CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya <u>sourangshu@gmail.com</u> <u>http://cse.iitkgp.ac.in/~sourangshu/</u>

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Number System Number Representation

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
 - int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
 - Ten digits :: 0,1,2,3,4,5,6,7,8,9
 - Every digit position has a weight which is a power of 10.
 - Base or radix is 10.
- Example:

 $234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$ $250.67 = 2 \times 10^{2} + 5 \times 10^{1} + 0 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$

Binary Number System

- Two digits:
 - 0 and 1.
 - Every digit position has a weight which is a power of 2.
 - Base or radix is 2.
- Example:

 $110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ $101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$

Counting with Binary Numbers

•

Multiplication and Division with base

Adding two bits

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

 $B = b_{n-1} b_{n-2} \dots b_1 b_0 \dots b_{-1} b_{-2} \dots b_{-m}$ Corresponding value in decimal: $D = \sum_{i = -m} b_i 2^i$

Examples

1. 101011 \rightarrow 1x2⁵ + 0x2⁴ + 1x2³ + 0x2² + 1x2¹ + 1x2⁰ = 43 (101011)₂ = (43)₁₀

- 2. .0101 \rightarrow 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴ = .3125 (.0101)₂ = (.3125)₁₀
- 3. 101.11 \rightarrow 1x2² + 0x2¹ + 1x2⁰ + 1x2⁻¹ + 1x2⁻² 5.75 (101.11)₂ = (5.75)₁₀

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders *in reverse order*.
- For the fractional part,
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts *in the order* they are obtained.

Example 1 :: 239

 $(239)_{10} = (11101111)_2$

Example 2 :: 64

 $(64)_{10} = (1000000)_2$

Example 3 :: .634

 $.634 \times 2 = 1.268$ $.268 \times 2 = 0.536$ $.536 \times 2 = 1.072$ $.072 \times 2 = 0.144$ $.144 \times 2 = 0.288$

:

 $(.634)_{10} = (.10100....)_2$

Example 4 :: 37.0625

 $(37)_{10} = (100101)_2$ $(.0625)_{10} = (.0001)_2$

 $(37.0625)_{10} = (100101.0001)_2$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

 - $4 \rightarrow 0100 C \rightarrow 1100$
 - $5 \rightarrow 0101 \quad D \rightarrow 1101$
 - $6 \rightarrow 0110 E \rightarrow 1110$
 - $7 \rightarrow 0111 F \rightarrow 1111$

Binary-to-Hexadecimal Conversion

• For the integer part,

- Scan the binary number from *right to left*.
- Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *leading* zeros if necessary.
- For the fractional part,
 - Scan the binary number from *left to right*.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *trailing* zeros if necessary.

Example

- 1. $(\underline{1011} \ \underline{0100} \ \underline{0011})_2 = (B43)_{16}$
- 2. $(\underline{10} \ \underline{1010} \ \underline{0001})_2 = (2A1)_{16}$
- 3. $(.\underline{1000} \ \underline{010})_2 = (.84)_{16}$
- 4. $(\underline{101} \cdot \underline{0101} \, \underline{111})_2 = (5.5E)_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4bit binary equivalent.
- Examples:

$$(3A5)_{16} = (\underline{0011} \ \underline{1010} \ \underline{0101})_2$$

 $(12.3D)_{16} = (\underline{0001} \ \underline{0010} \ . \ \underline{0011} \ \underline{1101})_2$
 $(1.8)_{16} = (\underline{0001} \ . \ \underline{1000})_2$

Unsigned Binary Numbers

• An n-bit binary number

$$B = b_{n-1}b_{n-2} \dots b_2b_1b_0$$

- 2ⁿ distinct combinations are possible, 0 to 2ⁿ-1.
- For example, for n = 3, there are 8 distinct combinations.

- 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented

- n=16 \rightarrow 0 to 2¹⁶-1 (65535)
- n=32 \rightarrow 0 to 2³²-1 (4294967295)

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
 - Question:: How to represent sign?
- Three possible approaches:
 - Sign-magnitude representation
 - One's complement representation
 - Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
 - The most significant bit (MSB) indicates sign
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative
 - The remaining n-1 bits represent magnitude.

Representation and ZERO

• Range of numbers that can be represented:

Maximum :: + (2ⁿ⁻¹ – 1)

Minimum :: $-(2^{n-1}-1)$

• A problem:

Two different representations of zero.

