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Number System
Number Representation



Topics to be Discussed

How are numeric data items actually stored in
computer memory?

How much space (memory locations) is allocated for
each type of data?
— int, float, char, etc.

How are characters and strings stored in memory?



Number System :: The Basics

 We are accustomed to using the so-called

— Tendigits:: 0,1,2,3,4,5,6,7,8,9

— Every digit position has a weight which is a power of
10.

— Base or radix is 10.
e Example:
234 = 2x102 + 3x10' + 4x10°
250.67 = 2x10%2 + 5x10!' + O0x10° +
6x101 + 7x 10?2



Binary Number System

* Two digits:
— 0Oand 1.

— Every digit position has a weight which is a
power of 2.

— Base or radix is 2.
e Example:
110= 1x22 + 1x21 + 0x 20
101.01= 1x22 + 0x21 + 1x2° +
Ox21 + 1x22



Counting with Binary Numbers

0

1

10
11
100
101
110
111
1000



Multiplication and Division with base

Multiplication with 10 (decimal system)

435 x10= 4350 <

Left Shift and add
zero at ri_ght end

Multiplication with 10 (=2 nary system)

1101 x 10=11010

Division by 10 (decimal system)

Right shift and drop
right most digit or

435 /10=43.5 “

Division by 10 (=2) (bin
1101 /10=110.1

shift after decimal
point




Adding two bits

‘Carries‘
0+0=0 1 11 0
0+1 =1 1 0 1
1+0:=1 + 1 1 1
1+1 =10 1 1 O 0

I-—\IOI-—\

carry




Binary addition: Another example

The initial carry

in is implicitly O
1 1 0 1
+ 1 1 0 O
1 1 0 0 1 (Sum)
most significant least significant

bit (MSB) bit (LSB)



Binary-to-Decimal Conversion

* Each digit position of a binary number has a
weight.
— Some power of 2.

* A binary number:

Correspolnding value in decimal:
D=2 b 2

i=-m



Examples

1. 101011 = 1x2°+0x2%+ 1x23 + 0x22 + 1x21 + 1x20
= 43
(101011), = (43)

2. .0101 = Ox21+1x22+0x23+ 1x2*
=.3125
(.0101), = (.3125)

3. 101.11 = 1x22+0x21 + 1x20+ 1x21 + 1x22
5.75
(101.11), =(5.75)



Decimal-to-Binary Conversion

* Consider the integer and fractional parts
separately.

* For the integer part,

— Repeatedly divide the given number by 2, and go
on accumulating the remainders, until the number
becomes zero.

— Arrange the remainders in reverse order.

* For the fractional part,

— Repeatedly multiply the given fraction by 2.
 Accumulate the integer part (0 or 1).
* If the integer partis 1, chop it off.

— Arrange the integer parts in the order they are
obtained.
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.634
.268
936
.072
144

X X X X X
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Example 3 :: .634

1.268
0.536
1.072
0.144
0.288

V

(.634)

= (.10100

)



Example 4 :: 37.0625

(37),, = (100101),
(.0625),, = (.0001),

(37.0625),, = (100101 . 0001)



Hexadecimal Number System

A compact way of representing binary numbers.

e 16 different symbols (radix = 16).

0 - 0000 8 -> 1000
1 - 0001 9 - 1001
2 = 0010 A - 1010
3 =2 0011 B - 1011
4 - 0100 C - 1100
5 - 0101 D - 1101
6 2 0110 E - 1110
7 - 0111 F - 1111



Binary-to-Hexadecimal Conversion

* For the integer part,
— Scan the binary number from right to left.

— Translate each group of four bits into the
corresponding hexadecimal digit.

* Add /eading zeros if necessary.
* For the fractional part,
— Scan the binary number from /eft to right.

— Translate each group of four bits into the
corresponding hexadecimal digit.

* Add trailing zeros if necessary.



