CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya sourangshu@gmail.com http://cse.iitkgp.ac.in/~sourangshu/

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Number System Number Representation

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
	- $-$ int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the so-called *decimal number system*.
	- $-$ Ten digits \therefore 0,1,2,3,4,5,6,7,8,9
	- $-$ Every digit position has a weight which is a power of 10.
	- $-$ Base or radix is 10.
- Example:

 $234 = 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$ $250.67 = 2 \times 10^2 + 5 \times 10^1 + 0 \times 10^0 +$ $6 \times 10^{-1} + 7 \times 10^{-2}$

Binary Number System

- Two digits:
	- $-$ 0 and 1.
	- $-$ Every digit position has a weight which is a power of 2.
	- *Base* or *radix* is 2.
- Example:

 $110 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ $101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 +$ $0 \times 2^{-1} + 1 \times 2^{-2}$

Counting with Binary Numbers

 \bullet

Multiplication and Division with base

Adding two bits

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
	- Some power of 2.
- A binary number:

 $B = b_{n-1} b_{n-2} \dots b_1 b_0 b_2 b_{-1} b_{-2} \dots b_{-m}$ Corresponding value in decimal: $D = \sum_i$ b_i 2ⁱ $i = -m$ **n-1**

Examples

- 1. 101011 \rightarrow $1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$ $= 43$ $(101011)_{2} = (43)_{10}$
- 2. .0101 \rightarrow 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴ $=.3125$ $(.0101)_2 = (.3125)_{10}$
- 3. 101.11 \rightarrow $1x2^2 + 0x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2}$ 5.75 $(101.11)_{2} = (5.75)_{10}$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
	- $-$ Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
	- $-$ Arrange the remainders *in reverse order*.
- For the fractional part,
	- Repeatedly multiply the given fraction by 2.
		- Accumulate the integer part (0 or 1).
		- If the integer part is 1, chop it off.
	- $-$ Arrange the integer parts *in the order* they are obtained.

Example 1 :: 239

 $(239)_{10} = (11101111)_2$

Example 2 :: 64

 $(64)_{10} = (1000000)_{2}$

Example 3 :: .634

 $.634 \times 2 = 1.268$ $.268 \times 2 = 0.536$ $.536 \times 2 = 1.072$ $.072 \times 2 = 0.144$ $.144 \times 2 = 0.288$ ÷,

 $\ddot{\bullet}$

 $(.634)_{10} = (.10100......)_2$

Example 4 :: 37.0625

 $(37)_{10} = (100101)_2$ $(.0625)_{10} = (.0001)_{2}$

 $(37.0625)_{10} = (100101 \cdot 0001)_{2}$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix $= 16$).
	- $0 \rightarrow 0000 \quad 8 \rightarrow 1000$ $1 \to 0001$ 9 $\to 1001$
	- $2 \div 0010$ A $\div 1010$
	- $3 \div 0011 \quad B \div 1011$
	- $4 \div 0100 \quad C \div 1100$
	- $5 \rightarrow 0101$ D $\rightarrow 1101$
	- $6 \rightarrow 0110$ E $\rightarrow 1110$
	- $7 \rightarrow 0111$ F $\rightarrow 1111$

Binary-to-Hexadecimal Conversion

• For the integer part,

- $-$ Scan the binary number from *right to left*.
- $-$ Translate each group of four bits into the corresponding hexadecimal digit.
	- Add *leading* zeros if necessary.
- For the fractional part,
	- $-$ Scan the binary number from *left to right*.
	- $-$ Translate each group of four bits into the corresponding hexadecimal digit.
		- Add *trailing* zeros if necessary.

Example

- 1. $(1011 0100 0011)$ ₂ = $(B43)$ ₁₆
- 2. $(\underline{10} \ \underline{1010} \ \underline{0001})$ ₂ = $(2A1)_{16}$
- 3. $(.1000010)_{2} = (.84)_{16}$
- 4. $(101.0101 111)$ ₂ = $(5.5E)$ ₁₆

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4bit binary equivalent.
- Examples:

$$
(3A5)16 = (0011 1010 0101)2
$$

$$
(12.3D)16 = (0001 0010 . 0011 1101)2
$$

$$
(1.8)16 = (0001. 1000)2
$$

Unsigned Binary Numbers

• An n-bit binary number

$$
B = b_{n-1}b_{n-2} \dots b_2b_1b_0
$$

- 2ⁿ distinct combinations are possible, 0 to 2^n-1 .
- For example, for $n = 3$, there are 8 distinct combinations.

 $-000, 001, 010, 011, 100, 101, 110, 111$

• Range of numbers that can be represented

$$
n=8
$$
 \rightarrow 0 to 2^8-1 (255)

- $n=16$ \rightarrow 0 to 2¹⁶-1 (65535)
- $n=32$ \rightarrow 0 to 2^{32} -1 (4294967295)

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
	- $-$ Question:: How to represent sign?
- Three possible approaches:
	- Sign-magnitude representation
	- $-$ One's complement representation
	- $-$ Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
	- $-$ The most significant bit (MSB) indicates sign
		- $0 \rightarrow$ positive
		- $1 \rightarrow$ negative
	- $-$ The remaining n-1 bits represent magnitude.

