
1

CS10001:
Programming & Data Structures

Dept. of Computer Science & Engineering

2

Course Materials

Books:
1. Programming with C (Second Edition)

Byron Gottfried, Third Edition, Schaum’s Outlines
Series,

2. The C Programming Language
Brian W Kernighan, Dennis M Ritchie

3. Data structures
S. Lipschutz, Schaum’s Outline Series

3

About the Course
n Section 9, 10

¨ Teacher: Prof. Sandip Chakraborty (SC)
¨ Mon (10:00-10:55) + Wed (8:00-9:55)
¨ NR-122 (Nalanda Complex)

n Section 11, 12
¨ Teacher: Prof. Bivas Mitra (BM)
¨ Mon (10:00-10:55) + Wed (8:00-9:55),
¨ NR-222 (Nalanda Complex)

4

About the Course

n Section 13,14
¨ Teacher: Prof. Niloy Ganguly (NG)
¨ Thurs (9:00-9:55) + Fri (11:00-12:55),
¨ NR-122 (Nalanda Complex)

n Section 15,16
¨ Teacher: Prof. K. S. Rao
¨ Thurs (9:00-9:55) + Fri (11:00-12:55),
¨ NR-222 (Nalanda Complex)

About the Course

n Course website: http://cse.iitkgp.ac.in/pds/current/

n Tutorial classes (one hour per week) will be
conducted on a “per section” basis during Lab hours

n Evaluation in the theory course:
¨ Mid-semester 30%
¨ End-semester 50%
¨ Two class tests and attendance 20%

http://cse.iitkgp.ac.in/pds/current/

6

Attendance
REALLY
matters

n Important for understanding the course
n Any student with low attendance may be

deregistered from the course
n Leave due to medical reasons must be certified

by the B.C. Roy Technology Hospital

7

Important Dates

n Class Test 1: Last week of August / first week of
September

n Class Test 2: Last week of October / first week
of November

(Class test dates are tentative and may change. The
exact dates will be announced in the class)

n Mid-semester: Sept 17 – Sep 26, 2018
n End-semester: Nov 16 – Nov 27, 2018

8

Introduction

9

Computer is a machine that can perform computation

1. Input : User gives a set of Input
2. Processing : Input data is processed by a well defined

and finite sequence of steps
3. Output: Some data available from processing step and

output to the user

10

A Computer (Level 0 Version)

Central
Processing

Unit (CPU)

Storage
Peripherals

Output
Peripherals

Input
Peripherals

Main
Memory

11

I/O and Peripherals: Examples

n Input Devices
¨ Keyboard, Mouse, Digital Camera

n Output Devices
¨ Monitor, Printer, Speaker

n Storage Peripherals
¨ Magnetic Disks: hard disk
¨ Optical Disks: CDROM, CD-RW, DVD
¨ Flash Memory: pen drives

12

Memory: Address and Values

13

CPU: A first cut

PC
IR

MAR

MDR
ALU

R1

R2

R3

R4 FLAGS

Control Unit

Register

14

Temporary storage inside CPU

1. General purpose Register
2. Special purpose Register

R15

PC: Program Counter
IR: Instruction Register
MDR: Memory Data Register
MAR: Memory Address Register

15

CPU

MAR

MDR

MemoryControl
Unit

Address Bus

Data Bus

Read Write

ALU

Von Newman Architecture

16

C=A+B

Step 1: Fetch Operand A from memory
Step 2: Store in Register R1
Step 3: Fetch Operand B from memory
Step 4: Store in Register R2
Step 5: Add content of R1 and R2
Step 6: Store the result in register R3
Step 7: Store the content of R3 in memory C

CPU

MAR

MDR
Memory

Control
Unit

Address Bus

Data Bus

Read

ALU

A
(2)

B
(5)

17

C=A+B

Step 1: Fetch Operand A from memory
Step 2: Store in Register R1
Step 3: Fetch Operand B from memory
Step 4: Store in Register R2
Step 5: Add content of R1 and R2
Step 6: Store the result in register R3
Step 7: Store the content of R3 in memory C

