INDIAN INSTITUTE OF TECHNOLOGY

KHARAGPUR
Stamp / Signature of the Invigilator
EXAMINATION (Mid Semester) SEMESTER (Autumn)
Roll Number Section Name
SubjectNumber | C | S |1 | 0| 0| 0| 1| Subject Name Programming and Data Structures
Department / Center of the Student Additional sheets

10.

Important Instructions and Guidelines for Students

. You must occupy your seat as per the Examination Schedule/Sitting Plan.

Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the
subject you are taking examination.

Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed
by the paper-setter.

Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,
exchange of these items or any other papers (including question papers) is not permitted.

Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough
work. Report to the invigilator if the answer script has torn or distorted page(s).

It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the
desk for checking by the invigilator.

You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence
from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly
prohibited inside the Examination Hall.

Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not
allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until
the invigilators collect all the answer scripts.

During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or
exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and
do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

Write the answers in the boxes or in the blank spaces only. You can use the
designated spaces for rough works. This question has 18 pages.

1. Write down the output for the following programs. If you think that there will be a compilation error
or a runtime error, mention that as the output.

(a) What will be the output of the following program?

#include<stdio.h>

int main () {

}

int a=10;

at=ax*a%2;

a%=2;

if((a=0)) printf ("Correct");
else printf ("Wrong");

return 0;

(b) Find out the output of the following program.

#include <stdio.h>

int main () {

}

Wrong

int i, 3j;
for (i = 0; 1 <= 2; i++) {
for (3 = 0; J <= 2;) {

000102

printf ("%d ", J);
break;
}
printf("%d ",1i);
}

return 0;

(c) What would be the output of the following code?

#include <stdio.h>

int main () {

}

int j=(printf ("TEN="),10);
printf ("sd", 3);

TEN=10

return 0O;

(d) What would be the output of the following code if the input is 219?

#include<stdio.h>

int main ()

{

int num, out;

912

for (scanf ("%d", &num) , out=0; num!=0;

out=out+10+ (num%10) , num=num/10) ;

printf ("%d", out) ;
return 0;

[2]

[2]

[2]

[2]

2. Complete the following program such that it prints the following pattern. [2+2+1+1+2+2+2 = 12]

0000O0O0O0O0OO
011111110
012222210
012333210
012343210
012333210
012222210
011111110
0000O0O0O0O0O

#include <stdio.h>
/+ Define a macro to find out the minimum of two numbersx/
#define minimum(a, b) ((a) < (b) ? (a) : (b))
int main () {
int row, col, min;

int n=5;

/* len denotes the number of rows or columns
* in terms of n =/

int len = n « 2 - 1;
for(row = 0; row < len; rowt++) {
for(col = 0; col < len; col++) {

/* min is the element of a cell that will be
* printed; find out the value of min in
* terms of len, row and col x/

min = minimum(row, col);
min = minimum(min, len - row - 1);
min = minimum(min, len - col - 1);

printf ("$d ", min);
}
printf ("\n");
}

return 0;

3. Complete the following programs by filling up the missing codes.

(a) Given a 1-D array, the following program counts the number of even-spaced inversions in the
array. We call a pair (i, 7J) as an even-spaced inversion when both the following conditions
satisfy: (i) (1, J) is aninversion, which means arr[1i] > arr[j] wherei < 3j, and (ii)
the difference between i and 7 is even. Fill up the missing code below to complete the program.

[1x5 = 5]

#include<stdio.h>
int main () {
int arr[] = {10,9,8,7,6,5,4,3,2,1};
/+*Stores the count of even-spaced inversions=*/

int even_inv_cnt = 0;

int i, J;

/+ Iterating over all pairs of elementsx/
for (1i=0;1i<9;i++) {

for (j= i+1; J<10; J++){
/+Checking the two mentioned conditions
+»0f even—-spaced inversionsx/

1£((arr[i] > arr[j]) && (J-1)%2==0)){
++even_inv_cnt;
}

printf ("Number of even-spaced inversions:

%d",even_inv_cnt);
return 0;