Representation and ZERO

• Range of numbers that can be represented:

Maximum :: $+(2^{n-1}-1)$

Minimum $:: - (2^{n-1} - 1)$

- A problem:
	- Two different representations of zero.

 $+0 \rightarrow 0000...0$

 $-0 \rightarrow 1000...0$

One's Complement Representation

• Basic idea:

- $-$ Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
	- Complement every bit of the number $(1\rightarrow 0$ and $0\rightarrow 1$).
	- $-$ MSB will indicate the sign of the number.
		- $0 \rightarrow$ positive
		- $1 \rightarrow$ negative

Example :: n=4

- $0000 \rightarrow +0$ $1000 \rightarrow -7$
- $0001 \rightarrow +1$ $1001 \rightarrow -6$
- $0010 \rightarrow +2$ $1010 \rightarrow -5$
- $0011 \rightarrow +3$ $1011 \rightarrow -4$
- $0100 \rightarrow +4$ $1100 \rightarrow -3$
- $0101 \rightarrow +5$ $1101 \rightarrow -2$
- $0110 \rightarrow +6$ $0111 \rightarrow +7$ $1110 \rightarrow -1$ $1111 \rightarrow -0$

To find the representation of -4, first note that +4 = 0100 -4 = 1's complement of 0100 = 1011

One's Complement Representation

- Range of numbers that can be represented:
	- Maximum :: $+(2^{n-1}-1)$
	- Minimum :: $-(2^{n-1}-1)$
- A problem:

Two different representations of zero.

- $+0 \rightarrow 0.000...0$
- $-0 \rightarrow 111...1$
- Advantage of 1's complement representation
	- Subtraction can be done using addition.
	- Leads to substantial saving in circuitry.

Two's Complement Representation

- Basic idea:
	- $-$ Positive numbers are represented exactly as in signmagnitude form.
	- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
	- Complement every bit of the number $(1\rightarrow 0$ and $0\rightarrow 1$), and then *add one* to the resulting number.
	- $-$ MSB will indicate the sign of the number.
		- $0 \rightarrow$ positive
		- $1 \rightarrow$ negative

Example :: n=4

- $0000 \rightarrow +0$ $1000 \rightarrow -8$
- $0001 \rightarrow +1$ $1001 \rightarrow -7$
- $0010 \rightarrow +2$ $1010 \rightarrow -6$
- $0011 \rightarrow +3$ $1011 \rightarrow -5$
- $0100 \rightarrow +4$ $1100 \rightarrow -4$
- 0101 \rightarrow +5 $1101 \rightarrow -3$
- $0110 \rightarrow +6$ $0111 \rightarrow +7$ $1110 \rightarrow -2$ $1111 \rightarrow -1$

To find the representation of, say, -4, first note that +4 = 0100 -4 = 2's complement of 0100 = 1011+1 = 1100

Storage and number system in Programming

- In C
	- $-$ short int
		- 16 bits \rightarrow + (2¹⁵-1) to -2¹⁵
	- int
		- 32 bits \rightarrow + (2³¹-1) to -2³¹

 $-$ long int

• 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Storage and number system in Programming

- Range of numbers that can be represented: Maximum $:: + (2^{n-1} - 1)$
	- Minimum \therefore 2^{n-1}
- Advantage:
	- $-$ *Unique representation of zero.*
	- $-$ Subtraction can be done using addition.
	- $-$ Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute $A B$?
	- Compute the 1's complement of B (say, B_1).
	- Compute $R = A + B_1$
	- $-$ If the carry obtained after addition is '1'
		- Add the carry back to R (called *end-around carry*).
		- That is, $R = R + 1$.
		- The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: $6 - 2$

A = 6 (0110) $B = 2 \ (0010)$ $6 - 2 = A - B$

1's complement of $2 = 1101$

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: $3 - 5$

 $1's$ complement of $5 = 1010$

- 3 :: 0011 **A**
- -5 \therefore 1010 1101 **B**₁ **R**

-2

and a straight

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents –2.

Subtraction Using Addition :: 2's Complement

• How to compute $A - B$?

– Compute the 2's complement of B (say, B_2).

- $-$ Compute R = A + B₂
- $-$ Ignore carry if it is there.

 $-$ The result is in 2's complement form.

Example 1 :: $6 - 2$

2's complement of $2 = 1101 + 1 = 1110$

Example $2 :: 3-5$

2's complement of $5 = 1010 + 1 = 1011$

- $3 :: 0011$ A
- -5 :: 1011 B_2 1110 R

 -2

Example 3 :: $-3 - 5$

2's complement of $3 = 1100 + 1 = 1101$ 2's complement of $5 = 1010 + 1 = 1011$

Floating-point Numbers

- The representations discussed so far applies only to integers.
	- $-$ Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
	- $-$ In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
	- $-$ This lacks flexibility.
	- $-$ Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E>:
	- $F = M \times B^E$
		- B \rightarrow exponent base (usually 2)
		- $M \rightarrow$ mantissa
		- $E \rightarrow e$ xponent
	- $-$ M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,

 In decimal, 0.235×10^6 In binary, 0.101011×2^{0110}

Example $::$ 32-bit representation

 $-$ M represents a 2's complement fraction

 $1 > M > -1$

 $-$ E represents the exponent (in 2's complement form)

 $127 > E > -128$

- Points to note:
	- $-$ The number of *significant digits* depends on the number of bits in M.
		- 6 significant digits for 24-bit mantissa.
	- $-$ The *range* of the number depends on the number of bits in E.
		- 10^{38} to 10^{-38} for 8-bit exponent.

