CS11001/CS11002
Programming and Data Structures
(PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya
sourangshu@gmail.com
http://cse.iitkgp.ac.in/~sourangshu/

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Number System
Number Representation

Topics to be Discussed

How are numeric data items actually stored in
computer memory?

How much space (memory locations) is allocated for
each type of data?
— int, float, char, etc.

How are characters and strings stored in memory?

Number System :: The Basics

 We are accustomed to using the so-called

— Tendigits:: 0,1,2,3,4,5,6,7,8,9

— Every digit position has a weight which is a power of
10.

— Base or radix is 10.
e Example:
234 = 2x102 + 3x10' + 4x10°
250.67 = 2x10%2 + 5x10!' + O0x10° +
6x101 + 7x 10?2

Binary Number System

* Two digits:
— 0Oand 1.

— Every digit position has a weight which is a
power of 2.

— Base or radix is 2.
e Example:
110= 1x22 + 1x21 + 0x 20
101.01= 1x22 + 0x21 + 1x2° +
Ox21 + 1x22

Counting with Binary Numbers

0

1

10
11
100
101
110
111
1000

Multiplication and Division with base

Multiplication with 10 (decimal system)

435 x10= 4350 <

Left Shift and add
zero at ri_ght end

Multiplication with 10 (=2 nary system)

1101 x 10=11010

Division by 10 (decimal system)

Right shift and drop
right most digit or

435 /10=43.5 “

Division by 10 (=2) (bin
1101 /10=110.1

shift after decimal
point

Adding two bits

‘Carries‘
0+0=0 1 11 0
0+1 =1 1 0 1
1+0:=1 + 1 1 1
1+1 =10 1 1 O 0

I-—\IOI-—\

carry

Binary addition: Another example

The initial carry

in is implicitly O
1 1 0 1
+ 1 1 0 O
1 1 0 0 1 (Sum)
most significant least significant

bit (MSB) bit (LSB)

Binary-to-Decimal Conversion

* Each digit position of a binary number has a
weight.
— Some power of 2.

* A binary number:

Correspolnding value in decimal:
D=2 b 2

i=-m

Examples

1. 101011 = 1x2°+0x2%+ 1x23 + 0x22 + 1x21 + 1x20
= 43
(101011), = (43)

2. .0101 = Ox21+1x22+0x23+ 1x2*
=.3125
(.0101), = (.3125)

3. 101.11 = 1x22+0x21 + 1x20+ 1x21 + 1x22
5.75
(101.11), =(5.75)

Decimal-to-Binary Conversion

* Consider the integer and fractional parts
separately.

* For the integer part,

— Repeatedly divide the given number by 2, and go
on accumulating the remainders, until the number
becomes zero.

— Arrange the remainders in reverse order.

* For the fractional part,

— Repeatedly multiply the given fraction by 2.
 Accumulate the integer part (0 or 1).
* If the integer partis 1, chop it off.

— Arrange the integer parts in the order they are
obtained.

N NN DMNMNDMNMNDMDMNMDNDND

Example 1 :: 239

NN DNMNDMNMNMNDMDMDDMNMDDD

Example 2 :: 64

-
(o)

S R
am©C 0C o0 Co

.634
.268
936
.072
144

X X X X X

N NMNDDMNMNDND

Example 3 :: .634

1.268
0.536
1.072
0.144
0.288

V

(.634)

= (.10100

)

Example 4 :: 37.0625

(37),, = (100101),
(.0625),, = (.0001),

(37.0625),, = (100101 . 0001)

Hexadecimal Number System

A compact way of representing binary numbers.

e 16 different symbols (radix = 16).

0 - 0000 8 -> 1000
1 - 0001 9 - 1001
2 = 0010 A - 1010
3 =2 0011 B - 1011
4 - 0100 C - 1100
5 - 0101 D - 1101
6 2 0110 E - 1110
7 - 0111 F - 1111

Binary-to-Hexadecimal Conversion

* For the integer part,
— Scan the binary number from right to left.

— Translate each group of four bits into the
corresponding hexadecimal digit.

* Add /eading zeros if necessary.
* For the fractional part,
— Scan the binary number from /eft to right.