CPU

MAR

MDR
Memory

Control
Unit

Address Bus

Data Bus

Read

ALU

A
(2)

B
(5)A

2

18

C=A+B

Step 1: Fetch Operand A from memory
Step 2: Store in Register R1
Step 3: Fetch Operand B from memory
Step 4: Store in Register R2
Step 5: Add content of R1 and R2
Step 6: Store the result in register R3
Step 7: Store the content of R3 in memory C

CPU

MAR

MDR
Memory

Control
Unit

Address Bus

Data Bus

Read

ALU

A
(2)

B
(5)B

5

19

C=A+B

Step 1: Fetch Operand A from memory
Step 2: Store in Register R1
Step 3: Fetch Operand B from memory
Step 4: Store in Register R2
Step 5: Add content of R1 and R2
Step 6: Store the result in register R3
Step 7: Store the content of R3 in memory C

CPU

MAR

MDR
Memory

Control
Unit

Address Bus

Data Bus

Read

ALU

A
(2)

B
(5)

ALU

R1 R2

R3

20

C=A+B

Step 1: Fetch Operand A from memory
Step 2: Store in Register R1
Step 3: Fetch Operand B from memory
Step 4: Store in Register R2
Step 5: Add content of R1 and R2
Step 6: Store the result in register R3
Step 7: Store the content of R3 in memory C

CPU

MAR

MDR Memory

Control
Unit

Address Bus

Data Bus

Read

ALU

A
(2)

B
(5)C

7 C
(7)

21

What can a computer do
Solve Types of Problem

1. Functional Problem (Matrix Inverse)
2. Decision Problem (Primality test)
3. Search Problem
4. Optimization problem

22

What can a computer do
n Determining if a given integer is a prime number
n Root finding
n Read in airline route information as a matrix and determine the

shortest time journey between two airports
n Telephone pole placement problem
n Matrix multiplication
n Finger-print recognition
n Chess Player
n Speech Recognition
n Language Recognition
n Discovering New Laws in Mathematics
n Automatic drug discovery
n …..

23

Programming and Software

Computer needs to be programmed to do such
tasks

Programming is the process of writing
instructions in a language that can be
understood by the computer so that a desired
task can be performed by it

Program: sequence of instructions to do a task,
computer processes the instructions
sequentially one after the other

Software: programs for doing tasks on computers

24

Challenges

n CPU understands machine language
¨Different strings of 0’s and 1’s only!!
¨Hard to remember and use

n Instruction set of a CPU
¨Mnemonic names for this strings

CPU

MAR

MDR

Control
Unit

ALU

25

Instruction Set
¨ Start
¨ Read M
¨ Write M
¨ Load Data, M
¨ Copy M1, M2
¨ Add M1, M2, M3
¨ Sub M1, M2, M3
¨ Compare M1, M2, M3
¨ Jump L
¨ J_Zero M, L
¨ Halt

26

Instruction Set
¨ Start
¨ Read M
¨ Write M
¨ Load Data, M
¨ Copy M1, M2
¨ Add M1, M2, M3
¨ Sub M1, M2, M3
¨ Compare M1, M2, M3
¨ Jump L
¨ J_Zero M, L
¨ Halt

0: Start
1: Read 10
2: Read 11
3: Add 10, 11, 12
4: Write 12
5: Halt

Program

27

Problems with programming using
instruction sets directly
n Instruction sets of different types of CPUs

different
¨ Need to write different programs for computers with

different types of CPUs even to do the same thing

n Solution: High level languages (C, C++,
Java,…)
¨ CPU neutral, one program for many
¨ Compiler to convert from high-level program to low

level program that CPU understands

28

High-Level Program

Variables x, y;
Begin
Read (x);
Read (y);
If (x >y) then Write (x)

else Write (y);
End.