1

2

3

A

Example

. (1011 01000011), = (B43)

. (10 1010 0001),

. (.1000 010),

. (101.0101 111),

= (2A1),,
= (.84)

= (5.5E),,



Hexadecimal-to-Binary Conversion

* Translate every hexadecimal digit into its 4-
bit binary equivalent.
e Examples:
(3A5),, = (0011 10100101),

(12.3D),. = (00010010 .0011 1101),
(1.8),, = (0001 .1000),




Unsigned Binary Numbers

* An n-bit binary number
B =b, b ,..bb,b,
e 2" distinct combinations are possible, 0 to 2"-1.
 For example, for n = 3, there are 8 distinct
combinations.

— 000, 001, 010, 011, 100, 101, 110, 111

* Range of numbers that can be represented
n=8 =» 0 to 231 (255)
n=16 = 0 to 26-1 (65535)
n=32 =2 0 to 232-1(4294967295)



Sighed Integer Representation

 Many of the numerical data items that are used in a
program are signed (positive or negative).

— Question:: How to represent sign?

* Three possible approaches:
— Sign-magnitude representation
— One’s complement representation
— Two’s complement representation



Sign-magnitude Representation

* For an n-bit number representation

— The most significant bit (MSB) indicates sign
0 —> positive
1 = negative

— The remaining n-1 bits represent magnitude.

b

n-1 bn-2 b1 bo

Sign Magnitude



Representation and ZERO

 Range of numbers that can be represented:
Maximum :: + (2" —-1)
Minimum :: -(2"1-1)

A problem:

Two different representations of zero.

+0 -> 0000....0
-0 -> 1000...0



One’s Complement Representation

e Basic idea:

— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 1’s complement
form.

* How to compute the 1's complement of a
number?
— Complement every bit of the number (120 and 0—2>1).
— MSB will indicate the sign of the number.
0 —> positive
1 = negative



0000
0001
0010
0011
0100
0101
0110
0111

Example

N2\ 28 2 200 20\ 2\ 2\ 2

+0
+1
+2
+3
+4
+5
+6
+7

.. N=

1000
1001
1010
1011
1100
1101
1110
1111

a4

N2\ 28 2 200 20\ 2\ 2\ 2

To find the representation of -4, first note that
+4 = 0100
-4 = 1’s complement of 0100 = 1011




One’s Complement Representation

 Range of numbers that can be represented:
Maximum :: + (2"1-1)
Minimum :: -(2"1-1)

 Aproblem:

Two different representations of zero.
+0 - 0000....0
-0 -2 1111..1

 Advantage of 1's complement representation
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.



Two’s Complement Representation

e Basic idea:

— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 2’s complement
form.

* How to compute the 2’s complement of a
number?

— Complement every bit of the number (120 and 0—=>1), and
then add one to the resulting number.

— MSB will indicate the sign of the number.
0 - positive
1 = negative



Example :: n=4

0000 - +0 1000 - -8
0001 - +1 1001 - -7
0010 - +2 1010 - -6
0011 - +3 1011 - -5
0100 - +4 1100 - -4
0101 - +5 1101 - -3
0110 = +6 1110 - -2
0111 - +7 1111 - -1

To find the representation of, say, -4, first note that
+4 = 0100
-4 = 2’s complement of 0100 = 1011+1 = 1100



Storage and number system in
Programming

e InC

— short int

16 bits = +(215-1) to -215
— int

e 32 bits =» +(231-1) to -231
— long int

* 64 bits = +(29-1) to -29



Storage and number system in
Programming

 Range of numbers that can be represented:
Maximum :: + (2"1-1)
Minimum :: - 2"

 Advantage:
— Unique representation of zero.
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.

* Almost all computers today use the 2’s complement
representation for storing negative numbers.



Subtraction Using Addition :: 1’s
Complement

e How to compute A—B?

— Compute the 1’s complement of B (say, B,).

— Compute R=A+ B,

— If the carry obtained after addition is ‘1’
* Add the carry back to R (called end-around carry).
* Thatis, R=R + 1.
* The result is a positive number.

Else

* The result is negative, and is in 1’s complement form.