— Translate each group of four bits into the
corresponding hexadecimal digit.

* Add trailing zeros if necessary.

1

2

3

A

Example

. (1011 01000011), = (B43)

. (10 1010 0001),

. (.1000 010),

. (101.0101 111),

= (2A1),,
= (.84)

= (5.5E),,

Hexadecimal-to-Binary Conversion

* Translate every hexadecimal digit into its 4-
bit binary equivalent.
e Examples:
(3A5),, = (0011 10100101),

(12.3D),. = (00010010 .0011 1101),
(1.8),, = (0001 .1000),

Unsigned Binary Numbers

* An n-bit binary number
B =b, b ,..bb,b,
e 2" distinct combinations are possible, 0 to 2"-1.
 For example, for n = 3, there are 8 distinct
combinations.

— 000, 001, 010, 011, 100, 101, 110, 111

* Range of numbers that can be represented
n=8 =» 0 to 231 (255)
n=16 = 0 to 26-1 (65535)
n=32 =2 0 to 232-1(4294967295)

Sighed Integer Representation

 Many of the numerical data items that are used in a
program are signed (positive or negative).

— Question:: How to represent sign?

* Three possible approaches:
— Sign-magnitude representation
— One’s complement representation
— Two’s complement representation

Sign-magnitude Representation

* For an n-bit number representation

— The most significant bit (MSB) indicates sign
0 —> positive
1 = negative

— The remaining n-1 bits represent magnitude.

b

n-1 bn-2 b1 bo

Sign Magnitude

Representation and ZERO

 Range of numbers that can be represented:
Maximum :: + (2" —-1)
Minimum :: -(2"1-1)

A problem:

Two different representations of zero.

+0 -> 0000....0
-0 -> 1000...0

One’s Complement Representation

e Basic idea:

— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 1’s complement
form.

* How to compute the 1's complement of a
number?
— Complement every bit of the number (120 and 0—2>1).
— MSB will indicate the sign of the number.
0 —> positive
1 = negative

0000
0001
0010
0011
0100
0101
0110
0111

Example

N2\ 28 2 200 20\ 2\ 2\ 2

+0
+1
+2
+3
+4
+5
+6
+7

.. N=

1000
1001
1010
1011
1100
1101
1110
1111

a4

N2\ 28 2 200 20\ 2\ 2\ 2

To find the representation of -4, first note that
+4 = 0100
-4 = 1’s complement of 0100 = 1011

One’s Complement Representation

 Range of numbers that can be represented:
Maximum :: + (2"1-1)
Minimum :: -(2"1-1)

 Aproblem:

Two different representations of zero.
+0 - 0000....0
-0 -2 1111..1

 Advantage of 1's complement representation
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.

Two’s Complement Representation

e Basic idea:

— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 2’s complement
form.

* How to compute the 2’s complement of a
number?

— Complement every bit of the number (120 and 0—=>1), and
then add one to the resulting number.

— MSB will indicate the sign of the number.
0 - positive
1 = negative

Example :: n=4

0000 - +0 1000 - -8
0001 - +1 1001 - -7
0010 - +2 1010 - -6
0011 - +3 1011 - -5
0100 - +4 1100 - -4
0101 - +5 1101 - -3
0110 = +6 1110 - -2
0111 - +7 1111 - -1

To find the representation of, say, -4, first note that
+4 = 0100
-4 = 2’s complement of 0100 = 1011+1 = 1100

Storage and number system in
Programming

e InC

— short int

16 bits = +(215-1) to -215
— int

e 32 bits =» +(231-1) to -231
— long int

* 64 bits = +(29-1) to -29

Storage and number system in
Programming

 Range of numbers that can be represented:
Maximum :: + (2"1-1)
Minimum :: - 2"

 Advantage:
— Unique representation of zero.
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.

* Almost all computers today use the 2’s complement
representation for storing negative numbers.

Subtraction Using Addition :: 1’s
Complement

e How to compute A—B?

— Compute the 1’s complement of B (say, B,).

