nRepeatedly multiply the given fraction by 2.

nAccumulate the integer part (0 or 1).
nIf the integer part is 1, chop it off.

nArrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625  x  2   =   0.125
.1250  x  2  =    0.250
.2500  x  2   =   0.500
.5000  x  2   =   1.000

(.0625)10 = (.0001)2
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Decimal to Binary: Fraction Part
nRepeatedly multiply the given fraction by 2.

nAccumulate the integer part (0 or 1).
nIf the integer part is 1, chop it off.

nArrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625  x  2   =   0.125
.1250  x  2  =    0.250
.2500  x  2   =   0.500
.5000  x  2   =   1.000

(.0625)10 = (.0001)2

(37)10 =  (100101)2

(.0625)10 =  (.0001)2

(37.0625)10 =  (100101.0001)2
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Hexadecimal Number System
n A compact way of representing binary numbers
n 16 different symbols (radix = 16)

0  à 0000 8  à 1000
1  à 0001 9  à 1001
2  à 0010 A  à 1010
3  à 0011 B  à 1011
4  à 0100 C  à 1100
5  à 0101 D  à 1101
6  à 0110 E  à 1110
7  à 0111 F  à 1111
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Binary-to-Hexadecimal 
Conversion
n For the integer part,

¨ Scan the binary number from right to left
¨ Translate each group of four bits into the 

corresponding hexadecimal digit
n Add leading zeros if necessary

n For the fractional part,
¨ Scan the binary number from left to right
¨ Translate each group of four bits into the 

corresponding hexadecimal digit
n Add trailing zeros if necessary
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Example

1. (1011 0100 0011)2 =   (B43)16

2. (10 1010 0001)2 =   (2A1)16

3. (.1000 010)2 =   (.84)16

4. (101 . 0101 111)2 =   (5.5E)16
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Hexadecimal-to-Binary 
Conversion
n Translate every hexadecimal digit into its 

4-bit binary equivalent

n Examples:
(3A5)16 =   (0011 1010 0101)2

(12.3D)16 =   (0001 0010 . 0011 1101)2

(1.8)16 =   (0001 . 1000)2
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Unsigned Binary Numbers
n An n-bit binary number

B  =  bn-1bn-2 …. b2b1b0
n 2n distinct combinations are possible, 0 to 2n-1.

n For example, for n = 3, there are 8 distinct 
combinations
¨000, 001, 010, 011, 100, 101, 110, 111

n Range of numbers that can be represented
n=8 è 0  to  28-1  (255)
n=16 è 0  to  216-1 (65535)
n=32 è 0  to  232-1 (4294967295)
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Signed Integer Representation

n Many of the numerical data items that are used 
in a program are signed (positive or negative)
¨Question:: How to represent sign?

n Three possible approaches:
¨Sign-magnitude representation
¨One’s complement representation
¨Two’s complement representation
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Sign-magnitude Representation

n For an n-bit number representation
¨The most significant bit (MSB) indicates sign

0  à positive
1  à negative

¨The remaining n-1 bits represent magnitude

b0b1bn-2bn-1

MagnitudeSign
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Contd.
n Range of numbers that can be 

represented:
Maximum  ::  + (2n-1 – 1)
Minimum   ::  - (2n-1 – 1)

n A problem:
Two different representations of zero

+0   à 0 000….0
-0    à 1 000….0
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One’s Complement 
Representation
n Basic idea:

¨ Positive numbers are represented exactly as in 
sign-magnitude form

¨ Negative numbers are represented in 1’s 
complement form

n How to compute the 1’s complement of a number?
¨ Complement every bit of the number (1à0 and 

0à1)
¨ MSB will indicate the sign of the number

0  à positive
1  à negative
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Example  ::  n=4
0000  à +0
0001  à +1
0010  à +2
0011  à +3
0100  à +4
0101  à +5
0110  à +6
0111  à +7

1000  à -7
1001  à -6
1010  à -5
1011  à -4
1100  à -3
1101  à -2
1110  à -1
1111  à -0

To find the representation of, say, -4, first note that

+4  =  0100
-4   =  1’s complement of 0100  =  1011
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Contd.
n Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  - (2n-1 – 1)

n A problem:
Two different representations of zero.

+0   à 0 000….0
-0    à 1 111….1

n Advantage of 1’s complement representation
¨ Subtraction can be done using addition
¨ Leads to substantial saving in circuitry
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Two’s Complement 

Representation

n Basic idea:

¨ Positive numbers are represented exactly as in 

sign-magnitude form

¨ Negative numbers are represented in 2’s 

complement form

n How to compute the 2’s complement of a number?

