
CS11001/CS11002	
Programming	and	Data	Structures	

(PDS)	(Theory:	3-0-0)	

Teacher:	Sourangshu	Bha@acharya	
sourangshu@gmail.com	

h@p://cse.iitkgp.ac.in/~sourangshu/	
	

Department	of	Computer	Science	and	Engineering	
Indian	InsJtute	of	Technology	Kharagpur	

Number	System		
Number	RepresentaJon	

Topics	to	be	Discussed	

•  How	are	numeric	data	items	actually	stored	in	
computer	memory?	

•  How	much	space	(memory	loca6ons)	is	allocated	for	
each	type	of	data?	
–  int,	float,	char,	etc.	

•  How	are	characters	and	strings	stored	in	memory?	

Number	System	::	The	Basics	

•  We	are	accustomed	to	using	the	so-called	
decimal	number	system.	
–  Ten	digits	::		0,1,2,3,4,5,6,7,8,9	
–  Every	digit	posi6on	has	a	weight	which	is	a	power	of	

10.	
–  Base	or	radix	is	10.	

•  Example:	
234 	=		2	x	102		+		3	x	101		+		4	x	100	
250.67	=		2	x	102		+		5	x	101		+		0	x	100		+			

	 	 	6	x	10-1		+		7	x	10-2	

Binary	Number	System	

•  Two	digits:	
–  0	and	1.	
–  Every	digit	posi6on	has	a	weight	which	is	a	

power	of	2.	
–  Base	or	radix	is	2.	

•  Example:	
110	=		1	x	22		+		1	x	21		+		0	x	20	

101.01	=		1	x	22		+		0	x	21		+		1	x	20		+			
	 	 	 	0	x	2-1		+		1	x	2-2	

	

CounJng	with	Binary	Numbers	

																							0	
																							1	
																					10	
																					11	
																			100	
																			101	
																			110	
																			111	
																	1000	
																					.			

MulJplicaJon	and	Division	with	base	

§  Mul6plica6on	with	10		(decimal	system)	
								435		x	10	=		4350	

§  Mul6plica6on	with		10	(=2)	(binary	system)	
							1101	x	10	=	11010	

§  Division	by	10	(decimal	system)	
							435	/	10	=	43.5	

§  Division	by	10	(=2)	(binary	system)	
						1101	/	10	=	110.1	

Left Shift and add
zero at right end

Right shift and drop
 right most digit or
 shift after decimal
point

Adding	two	bits	

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

carry

 1 1 1 0
 1 0 1 1

+ 1 1 1 0
 1 1 0 0 1

Carries

Binary	addiJon:	Another	example	

 1 1 0 0 (Carries)
 1 1 0 1

+ 1 1 0 0
 1 1 0 0 1 (Sum)

The initial carry
in is implicitly 0

most significant
bit (MSB)

least significant
bit (LSB)

Binary-to-Decimal	Conversion	

•  Each	digit	posi6on	of	a	binary	number	has	a	
weight.	
– Some	power	of	2.	

•  A	binary	number:	
							B	=	bn-1	bn-2	…..b1	b0	.	b-1	b-2	…..	b-m	

				Corresponding	value	in	decimal:	
							D	=	Σ				bi	2i	

i = -m

n-1

Examples	
1.  101011		è		1x25	+	0x24	+	1x23	+	0x22	+	1x21	+	1x20	

	 	 	 	=	43	
	 	(101011)2	=	(43)10	

	

2.  .0101						è		0x2-1	+	1x2-2	+	0x2-3	+	1x2-4	

	 	 	 	=	.3125	
	 	(.0101)2	=	(.3125)10	

	

3.  101.11				è		1x22	+	0x21	+	1x20	+	1x2-1	+	1x2-2	

	 	 	 	5.75	
	 	(101.11)2	=	(5.75)10	

Decimal-to-Binary	Conversion	
•  Consider	the	integer	and	frac6onal	parts	
separately.	

•  For	the	integer	part,	
–  Repeatedly	divide	the	given	number	by	2,	and	go	
on	accumula6ng	the	remainders,	un6l	the	number	
becomes	zero.	

– Arrange	the	remainders	in	reverse	order.	
•  For	the	frac6onal	part,	
–  Repeatedly	mul6ply	the	given	frac6on	by	2.	

•  Accumulate	the	integer	part	(0	or	1).	
•  If	the	integer	part	is	1,	chop	it	off.	