Examplel :: 6 -2

A=6 (0110)
B=2 (0010)
6—-2=A-B

1’s complement of 2 = 1101

6 :: 0110 A
Assume 4-bit
-2 1101 B, representations.
‘ 10011 R Since there is a carry, it is
1 added back to the resulit.
0100 = +4 The result is positive.



Example 2 :: 3-5

1’s complement of 5 = 1010

3 :: 0011 A
-5 1 1010 B,
1101 R

4

-2

Assume 4-bit representations.

Since there is no carry, the
result is negative.

1101 is the 1’s complement of
0010, that is, it represents -2.




Subtraction Using Addition :: 2’s
Complement

* How to compute A—B?

— Compute the 2’s complement of B (say, B,).
— ComputeR=A+8B,
— Ignore carry if it is there.

— The resultisin 2’s complement form.



Examplel :: 6-2

2’s complementof2 = 1101+1 = 1110

6 :: 0110 A
-2 1110 B,
10100 R

/ll

Ignore carry




Example 2 :: 3-5

2’s complementof 5 = 1010+ 1 = 1011

3 :: 0011 A
-5 :: 1011 B,

1110 R

4

-2



Example3 :: -3-5

2’s complementof3 = 1100+ 1 = 1101
1010+1 = 1011

2’s complement of 5

-3 :: 1101
-5 1011
11000

/IL

Ignore carry  _§



Floating-point Numbers

 The representations discussed so far applies only to
Integers.

— Cannot represent numbers with fractional parts.

e We can assume a decimal point before a 2’s
complement number.

— In that case, pure fractions (without integer parts) can be
represented.

 We can also assume the decimal point somewhere in
between.

— This lacks flexibility.

— Very large and very small numbers cannot be represented.



Representation of Floating-Point
Numbers

* A floating-point number F is represented by a
doublet <M, E> :
F =M x Bf
* B = exponent base (usually 2)
M = mantissa
« E 2 exponent

— M is usually represented in 2’s complement form, with
an implied decimal point before it.

* For example,

In decimal,
0.235 x 10°

In binary,
0.101011 x 20110



Example :: 32-bit representation
| M | L& |
<€ 54 > <€ 3 >

— M represents a 2’s complement fraction
1>M> -1

— E represents the exponent (in 2’s complement form)
127 > E > -128

e Points to note:

— The number of significant digits depends on the number of
bits in M.

* 6 significant digits for 24-bit mantissa.

— The range of the number depends on the number of bits in
E.

e 103 to 1032 for 8-bit exponent.



Floating point number:
IEEE Standard 754

* Storage Layout

Fraction /
Mantissa
Single Precision 1 [31] 8 [30-23] 23 [22-00]
Double Precision 1 [63] 11 [62-52] 52 [51-00]

Single:  SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
Double: SEEEEEEE EEEEMMMM vvvvvmvmvim MMMMMMMM
vvvvMvMmmMmmMmm Mmvvvivivvme vmvvvvivivimv  MMVMMMMM



Ambiguity
* A number can be represented in many ways:

172.93
=(10101100.1110111000...),
=(1.01011001110111000...), x 2/
=(0.101011001110111000...), x 28



Normal form
 The normal form can be interpreted as:
(-1)° x
(L.M,,M,,...MM,), x

2 "M ((BE-E....E.E,), - 127)



Normal form

* Biggest:

0111111101111111 11111111 11111111
2128

* Smallest positive:

0 00000001 OOOOOOO OOOOOOOO OOOOOO0O0
2-126

* Negative is symmetrical.



Denormalized form

* The exponent bits are zero.
* The number is interpreted as:

(-1)° x
(0.M,,M,, ...MM,), X

2—126



Denormalized form

* Biggest positive value:

0 0000000011111717 1717717171777 1717171111112
2-126 _ 2—149

 Smallest positive value:

0 00000000 0000000 00000000 00000001
2—149

* Negative is symmetric.



N

|IEEE Standard 754

The sign bit is O for positive, 1 for negative.

The exponent base is two.