Space for Rough Works

(b) The following program counts the number of unique numbers present in a 1-D array. For
example, for an array = {1,2,3,4,5,4,3,2} as input, the output is 5. Fill up the missing codes.
[1x5 = 5]

#include<stdio.h>

int main () {
int arr(] = {1,2,2,2,5,9,14,6,7,3,3,5};
int unique_cnt=0,arr_size=12,1, j;

for (i=0; i<arr_size; i++) {
if (arr[i] !'= -9999) {

unique_cnt++;
printf ("%d ",arr[i]);

for (j=i+1 ; j<arr_size; j++) {

if(arr[3j] == arr([i]) {
arr[j] = —-9999 ;
}
}
}
}
printf ("Count of unigque numbers : %d", unique_cnt);
return 0;
}
Space for Rough Works

(c) Given a 1-D array, the following program converts a k-chunked array, sorted in non-increasing
order chunk-wise, into an array sorted completely in non-decreasing order. The length of the
array will always be a multiple of k.

Ex : A ={6,5,5,9,6,3,1,5,7} is a 3-chunked array, where k = 3, implying that chunks of 3
consecutive elements, starting from the first position of the array, is sorted in non-increasing
order. {6,5,5},{9,6,3},{1,5,7} are individually sorted in non-increasing order.
The desired output will be : {1,3,5,5,5,6,6,7,9}
Fill up the missing code below to complete the program.

[1x5 = 5]

#include<stdio.h>

void chunkedSortArray (int arr[], int size, int k) {
int i,sortIndex=0,min_val,min_part;
// Stores the total number of partitions for the array

int partitions = size/k;

/xptr_list stores present index of the smallest element
+for each partition; part_count stores the number of
relements covered per partition; sorted_list stores the
x*final sorted list in non-decreasing orderx/

int ptr_1list[100], part_count[l100], sorted_1list[100];

for (i=1;i<=partitions;i++) {

/+Assigning starting index for each partition,
*consisting of the smallest element of
xthat partition=/

ptr_list[i-1] = ixk-1;

/+ Initializing the number of elements

xutilized per partition to 0%/

part_count[i-1] = O;

}
/* Repeat till sorted_list array is completex/
while (sortIndex < size) {

/+xStoring the minimum value across all

xpartitions and the partition numberx*/
min_val = 1000, min_part=-1;

for (i=0; i<partitions;i++) {
/*Check to determine whether the
xpartition is not emptyx*/

if (part_count[i] < k) {
/+*Finding the minimum value
*across all the partitionsx/

if(arr[ptr_list[i]] < min_val) {
min_val = arr([ptr_list[il];
min_part = 1i;

}

if (min_part !'= -1) {

/+xSince the final array is sorted is in
*non-decreasing order, we add the
xsmallest element in each iterationx/

sorted_list[sortIndex++] = min_val;
part_count [min_part] = part_count[min_part]+1;
ptr_list[min_part] = ptr_list[min_part]-1;

}
printf ("Sorted list :\n");
for (i=0; i<size;i++) {
printf ("%d,",sorted_list[i]);

int main () {
int arr[] = {10,6,3,2,9,5,5,3,5,2,1,1};
int k=4, arr_size=12;
chunkedSortArray (arr,arr_size, k) ;
return 0;

4. What would be the output of the following code? [5]

#include<stdio.h>

int main () {
int arr[] = {12,14,21,9, 3, 1, 15};
int d=3,arr_size=7,iterations=5,1i=0, j, temp, k;

while (iterations——) {
J= (i+d) %arr_size; 9 14 21 12 3 1 15
temp= arr[i]; 9 1 21 12 3 14 15
arr[i] = arr[3j]; 2119 12 3 14 15
arr[j] = temp; 211 12 9 3 14 15

211 12 9 3 14 15

d++;
i=(i+1) $arr_size;
printf ("\n");

for (k=0;k<arr_size;k++) {
printf("sd ", arr([k]l);

}

return 0;

5. The following C program evaluates the value of cos function using the following series: cos(x) =
ngo(—l)"% = 1-x?/2! + x*/4!-x%/6! + As the expression contains infinite series, the value of

the expression is evaluated using finite number of terms specified by the user. The program uses three
functions to evaluate the cos function. Fill up the incomplete portions of the C program. [0.5x20=10]