¨ Complement every bit of the number (1à0 and 

0à1), and then add one to the resulting number

¨ MSB will indicate the sign of the number

0  à positive

1  à negative
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Example :  n=4
0000  à +0
0001  à +1
0010  à +2
0011  à +3
0100  à +4
0101  à +5
0110  à +6
0111  à +7

1000  à -8
1001  à -7
1010  à -6
1011  à -5
1100  à -4
1101  à -3
1110  à -2
1111  à -1

To find the representation of, say, -4, first note that

+4  =  0100
-4   =  2’s complement of 0100  =  1011+1  =  1100

Rule :  Value = – msb*2(n–1) + [unsigned value of rest]
Example: 0110  =  0 + 6 =  6                   1110 = – 8 + 6  =  – 2
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Contd.
n Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)

Minimum   ::  - 2n-1

n Advantage:
¨ Unique representation of zero

¨ Subtraction can be done using addition
¨ Leads to substantial saving in circuitry

n Almost all computers today use the 2’s complement 
representation for storing negative numbers
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Contd.

n In C
¨short int

n 16 bits   è + (215-1)  to  -215

¨ int or long int
n 32 bits   è + (231-1)  to  -231

¨ long long int
n 64 bits   è + (263-1)  to  -263



31

Adding Binary Numbers

n Basic Rules:
¨0+0=0
¨0+1=1
¨1+0=1
¨1+1=0 (carry 1)

n Example:

01101001
00110100
-------------
10011101
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Subtraction Using Addition :: 1’s 
Complement
n How to compute A – B ?

¨Compute the 1’s complement of B (say, B1).
¨Compute R = A + B1
¨ If the carry obtained after addition is ‘1’

n Add the carry back to R  (called end-around carry)
n That is, R = R + 1
n The result is a positive number
Else
n The result is negative, and is in 1’s complement 

form
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Example 1  ::  6 – 2
1’s complement of 2  =  1101

6   ::   0110
-2   ::   1101

1 0011
1

0100    è +4

Assume 4-bit 
representations

Since there is a carry, it is 
added back to the result

The result is positive

End-around 
carry

R
B1

A
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Example 2  ::  3 – 5

1’s complement of 5  =  1010

3   ::   0011
-5   ::   1010

1101
Assume 4-bit representations

Since there is no carry, the 
result is negative

1101 is the 1’s complement of 
0010, that is, it represents –2

A
B1

R

-2
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Subtraction Using Addition :: 2’s 
Complement
n How to compute A – B ?

¨Compute the 2’s complement of B (say, B2)
¨Compute R = A + B2

¨ If the carry obtained after addition is ‘1’
n Ignore the carry
n The result is a positive number
Else
n The result is negative, and is in 2’s complement 

form
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Example 1  ::  6 – 2

2’s complement of 2  =  1101 + 1  =  1110

6   ::   0110
-2   ::   1110

1 0100

Assume 4-bit 
representations

Presence of carry indicates 
that the result is positive

No need to add the end-
around carry like in 1’s 
complement

A
B2

R

Ignore carry
+4
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Example 2  ::  3 – 5

2’s complement of 5  =  1010 + 1  =  1011

3   ::   0011
-5   ::   1011

1110                      
Assume 4-bit representations

Since there is no carry, the 
result is negative

1110 is the 2’s complement of 
0010, that is, it represents –2

A
B2

R

-2
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2’s complement arithmetic: More 
Examples
§ Example 1: 18-11 = ?
§ 18 is represented as 00010010
§ 11 is represented as 00001011

§ 1’s complement of 11 is 11110100
§ 2’s complement of 11 is 11110101

§ Add 18 to 2’s complement of 11

00010010
+  11110101
----------------

00000111 (with a carry of 1
which is ignored)

00000111 is 7
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§ Example 2: 7 - 9 = ?
§ 7 is represented as 00000111
§ 9 is represented as 00001001

§ 1’s complement of 9 is 11110110
§ 2’s complement of 9 is 11110111
§ Add 7 to 2’s complement of 9

00000111
+  11110111
----------------

11111110 (with a carry of 0
which is ignored)

11111110 is -2
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Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100

--------------
(68) 01000100

carry (out)(in)
0    0

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100

--------------
(68) 01000100

carry (out)(in)
0    0

(64)  01000000
(96)  01100000

--------------
(-96) 10100000

carry  out in
0   1

differ:
overflow

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs



44

Floating-point Numbers
n The representations discussed so far applies only to 

integers
¨ Cannot represent numbers with fractional parts

n We can assume a decimal point before a signed 
number
¨ In that case, pure fractions (without integer parts) 

can be represented
n We can also assume the decimal point somewhere in 

between
¨ This lacks flexibility
¨ Very large and very small numbers cannot be 

represented
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Representation of Floating-Point 
Numbers

n A floating-point number F is represented by a 
doublet  <M,E> :