— Compute R=A+ B,

— If the carry obtained after addition is ‘1’
* Add the carry back to R (called end-around carry).
* Thatis, R=R + 1.
* The result is a positive number.

Else

* The result is negative, and is in 1’s complement form.

Examplel :: 6 -2

A=6 (0110)
B=2 (0010)
6—-2=A-B

1’s complement of 2 = 1101

6 :: 0110 A
Assume 4-bit
-2 1101 B, representations.
‘ 10011 R Since there is a carry, it is
1 added back to the resulit.
0100 = +4 The result is positive.

Example 2 :: 3-5

1’s complement of 5 = 1010

3 :: 0011 A
-5 1 1010 B,
1101 R

4

-2

Assume 4-bit representations.

Since there is no carry, the
result is negative.

1101 is the 1’s complement of
0010, that is, it represents -2.

Subtraction Using Addition :: 2’s
Complement

* How to compute A—B?

— Compute the 2’s complement of B (say, B,).
— ComputeR=A+8B,
— Ignore carry if it is there.

— The resultisin 2’s complement form.

Examplel :: 6-2

2’s complementof2 = 1101+1 = 1110

6 :: 0110 A
-2 1110 B,
10100 R

/ll

Ignore carry

Example 2 :: 3-5

2’s complementof 5 = 1010+ 1 = 1011

3 :: 0011 A
-5 :: 1011 B,

1110 R

4

-2

Example3 :: -3-5

2’s complementof3 = 1100+ 1 = 1101
1010+1 = 1011

2’s complement of 5

-3 :: 1101
-5 1011
11000

/IL

Ignore carry _§

Floating-point Numbers

 The representations discussed so far applies only to
Integers.

— Cannot represent numbers with fractional parts.

e We can assume a decimal point before a 2’s
complement number.

— In that case, pure fractions (without integer parts) can be
represented.

 We can also assume the decimal point somewhere in
between.

— This lacks flexibility.

— Very large and very small numbers cannot be represented.

Representation of Floating-Point
Numbers

* A floating-point number F is represented by a
doublet <M, E> :
F =M x Bf
* B = exponent base (usually 2)
M = mantissa
« E 2 exponent

— M is usually represented in 2’s complement form, with
an implied decimal point before it.

* For example,

In decimal,
0.235 x 10°

In binary,
0.101011 x 20110

Example :: 32-bit representation
| M | L& |
<€ 54 > <€ 3 >

— M represents a 2’s complement fraction
1>M> -1

— E represents the exponent (in 2’s complement form)
127 > E > -128

e Points to note:

— The number of significant digits depends on the number of
bits in M.

* 6 significant digits for 24-bit mantissa.

— The range of the number depends on the number of bits in
E.

e 103 to 1032 for 8-bit exponent.

Floating point number:
IEEE Standard 754

* Storage Layout

Fraction /
Mantissa
Single Precision 1 [31] 8 [30-23] 23 [22-00]
Double Precision 1 [63] 11 [62-52] 52 [51-00]

Single: SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
Double: SEEEEEEE EEEEMMMM vvvvvmvmvim MMMMMMMM
vvvvMvMmmMmmMmm Mmvvvivivvme vmvvvvivivimv MMVMMMMM

Ambiguity
* A number can be represented in many ways:

172.93
=(10101100.1110111000...),
=(1.01011001110111000...), x 2/
=(0.101011001110111000...), x 28

Normal form
 The normal form can be interpreted as:
(-1)° x
(L.M,,M,,...MM,), x

2 "M ((BE-E....E.E,), - 127)

Normal form

* Biggest:

0111111101111111 11111111 11111111
2128

* Smallest positive:

0 00000001 OOOOOOO OOOOOOOO OOOOOO0O0
2-126

* Negative is symmetrical.

Denormalized form

* The exponent bits are zero.
* The number is interpreted as:

(-1)° x
(0.M,,M,, ...MM,), X

2—126

Denormalized form

* Biggest positive value:

0 0000000011111717 1717717171777 1717171111112
2-126 _ 2—149

 Smallest positive value:

0 00000000 0000000 00000000 00000001
2—149

* Negative is symmetric.