+0 → 0 000....0

-0 → 1 000....0

One's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative

Example :: n=4

- $0000 \rightarrow +0 \qquad 1000 \rightarrow -7$
- $0001 \rightarrow +1 \qquad 1001 \rightarrow -6$
- $0010 \rightarrow +2 \qquad 1010 \rightarrow -5$
- $0011 \rightarrow +3 \qquad 1011 \rightarrow -4$
- $0100 \rightarrow +4 \qquad 1100 \rightarrow -3$
- $0101 \rightarrow +5 \qquad 1101 \rightarrow -2$

To find the representation of -4, first note that +4 = 0100 -4 = 1's complement of 0100 = 1011

One's Complement Representation

- Range of numbers that can be represented:
 - Maximum :: $+(2^{n-1}-1)$
 - Minimum :: $-(2^{n-1}-1)$
- A problem:

Two different representations of zero.

- +0 > 0 000....0
- -0 > 1 111....1
- Advantage of 1's complement representation
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.

Two's Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in signmagnitude form.
 - Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number (1→0 and 0→1), and then *add one* to the resulting number.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative

Example :: n=4

- $0000 \rightarrow +0 \qquad 1000 \rightarrow -8$
- $0001 \rightarrow +1 \qquad 1001 \rightarrow -7$
- $0010 \rightarrow +2 \qquad 1010 \rightarrow -6$
- $0011 \rightarrow +3 \qquad 1011 \rightarrow -5$
- $0100 \rightarrow +4 \qquad 1100 \rightarrow -4$
- $0101 \rightarrow +5 \qquad 1101 \rightarrow -3$

To find the representation of, say, -4, first note that +4 = 0100 -4 = 2's complement of 0100 = 1011+1 = 1100

Storage and number system in Programming

- In C
 short int

 16 bits → + (2¹⁵-1) to -2¹⁵

 int

 32 bits → + (2³¹-1) to -2³¹
 - 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Storage and number system in Programming

- Range of numbers that can be represented: Maximum :: + (2ⁿ⁻¹ – 1)
 - Minimum :: -2^{n-1}
- Advantage:
 - Unique representation of zero.
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute A B ?
 - Compute the 1's complement of B (say, B_1).
 - Compute $R = A + B_1$
 - If the carry obtained after addition is '1'
 - Add the carry back to R (called *end-around carry*).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6 – 2

A = 6 (0110) B = 2 (0010) 6 - 2 = A - B

1's complement of 2 = 1101

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3 – 5

1's complement of 5 = 1010

- 3 :: 0011 A
- -5 :: <u>1010</u> B₁ 1101 R

-2

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents –2.

Subtraction Using Addition :: 2's Complement

How to compute A – B ?

- Compute the 2's complement of B (say, B_2).

- Compute $R = A + B_2$
- Ignore carry if it is there.
- The result is in 2's complement form.

Example 1 :: 6 – 2

2's complement of 2 = 1101 + 1 = 1110

Example 2 :: 3 – 5

2's complement of 5 = 1010 + 1 = 1011

3 :: 0011 A -5 :: 1011 B_2 1110 R

-2

Example 3 :: -3 – 5

2's complement of 3 = 1100 + 1 = 1101 2's complement of 5 = 1010 + 1 = 1011

Floating-point Numbers

- The representations discussed so far applies only to integers.
 - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
 - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
 - This lacks flexibility.
 - Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E> :
 - $F = M \times B^{E}$
 - B \rightarrow exponent base (usually 2)
 - M → mantissa
 - E \rightarrow exponent
 - M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,
 - In decimal, 0.235 x 10⁶ In binary, 0.101011 x 2⁰¹¹⁰

Example :: 32-bit representation

- M represents a 2's complement fraction

1 > M > -1

- E represents the exponent (in 2's complement form)

127 > E > -128

- Points to note:
 - The number of *significant digits* depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
 - The *range* of the number depends on the number of bits in E.
 - 10^{38} to 10^{-38} for 8-bit exponent.

Floating point number: IEEE Standard 754

• Storage Layout

	Sign	Exponent	Fraction / Mantissa
Single Precision	1 [31]	8 [30–23]	23 [22–00]
Double Precision	1 [63]	11 [62–52]	52 [51–00]

Ambiguity

• A number can be represented in many ways:

172.93 = $(10101100.1110111000...)_2$ = $(1.01011001110111000...)_2 \times 2^7$

= $(0.101011001110111000...)_2 \times 2^8$

Normal form

• The normal form can be interpreted as:

 $(-1)^{S} \times$ (1. $M_{22}M_{21}$... $M_{1}M_{0}$)₂ × 2 ^^ (($E_{7}E_{6}$... $E_{1}E_{0}$)₂ - 127)

Normal form

- Biggest:
 0 1111110 1111111 11111111 1111111
 2¹²⁸
- Smallest positive: 0 0000001 000000 0000000 0000000 2⁻¹²⁶
- Negative is symmetrical.