The exponent field contains 127 plus the true exponent for single-precision, or
1023 plus the true exponent for double precision.

The first bit of the mantissa is typically assumed to be 1.f, where fis the field of
fraction bits.

* Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value
(by toggling the sign bit), the ranges above are symmetric around zero.

. . Approximate
Denormalized Normalized pp.
Decimal

Single + 27149 to + 27126 to + =107%4%> to
Precision (1-2723)x27126 (2-2723)x21%7 =~1038->3
Double  +271974t0 + 271022 to +=1073233 to

Precision  (1-2-52)x2-1022 (2-2752)x21023 ~103083



32-bit
1111
1111
1111
1111
0000
0000

R oo B O B O

value
1111
1111
1111
1111
0000
0000

Special numbers

0000000 00000000 00000000
0000000 00000000 00000000
Any nonzero 23-bit value
Any nonzero 23-bit wvalue
0000000 00000000 00000000
0000000 00000000 00000000

Interpretation
+Inf

—Inf

NaN

NaN

+0

-0



|IEEE Standard 754

There are four distinct numerical ranges that single-
precision floating-point numbers are not able to
represent:

1. Negative numbers less than —(2-2723) x 212/ (negative
overflow)

Negative numbers greater than -271%° (negative underflow)
Positive numbers less than 2714° (positive underflow)

4. Positive numbers greater than (2-2723) x 2127 (positive
overflow)



Special Values

-0 and +0 are distinct values, though they both compare as equal.

If the exponent is all Os, but the fraction is non-zero, then the value is a denormalized
number, which now has an assumed leading 0 before the binary point. Thus, this
represents a number (-1)° x 0.f x 27126, where s is the sign bit and f is the fraction. For
double precision, denormalized numbers are of the form (-1)s x 0.f x 271922, From this
you can interpret zero as a special type of denormalized number.

The values +o0 and —o° are denoted with an exponent of all 1s and a fraction of all Os.
The sign bit distinguishes between negative infinity and positive infinity. Being able to
denote infinity as a specific value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well defined in IEEE floating
point.

The value NaN (Not a Number) is used to represent a value that does not represent a
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a
non-zero fraction.



Representation of Characters

 Many applications have to deal with non-numerical
data.

— Characters and strings.

— There must be a standard mechanism to represent alphanumeric and
other characters in memory.

e Three standards in use:

— Extended Binary Coded Decimal Interchange Code (EBCDIC)
e Used in older IBM machines.

— American Standard Code for Information Interchange (ASCI|)
* Most widely used today.
— UNICODE

* Used to represent all international characters.
* Used by Java.



ASCII Code

* Each individual character is numerically encoded into
a unique 7-bit binary code.
— A total of 27 or 128 different characters.

— A character is normally encoded in a byte (8 bits), with the
MSB not been used.

* The binary encoding of the characters follow a
regular ordering.

— Digits are ordered consecutively in their proper numerical
sequence (0 to 9).

— Letters (uppercase and lowercase) are arranged
consecutively in their proper alphabetic order.



Some Common ASCII Codes

:: 41 (H) 65 (D) ‘O’ :: 30(H) 48 (D)
:: 42 (H) 66 (D) ‘1’ :: 31 (H) 49 (D)
:: 5A (H) 90 (D) ‘9" :: 39 (H) 57 (D)
:: 61 (H) 97 (D) (“ :: 28 (H) 40 (D)
.. 62 (H) 98 (D) ‘+’ :: 2B (H) 43 (D)
? v 3F(H) 63 (D)
.. 7A (H) 122 (D) An’ :: OA (H) 10 (D)

N0’ :: 00 (H) 00 (D)




Character Strings

 Two ways of representing a sequence of
characters in memory.

— The first location contains the number of characters in
the string, followed by the actual characters.

— The characters follow one another, and is terminated
by a special delimiter.

H e | | o L1



String Representation in C

* InC, the second approach is used.
— The character is used as the string delimiter.

 Example:

->

i“wn

* A null string “” occupies one byte in memory.
— Only the \O’ character.