29

High-Level Program
0: Start
1: Read 20
2: Read 21
3: Compare 20, 21, 22
4: J_Zero 22, 7
5: Write 20
6: Jump 8
7: Write 21
8: Halt

Variables x, y;
Begin
Read (x);
Read (y);
If (x >y) then Write (x)

else Write (y);
End.

Low-Level Program

30

Three steps in writing programs

Step 1: Write the program in a high-level
language (in your case, C)

Step 2: Compile the program using a C
compiler

Step 3: Run the program (as the computer
to execute it)

Program and Algorithm

n Swap two elements
n Search an element from the list
n …

31

32

How does program run in a
computer?

How does program run in a
computer?
n Data area
n Instruction area

n Fetch-decode-execute

33

The fetch-decode-execute
cycle

n Sequence of machine instructions is copied to the instruction area of the memory.
n A particular control register, called the program counter (PC), is loaded with the

address of the first instruction of the program.
n The CPU fetches the instruction from that location in the memory that is currently

stored in the PC register.
n The instruction (in IR) is decoded in the control unit of the CPU.
n The instruction may require one or more operands.

¨ An operand may be either a data or a memory address. A data may be either a constant (also
called an immediate operand) or a value stored in the data area of the memory or a value
stored in a register. Similarly, an address may be either immediate or a resident of the main
memory or available in a register.

n An immediate operand is available from the instruction itself. The content of a
register is also available at the time of the execution of the instruction. Finally, a
variable value is fetched from the data part of the main memory.

34

n If the instruction is a data movement operation, the corresponding movement is
performed. For example, a "load" instruction copies the data fetched from memory
to a register, whereas a "store" instruction sends a value from a register to the
data area of the memory.

n If the instruction is an arithmetic or logical instruction, it is executed in the ALU
after all the operands are available in the CPU (in its registers). The output from
the ALU is stored back in a register.

n If the instruction is a jump instruction, the instruction must contain a memory
address to jump to. The program counter (PC) is loaded with this address. A jump
may be conditional, i.e., the PC is loaded with the new address if and only if some
condition(s) is/are true.

n If the instruction is not a jump instruction, the address stored in the PC is
incremented by one.

n If the end of the program is not reached, the CPU continues its fetch-decode-
execute cycle.

35

36

Home Computer@2004:
Predicted versus Real

Predicted in 1954

Reality

37

Binary Representation

n Numbers are represented inside computers in
the base-2 system (Binary Numbers)
¨ Only two symbols/digits 0 and 1

¨ Positional weights of digits: 20, 21, 22,…from right to
left for integers

n Decimal number system we use is base-10
¨ 10 digits, from 0 to 9, Positional weights 100, 101,

102,…from right to left for integers

¨ Example: 723 = 3x100 + 2x101 + 7x102

38

Binary Numbers
Dec Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

39

Binary Numbers

Binary to Decimal Conversion

101011 è 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

111001 è 1x25 + 1x24 + 1x23 + 0x22 + 0x21 + 1x20

= 57
(111001)2 = (57)10

10100 è 1x24 + 0x23 + 1x22 + 0x21 + 0x20 = 20
(10100)2 = (20)10

Dec Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

40

Bits and Bytes
n Bit – a single 1 or 0
n Byte – 8 consecutive bits

¨ 2 bytes = 16 bits
¨ 4 bytes = 32 bits

n Max. integer that can represented
¨ in 1 byte = 255 (=11111111)
¨ In 4 bytes = 4294967295 (= 32 1’s)

n No. of integers that can be represented in 1 byte
= 256 (the integers 0, 1, 2, 3,….255)

41

Fundamentals of C

42

First C program – print on screen

#include <stdio.h>
void main()
{

printf ("Hello, World! \n") ;
}

43

More print
#include <stdio.h>
void main()
{

printf ("Hello, World! ") ;
printf ("Hello \n World! \n") ;

}

44

Some more print
#include <stdio.h>
void main()
{

printf ("Hello, World! \n") ;
printf ("Hello \n World! \n") ;
printf ("Hell\no \t World! \n") ;