Denormalized form

- The exponent bits are zero.
- The number is interpreted as:

$$(0.M_{22}M_{21}...M_{1}M_{0})_{2} \times$$

 2^{-126}

Denormalized form

- Biggest positive value: 0 0000000 1111111 1111111 1111111 2⁻¹²⁶ - 2⁻¹⁴⁹
- Negative is symmetric.

IEEE Standard 754

- 1. The sign bit is 0 for positive, 1 for negative.
- 2. The exponent base is two.
- 3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
- 4. The first bit of the mantissa is typically assumed to be 1.*f*, where *f* is the field of fraction bits.
 - Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

	Denormalized	Normalized	Approximate Decimal
Single	± 2 ⁻¹⁴⁹ to	± 2 ⁻¹²⁶ to	± ≈10 ^{-44.85} to
Precision	(1-2 ⁻²³)×2 ⁻¹²⁶	(2-2 ⁻²³)×2 ¹²⁷	≈10 ^{38.53}
Double	± 2 ⁻¹⁰⁷⁴ to	$\pm 2^{-1022}$ to	± ≈10 ^{-323.3} to
Precision	(1-2 ⁻⁵²)×2 ⁻¹⁰²²	(2-2 ⁻⁵²)×2 ¹⁰²³	≈10 ^{308.3}

Special numbers

32-bit value

- 0 1111 1111 0000000 0000000 0000000
- 1 1111 1111 0000000 0000000 00000000 -Inf
- 0 1111 1111 Any nonzero 23-bit value NaN
- 1 1111 1111 Any nonzero 23-bit value NaN
- 0 0000 0000 000000 0000000 +0
- 1 0000 0000 000000 0000000 0000000 -0

Interpretation

+Inf

IEEE Standard 754

There are four distinct numerical ranges that singleprecision floating-point numbers are **not** able to represent:

- 1. Negative numbers less than $-(2-2^{-23}) \times 2^{127}$ (*negative overflow*)
- 2. Negative numbers greater than -2^{-149} (*negative underflow*)
- 3. Positive numbers less than 2^{-149} (*positive underflow*)
- 4. Positive numbers greater than $(2-2^{-23}) \times 2^{127}$ (positive overflow)

Special Values

• Zero

-0 and +0 are distinct values, though they both compare as equal.

Denormalized

If the exponent is all 0s, but the fraction is non-zero, then the value is a *denormalized* number, which now has an assumed leading 0 before the binary point. Thus, this represents a number $(-1)^s \times 0.f \times 2^{-126}$, where s is the sign bit and f is the fraction. For double precision, denormalized numbers are of the form $(-1)^s \times 0.f \times 2^{-1022}$. From this you can interpret zero as a special type of denormalized number.

Infinity

The values $+\infty$ and $-\infty$ are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. *Operations with infinite values are well defined in IEEE floating point.*

Not A Number

The value NaN (*Not a Number*) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction.

Representation of Characters

- Many applications have to deal with non-numerical data.
 - Characters and strings.
 - There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
 - Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
 - American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
 - UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
 - A total of 2^7 or 128 different characters.
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

'A'	••	41 (H)	65 (D)
'B'	•••	42 (H)	66 (D)
		•	
'Z'	::	5A (H)	90 (D)
'a'	•••	61 (H)	97 (D)
ʻb'	••	62 (H)	98 (D)
• • • • • •		•	
'z'	••	7A (H)	122 (D)

'0'	•••	30 (H	H)	48	(D)	
'1'	•••	31 (H	H)	49	(D)	

••••

'9' :: 39 (H) 57 (D)

```
'(' :: 28 (H) 40 (D)
'+' :: 2B (H) 43 (D)
```

```
'?' :: 3F (H) 63 (D)
```

```
'\n' :: 0A (H) 10 (D)
```

```
'∖0' :: 00 (H) 00 (D)
```

Character Strings

- Two ways of representing a sequence of characters in memory.
 - The first location contains the number of characters in the string, followed by the actual characters.

 The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
 - The (0) character is used as the string delimiter.
- Example:

A null string "" occupies one byte in memory.
 – Only the '\0' character.