#include<stdio.h>
double fact (double n) {
if (n == 0)
return 1;
else

return (nxfact(n-1));

float power (double x, double n) {
if (n==0)
return 1;
if (n>0)

return (x*xpower (x, n-1));
if (n<0)

return (power (x, n+l)/x);

double cosine (double x, double n) {
double p;
if (n == 0)
return 1;
else

p= (power (-1, n)=*
power (x, 2xn))/
fact (2*n) +
cosine (x, n-1);

return p;

int main () {
double s,y,x,n;
printf ("Enter the number of terms to be considered: \n");
scanf ("%$1f", &n) ;
printf ("Enter the value of x in degrees: \n");
scanf ("$1f", &x);

y=((float) ((int)x %

360)/180) x3.142;

printf("y = $1f\n",vy);
s=cosine(y,n);
printf ("cos(%d) = %1f\n", (int)x,s);
return (0) ;

Space for Rough Works

6. Answer the following questions.

(a) Find out the output of the following program. [4]

#include<stdio.h>
int find(int number) {
if (number == 0)
return 0;
else
return (number % 2 + 10 x find(number / 2));

int main(){ 1001111111

int number = 639;
printf ("%d", find(number));
return 0;

(b) The following C program is used to determine whether the entered string is a palindrome or
not, by using two C functions. One of the function is used to reverse the string and other one
is used to compare the given string with reversed one. Fill up the incomplete portions of the
C program. Note: Palindrome property of the string is that if the given string is same as it’s
reverse string (consider a single word with no blank space). Example-1: madam; Example-2:
amanaplanacanalpanama [0.5x 12 =6]

#include <stdio.h>

int str_cmp (char arrl[], char arr2[]);
void reverse (char arrl[], char arr2[]);
int main (void)
{
char str1[350], str2[350];
printf ("Enter a string to check if it is a
palindrome or not.\n");

scanf (" %s", strl);
reverse (strl, str2);
if (str_cmp(strl, str2)){
printf ("The entered string is not palindrome.\n");
}
else(
printf ("The entered string is a palindrome.\n");
}

return 0;
void reverse (char arrl[], char arr2[]) {
int 1, 3 = 0;

for (i = 0; arrl[i] != "\0'; i++);
while (i--) {

arr2[j++] = arrl[i];
}
arr2[j] ="\0" ;
}
int str_cmp (char arrl[], char arr2[]){
int i;
int flag;
for (1 = 0; arrlf[i] !'= "\0O’
&& arr2[i] != "\0"; i++){
if (arrl[i] !'= arr2[i]){
flag = 1;
break;
}
}
if (arrl[i] == "\0’ && arr2[i] == "\0")
flag = 0;
else
flag = 1;
return flag;
}
Space for Rough Works

10

7. Consider a polynomial with real (floating-point) coefficients: f(X) = coX% + ;X4 +c, X2 4+
¢,—1 X% with integer degrees 0 < dyp < d; < dy < ... < d;—1 and with coefficients ¢;. We call each
c;X% as a nonzero term in f(X).

We store f as the sequence of coefficient, degree pairs, such as (co;dp); (c1:d1); (c23da); 25 (cr—15di—1)
which is sorted with respect to the degrees (the second components in the pairs). For example, consider
f(x) = 4x> + 6x% +7x+9. We would store f as the following sequence: (4,3);(6,2);(7,1);(9,0)

To achieve this, We first define a term as follows:

typedef struct term
{

int coeff;

int expo;
} Term;

A polynomial may be represented using array of structure “Term”. Consider that maximum degree
of the polynomial as 10. The following program performs addition and multiplication of two
polynomials. This program does the following:

(a) First invokes readPoly function to read both the polynomials. Then it invokes the addPoly
function to add both the polynomials. Complete the addPoly function. [1+1+1+1+0.5+0.5=5]

(b) Next, the program invokes multPoly function to multiply both the polynomials. Complete the
multPoly function. [1+1.5+1.5=4]
(c) Finally it displays the result by invoking displayPoly. Complete the displayPoly
function. (1]

#include<stdio.h>

/* declare three arrays first_poly, second_poly, result_add,
* result_mult of type structure poly.