}

45

#include <stdio.h>
void main()
{

int num ;
scanf ("%d", &num) ;
printf (“No. of students is %d\n”, num) ;

}

Reading values from keyboard

46

Centigrade to Fahrenheit

#include <stdio.h>
void main()
{

float cent, fahr;
scanf(“%f”,¢);
fahr = cent*(9.0/5.0) + 32;
printf(“%f C equals %f F\n”, cent, fahr);

}

47

Largest of two numbers

#include <stdio.h>

void main()

{

int x, y;

scanf(“%d%d”,&x,&y);

if (x>y) printf(“Largest is %d\n”,x);

else printf(“Largest is %d\n”,y);

}

largest-1.c

48

What does this do?

#include <stdio.h>

void main()

{

int x, y;

scanf(“%d%d”,&x,&y);

if (x>y) printf(“Largest is %d\n”,x);

printf(“Largest is %d\n”,y);

}

largest-2.c

49

The C Character Set
n The C language alphabet

¨ Uppercase letters ‘A’ to ‘Z’
¨ Lowercase letters ‘a’ to ‘z’
¨ Digits ‘0’ to ‘9’
¨ Certain special characters:

A C program should not contain anything else

! # % ^ & * ()

- _ + = ~ [] \

| ; : ‘ “ { } ,

. < > / ? blank

50

Structure of a C program
n A collection of functions (we will see what they

are later)
n Exactly one special function named main must

be present. Program always starts from there
n Each function has statements (instructions) for

declaration, assignment, condition check,
looping etc.

n Statements are executed one by one

51

Variables

n Very important concept for programming
n An entity that has a value and is known to the

program by a name
n Can store any temporary result while executing a

program
n Can have only one value assigned to it at any given

time during the execution of the program
n The value of a variable can be changed during the

execution of the program

52

Contd.
n Variables stored in memory
n Remember that memory is a list of storage

locations, each having a unique address
n A variable is like a bin

¨ The contents of the bin is the value of the variable
¨ The variable name is used to refer to the value of

the variable
¨ A variable is mapped to a location of the memory,

called its address

53

Example
#include <stdio.h>
void main()
{

int x;
int y;
x=1;
y=3;
printf("x = %d, y= %d\n", x, y);

}

54

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

10X = 20

X = X +1

X = X*5

55

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

20X = 20

X = X +1

X = X*5

56

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

21X = 20

X = X +1

X = X*5

57

Variables in Memory
Instruction executed

Memory location allocated
to a variable X

T
i

m
e

X = 10

105X = 20

X = X +1

X = X*5

58

Variables (contd.)

20

?

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

59

Variables (contd.)

20

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

60

Variables (contd.)

18

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

61

Variables (contd.)

18

3

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

62

Data Types
n Each variable has a type, indicates what

type of values the variable can hold
n Four common data types in C

¨ int - can store integers (usually 4 bytes)
¨ float - can store single-precision floating

point numbers (usually 4 bytes)
¨double - can store double-precision floating

point numbers (usually 8 bytes)
¨char - can store a character (1 byte)

63

Contd.

n Must declare a variable (specify its type and
name) before using it anywhere in your program

n All variable declarations should be at the
beginning of the main() or other functions

n A value can also be assigned to a variable at the
time the variable is declared.

int speed = 30;
char flag = ‘y’;

64

Variable Names
n Sequence of letters and digits
n First character must be a letter or ‘_’
n No special characters other than ‘_’
n No blank in between
n Names are case-sensitive (max and Max are two

different names)
n Examples of valid names:

¨ i rank1 MAX max Min class_rank
n Examples of invalid names:

¨ a’s fact rec 2sqroot class,rank

More Valid and Invalid Identifiers

n Valid identifiers
X
abc
simple_interest
a123
LIST
stud_name
Empl_1
Empl_2
avg_empl_salary

n Invalid identifiers
10abc
my-name
“hello”
simple interest
(area)
%rate

C Keywords

n Used by the C language, cannot be used
as variable names

n Examples:
¨ int, float, char, double, main, if else, for, while.

do, struct, union, typedef, enum, void, return,
signed, unsigned, case, break, sizeof,….