F  =  M  x  BE

n B  à exponent base (usually 2)
n M  à mantissa
n E  à exponent

¨ M is usually represented in 2’s complement 
form, with an implied binary point before it

n For example, 
In decimal,  0.235 x 106

In binary,    0.101011 x 20110
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Example  ::  32-bit representation

¨ M represents a 2’s complement fraction
1  >  M  >  -1

¨ E represents the exponent (in 2’s complement form)
127  >  E  >  -128

n Points to note:
¨ The number of significant digits depends on the 

number of bits in M
n 6 significant digits for 24-bit mantissa

¨ The range of the number depends on the number of 
bits in E
n 1038 to  10-38 for 8-bit exponent.

M E

24 8



47

A Warning
n The representation for floating-point numbers as 

shown is just for illustration
n The actual representation is a little more 

complex
n Example: IEEE 754 Floating Point format
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IEEE 754 Floating-Point Format
(Single Precision)

S: Sign (0 is +ve, 1 is –ve) 
E: Exponent (More bits gives a higher range)
M: Mantissa (More bits means higher precision)
[8 bytes are used for double precision] 

S
(31)

E (Exponent)
(30 … 23)

M (Mantissa)
(22 … 0)

Value of a Normal Number:

(-1)S´ (1.0 + 0.M) ´ 2(E – 127)
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An example
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

Value of a Normal Number:
= (-1)S´ (1.0 + 0.M) ´ 2(E – 127)

= (-1)1´ (1.0 + 0.1101100) ´ 2(10001100 – 1111111)

= - 1.1101100 ´ 21101  = - 11101100000000 
= - 15104.0 ( in decimal)

1 10001100 11011000000000000000000
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Representing 0.3
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

0.3 (decimal)
= 0.0100100100100100100100100…
= 1.00100100100100100100100100… ´ 2 -2 

= 1.00100100100100100100100100… ´ 2 125 -127 

= (-1)S´ (1.0 + 0.M) ´ 2(E – 127)

0 01111101 00100100100100100100100

What are the largest and smallest numbers that 
can be represented in this scheme?
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Representing 0
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

0 00000000 00000000000000000000000

1 00000000 00000000000000000000000

Representing Inf (µ)

0 11111111 00000000000000000000000

1 11111111 00000000000000000000000

Representing NaN (Not a Number)
0 11111111 Non zero

1 11111111 Non zero
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Representation of Characters
n Many applications have to deal with non-numerical data.

¨ Characters and strings
¨ There must be a standard mechanism to represent 

alphanumeric and other characters in memory
n Three standards in use:

¨ Extended Binary Coded Decimal Interchange Code 
(EBCDIC)
n Used in older IBM machines

¨ American Standard Code for Information Interchange 
(ASCII)
n Most widely used today

¨ UNICODE
n Used to represent all international characters.
n Used by Java
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ASCII Code
n Each individual character is numerically encoded into a 

unique 7-bit binary code
¨ A total of 27 or 128 different characters
¨ A character is normally encoded in a byte (8 bits), 

with the MSB not been used.
n The binary encoding of the characters follow a regular 

ordering
¨ Digits are ordered consecutively in their proper 

numerical sequence (0 to 9)
¨ Letters (uppercase and lowercase) are arranged 

consecutively in their proper alphabetic order
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Some Common ASCII Codes

‘A’  ::  41 (H) 65 (D)
‘B’  ::  42 (H) 66 (D)
………..
‘Z’  ::  5A (H) 90 (D)

‘a’  ::  61 (H) 97 (D)
‘b’  ::  62 (H) 98 (D)
………..
‘z’  ::  7A (H) 122 (D)

‘0’  ::  30 (H) 48 (D)
‘1’  ::  31 (H) 49 (D)
………..
‘9’  ::  39 (H) 57 (D)

‘(‘   ::  28 (H) 40 (D)
‘+’  ::  2B (H) 43 (D)
‘?’  ::   3F (H) 63 (D)
‘\n’ ::  0A (H) 10 (D)
‘\0’ ::   00 (H) 00 (D)
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Character Strings
n Two ways of representing a sequence of characters in 

memory

¨ The first location contains the number of characters in 
the string, followed by the actual characters

¨ The characters follow one another, and is terminated 
by a special delimiter

oeH5 ll

^leH ol
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String Representation in C
n In C, the second approach is used

¨ The ‘\0’ character is used as the string delimiter

n Example:
“Hello”       è

n A null string “” occupies one byte in memory.
¨ Only the ‘\0’ character

‘\0’leH ol