Floating point number: IEEE Standard 754

• Storage Layout

Single: **SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMMM** Double: **SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM**

Ambiguity

• A number can be represented in many ways:

172.93 $=(10101100.1110111000...)$ $= (1.01011001110111000...)$ ₂ x 2⁷

 $= (0.101011001110111000...)$ ₂ x 2⁸

Normal form

• The normal form can be interpreted as:

 $(-1)^s$ x $(1. M_{22}M_{21} \ldots M_1M_0)$ Z X $2^{\circ\wedge}((E_7E_6...E_1E_0)_2 - 127)$

Normal form

- Biggest: 0 11111110 1111111 11111111 11111111 2128
- Smallest positive: 0 00000001 0000000 00000000 00000000 2-126
- Negative is symmetrical.

Denormalized form

- The exponent bits are zero.
- The number is interpreted as:

$$
(-1)
$$
 s x

 $(0. M_{22}M_{21} \cdot M_1M_0)_2$ x

 2^{-126}

Denormalized form

- Biggest positive value: 0 00000000 1111111 1111111 11111111 2^{-126} - 2^{-149}
- Smallest positive value: 0 00000000 0000000 00000000 00000001 $2 - 149$
- Negative is symmetric.

IEEE Standard 754

- 1. The sign bit is 0 for positive, 1 for negative.
- 2. The exponent base is two.
- 3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
- 4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of fraction bits.
	- **Ranges of Floating-Point Numbers**

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

Special numbers

- 0 1111 1111 0000000 00000000 00000000 +Inf
- 1 1111 1111 0000000 00000000 00000000 -Inf
- 0 1111 1111 Any nonzero 23-bit value NaN
- 1 1111 1111 Any nonzero 23-bit value NaN
- 0 0000 0000 0000000 00000000 00000000 +0
- 1 0000 0000 0000000 00000000 00000000 -0

32-bit value Interpretation

IEEE Standard 754

There are four distinct numerical ranges that singleprecision floating-point numbers are **not** able to represent:

- 1. Negative numbers less than −(2−2⁻²³) × 2¹²⁷ (*negative overflow*)
- 2. Negative numbers greater than -2^{-149} (*negative underflow*)
- 3. Positive numbers less than 2⁻¹⁴⁹ (*positive underflow*)
- 4. Positive numbers greater than $(2-2^{-23}) \times 2^{127}$ (*positive overflow*)

Special Values

• Zero

−0 and +0 are distinct values, though they both compare as equal.

Denormalized

If the exponent is all Os, but the fraction is non-zero, then the value is a *denormalized* number, which now has an assumed leading 0 before the binary point. Thus, this represents a number $(-1)^s \times 0.5 \times 2^{-126}$, where s is the sign bit and f is the fraction. For double precision, denormalized numbers are of the form $(-1)^s \times 0.f \times 2^{-1022}$. From this you can interpret zero as a special type of denormalized number.

Infinity

The values +∞ and $-\infty$ are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. Operations with infinite values are well defined in IEEE floating *point.*

Not A Number

The value NaN (*Not a Number*) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction.

Representation of Characters

- Many applications have to deal with non-numerical data.
	- Characters and strings.
	- $-$ There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
	- Extended Binary Coded Decimal Interchange Code (EBCDIC)
		- Used in older IBM machines.
	- $-$ American Standard Code for Information Interchange (ASCII)
		- Most widely used today.
	- UNICODE
		- Used to represent all international characters.
		- Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
	- $-$ A total of 2⁷ or 128 different characters.
	- $-$ A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
	- $-$ Digits are ordered consecutively in their proper numerical sequence $(0$ to $9)$.
	- $-$ Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

 $'0' :: 30(H) 48(D)$

 $1'$:: 31 (H) 49 (D)

 $9' :: 39(H) 57(D)$

 $'(':: 28 (H) 40 (D))$

 $'$ +' :: 2B (H) 43 (D)

 $'$?' :: 3F (H) 63 (D)

 \ln' :: 0A (H) 10 (D)

 $\sqrt{0'}$:: 00 (H) 00 (D)

Character Strings

- Two ways of representing a sequence of characters in memory.
	- $-$ The first location contains the number of characters in the string, followed by the actual characters.

 $-$ The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
	- $-$ The $\sqrt{0}$ character is used as the string delimiter.
- Example:

"Hello" \rightarrow H \mathbf{I} $^{\prime}$ 10' \mathbf{I} e $\overline{\mathbf{o}}$

• A null string "" occupies one byte in memory. $-$ Only the '\0' character.