* each polynomial can have maximum of ten terms

* addition result of first_poly and second_poly is stored in
* result_add

multiplication result of first_poly and

* second_poly 1s stored in result_mult =*/

typedef struct term
{

int coeff;

int expo;
} Term;

Term first_poly[10], second_poly[10];
Term result_add[10], result_mult[100];

/* function prototypes =*/

int readPoly(Term [1);

int addPoly(Term [], Term [], int , int , Term [1);
int multPoly(Term [], Term [], int , int , Term []1);
void displayPoly(Term [], int terms);

int main () {

11

int

int

int tl1, t2, t3, t4;

/* read the first polynomial =*/
tl = readPoly (first_poly);

/+ read and display second polynomial =/
t2 = readPoly (second_poly);

/+ add two polynomials and display resultant polynomial */
t3 = addPoly (first_poly, second_poly, tl, t2, result_add);
printf (" \n\n Resultant polynomial after addition : ");

displayPoly (result_add, t3);
printf ("\n");

td=multPoly (first_poly, second_poly, tl, t2, result_mult);
printf (" \n\n Resultant polynomial after multiplication : ");

displayPoly (result_mult, t4);
printf ("\n");
return 0;

readPoly (Term poly_term[])

int tl1, 1i;

printf ("\n\n Enter the total number of terms in
the polynomial:");

scanf ("%d", &tl);

printf ("\n Enter the COEFFICIENT and EXPONENT in
DESCENDING ORDER\n");

for (i=0;1i<tl;i++)

{

printf (" Enter the Coefficient (%d): ", i+1);
scanf ("%d", &poly_term[i].coeff);
printf (" Enter the exponent(%d): ", i+l);

scanf ("%d", &poly_term[i].expo);
}

return (tl);

addPoly (Term first_poly[], Term second_poly[],

int tl, int t2, Term result_add[1)

int 1, 3, k;
i=0; 3=0; k=0;

while (i<t1l && j<t2)
{

12

int

if (first_poly[i] .expo==second_poly[]j] .expo)
{

result_add[k].coeff=first_poly[i].coeff +

second_poly[]j].coeff;
result_add[k].expo=first_poly[i].expo;

i++; J++; k++;

else if (first_poly[i].expo>second_poly[j].expo)
{
result_add[k].coeff=first_poly[i].coeff;
result_add[k].expo=first_poly[i] .expo;
i++; kt++;
}
else
{
result_add[k].coeff=second_poly[]j].coeff;
result_add[k] .expo=second_poly[]].expo;

J++; k++;

}

/x for rest over terms of polynomial 1 x/

while (i<t1l)

{
result_add[k].coeff=first_poly[i].coeff;
result_add[k] .expo=first_poly[i].expo;
i++; k++;

}

/+ for rest over terms of polynomial 2 */

while (j<t2)

{
result_addl[k].coeff=second_poly[]j].coeff;
result_add[k] .expo=second_poly[]].expo;
i++; k++;

}

return(k); /+ k is number of terms in resultant polynomialx/

multPoly (Term first_poly[], Term second_polyl[1],
int tl,int t2, Term result_mult[1)

int 1, 3j,k;

1=0;3=0; k=0;

for (i=0; i< tl1; 1i++)
{

13

for (j=0; j< t2; J++)
{

result_mult [k] .expo=first_poly[i].expo +
second_poly[Jj].expo;

result_mult[k].coeff=first_poly[i].coeff =
second_poly[J].coeff;
k++;

}

return (k) ; /* k is number of terms in resultant polynomial=x*/

void displayPoly (Term poly_term[],int term)

{

int k;
for (k=0; k<term-1;k++)
printf ("$d(x"%d)+", poly_terml[k].coeff, poly_ term[k].expo);

printf ("$d(x"%d)", poly_term[term-1].coeff,
poly_term[term-1].expo);

Space for Rough Works

14