¨There are others, see textbook…

67

Example 1

#include <stdio.h>
void main()
{

int x, y, sum;
scanf(“%d%d”,&x,&y);
sum = x + y;
printf(“%d plus %d is %d\n”, x, y, sum);

}

Three int type variables declared

Values assigned

68

Example - 2

#include <stdio.h>
void main()
{

float x, y;
int d1, d2 = 10;
scanf(“%f%f%d”,&x, &y, &d1);
printf(“%f plus %f is %f\n”, x, y, x+y);
printf(“%d minus %d is %d\n”, d1, d2, d1-d2);

}

Assigns an initial value to d2,
can be changed later

69

Read-only variables

n Variables whose values can be initialized during
declaration, but cannot be changed after that

n Declared by putting the const keyword in front of
the declaration

n Storage allocated just like any variable
n Used for variables whose values need not be

changed
¨ Prevents accidental change of the value

70

void main() {
const int LIMIT = 10;
int n;
scanf(“%d”, &n);
if (n > LIMIT)

printf(“Out of limit”);
}

void main() {
const int Limit = 10;
int n;
scanf(“%d”, &n);
Limit = Limit + n;
printf(“New limit is %d”, Limit);

}

Correct

Incorrect: Limit changed

71

Constants
n Integer constants

¨ Consists of a sequence of digits, with possibly a plus
or a minus sign before it

¨ Embedded spaces, commas and non-digit characters
are not permitted between digits

n Floating point constants
n Two different notations:

¨ Decimal notation: 25.0, 0.0034, .84, -2.234
¨ Exponential (scientific) notation

3.45e23, 0.123e-12, 123e2
e means “10 to the power of”

72

Contd.
n Character constants

¨ Contains a single character enclosed within a pair of
single quote marks.

¨Examples :: ‘2’, ‘+’, ‘Z’
n Some special backslash characters

‘\n’ new line
‘\t’ horizontal tab
‘\’’ single quote
‘\”’ double quote
‘\\’ backslash
‘\0’ null

73

Input: scanf function
n Performs input from keyboard
n It requires a format string and a list of variables into

which the value received from the keyboard will be
stored

n format string = individual groups of characters
(usually ‘%’ sign, followed by a conversion
character), with one character group for each
variable in the list

int a, b;
float c;
scanf(“%d %d %f”, &a, &b, &c);

Format string

Variable list (note the &
before a variable name)

74

¨ Commonly used conversion characters
c for char type variable
d for int type variable
f for float type variable
lf for double type variable

¨Examples
scanf ("%d", &size) ;
scanf ("%c", &nextchar) ;
scanf ("%f", &length) ;
scanf (“%d%d”, &a, &b);

75

Reading a single character

n A single character can be read using scanf with
%c

n It can also be read using the getchar() function

char c;
c = getchar();

n Program waits at the getchar() line until a
character is typed, and then reads it and stores it
in c

76

Output: printf function
n Performs output to the standard output device

(typically defined to be the screen)
n It requires a format string in which we can

specify:
¨The text to be printed out
¨Specifications on how to print the values

printf ("The number is %d\n", num);
¨The format specification %d causes the value

listed after the format string to be embedded in
the output as a decimal number in place of %d

¨Output will appear as: The number is 125

77

Contd.
n General syntax:

printf (format string, arg1, arg2, …, argn);
¨ format string refers to a string containing

formatting information and data types of the
arguments to be output

¨ the arguments arg1, arg2, … represent list of
variables/expressions whose values are to be
printed

n The conversion characters are the same
as in scanf

78

n Examples:
printf (“Average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

n Many more options are available for both
printf and scanf
¨Read from the book
¨Practice them in the lab