N

|IEEE Standard 754

The sign bit is O for positive, 1 for negative.

The exponent base is two.

The exponent field contains 127 plus the true exponent for single-precision, or
1023 plus the true exponent for double precision.

The first bit of the mantissa is typically assumed to be 1.f, where fis the field of
fraction bits.

* Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value
(by toggling the sign bit), the ranges above are symmetric around zero.

. . Approximate
Denormalized Normalized pp.
Decimal

Single + 27149 to + 27126 to + =107%4%> to
Precision (1-2723)x27126 (2-2723)x21%7 =~1038->3
Double +271974t0 + 271022 to +=1073233 to

Precision (1-2-52)x2-1022 (2-2752)x21023 ~103083

32-bit
1111
1111
1111
1111
0000
0000

R oo B O B O

value
1111
1111
1111
1111
0000
0000

Special numbers

0000000 00000000 00000000
0000000 00000000 00000000
Any nonzero 23-bit value
Any nonzero 23-bit wvalue
0000000 00000000 00000000
0000000 00000000 00000000

Interpretation
+Inf

—Inf

NaN

NaN

+0

-0

|IEEE Standard 754

There are four distinct numerical ranges that single-
precision floating-point numbers are not able to
represent:

1. Negative numbers less than —(2-2723) x 212/ (negative
overflow)

Negative numbers greater than -271%° (negative underflow)
Positive numbers less than 2714° (positive underflow)

4. Positive numbers greater than (2-2723) x 2127 (positive
overflow)

Special Values

-0 and +0 are distinct values, though they both compare as equal.

If the exponent is all Os, but the fraction is non-zero, then the value is a denormalized
number, which now has an assumed leading 0 before the binary point. Thus, this
represents a number (-1)° x 0.f x 27126, where s is the sign bit and f is the fraction. For
double precision, denormalized numbers are of the form (-1)s x 0.f x 271922, From this
you can interpret zero as a special type of denormalized number.

The values +o0 and —o° are denoted with an exponent of all 1s and a fraction of all Os.
The sign bit distinguishes between negative infinity and positive infinity. Being able to
denote infinity as a specific value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well defined in IEEE floating
point.

The value NaN (Not a Number) is used to represent a value that does not represent a
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a
non-zero fraction.

Representation of Characters

 Many applications have to deal with non-numerical
data.

— Characters and strings.

— There must be a standard mechanism to represent alphanumeric and
other characters in memory.

e Three standards in use:

— Extended Binary Coded Decimal Interchange Code (EBCDIC)
e Used in older IBM machines.

— American Standard Code for Information Interchange (ASCI|)
* Most widely used today.
— UNICODE

* Used to represent all international characters.
* Used by Java.

ASCII Code

* Each individual character is numerically encoded into
a unique 7-bit binary code.
— A total of 27 or 128 different characters.

— A character is normally encoded in a byte (8 bits), with the
MSB not been used.

* The binary encoding of the characters follow a
regular ordering.

— Digits are ordered consecutively in their proper numerical
sequence (0 to 9).

— Letters (uppercase and lowercase) are arranged
consecutively in their proper alphabetic order.

Some Common ASCII Codes

:: 41 (H) 65 (D) ‘O’ :: 30(H) 48 (D)
:: 42 (H) 66 (D) ‘1’ :: 31 (H) 49 (D)
:: 5A (H) 90 (D) ‘9" :: 39 (H) 57 (D)
:: 61 (H) 97 (D) (“ :: 28 (H) 40 (D)
.. 62 (H) 98 (D) ‘+’ :: 2B (H) 43 (D)
? v 3F(H) 63 (D)
.. 7A (H) 122 (D) An’ :: OA (H) 10 (D)

N0’ :: 00 (H) 00 (D)

Character Strings

 Two ways of representing a sequence of
characters in memory.

— The first location contains the number of characters in
the string, followed by the actual characters.

— The characters follow one another, and is terminated
by a special delimiter.

H e | | o L1

String Representation in C

* InC, the second approach is used.
— The character is used as the string delimiter.

 Example:

->

i“wn

* A null string “” occupies one byte in memory.
— Only the \O’ character.