– Arrange	the	integer	parts	in	the	order	they	are	
obtained.	

Example	1		::		239	

2   239
2 119 --- 1
2   59 --- 1
2 29 --- 1
2   14 --- 1
2 7 --- 0
2   3 --- 1
2 1 --- 1
2 0 --- 1

(239)10 = (11101111)2

Example	2		::		64	

2  64
2 32 --- 0
2   16 --- 0
2 8 --- 0
2   4 --- 0
2 2 --- 0
2   1 --- 0
2 0 --- 1

(64)10 = (1000000)2

Example	3		::		.634	

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288
:
:

(.634)10 = (.10100……)2

Example	4		::		37.0625	

(37)10 = (100101)2

(.0625)10 = (.0001)2

(37.0625)10 = (100101 . 0001)2

Hexadecimal	Number	System	
•  A	compact	way	of	represen6ng	binary	numbers.	

•  16	different	symbols	(radix	=	16).	

				0		à		0000 	8		à		1000	
				1		à		0001 	9		à		1001	
				2		à		0010 	A		à		1010	
				3		à		0011 	B		à		1011	
				4		à		0100 	C		à		1100	
				5		à		0101 	D		à		1101	
				6		à		0110 	E		à		1110	
				7		à		0111 	F		à		1111	

Binary-to-Hexadecimal	Conversion	

•  For	the	integer	part,	
– Scan	the	binary	number	from	right	to	le6.	
– Translate	each	group	of	four	bits	into	the	
corresponding	hexadecimal	digit.	
•  Add	leading	zeros	if	necessary.	

•  For	the	frac6onal	part,	
– Scan	the	binary	number	from	le6	to	right.	
– Translate	each	group	of	four	bits	into	the	
corresponding	hexadecimal	digit.	
•  Add	trailing	zeros	if	necessary.	

	

Example	

1.  (1011	0100	0011)2			=			(B43)16	
2.  (10	1010	0001)2							=			(2A1)16	
3.  (.1000	010)2													=			(.84)16	
4.  (101	.	0101	111)2					=			(5.5E)16	

Hexadecimal-to-Binary	Conversion	

•  Translate	every	hexadecimal	digit	into	its	4-
bit	binary	equivalent.	

•  Examples:	
				(3A5)16						=			(0011	1010	0101)2	
				(12.3D)16			=			(0001	0010	.	0011	1101)2	
				(1.8)16								=			(0001	.	1000)2	

Unsigned	Binary	Numbers	

•  An	n-bit	binary	number	
			B		=		bn-1bn-2	….	b2b1b0	

•  2n	dis6nct	combina6ons	are	possible,	0	to	2n-1.	

•  For	example,	for	n	=	3,	there	are	8	dis6nct	
combina6ons.	
–  000,	001,	010,	011,	100,	101,	110,	111	

•  Range	of	numbers	that	can	be	represented	
				n=8 	è		 	0		to		28-1		(255)	
				n=16 	è 	0		to		216-1	(65535)	
				n=32 	è 	0		to		232-1	(4294967295)	

Signed	Integer	RepresentaJon	

•  Many	of	the	numerical	data	items	that	are	used	in	a	
program	are	signed	(posi6ve	or	nega6ve).	
–  Ques6on::	How	to	represent	sign?	

•  Three	possible	approaches:	
–  Sign-magnitude	representa6on	
–  One’s	complement	representa6on	
–  Two’s	complement	representa6on	

Sign-magnitude	RepresentaJon	

•  For	an	n-bit	number	representa6on	
– The	most	significant	bit	(MSB)	indicates	sign	

			0		à		posi6ve	
			1		à		nega6ve	

– The	remaining	n-1	bits	represent	magnitude.	

b0 b1 bn-2 bn-1

Magnitude Sign

RepresentaJon	and	ZERO	

•  Range	of	numbers	that	can	be	represented:	
					Maximum		::		+	(2n-1	–	1)	
					Minimum			::		-	(2n-1	–	1)	

•  A	problem:	
					Two	different	representa6ons	of	zero.	

				+0			à			0	000….0	
				-0				à			1	000….0	

One’s	Complement	RepresentaJon	
•  Basic	idea:	
–  Posi6ve	numbers	are	represented	exactly	as	in	sign-
magnitude	form.	

– Nega6ve	numbers	are	represented	in	1’s	complement	
form.	

•  How	to	compute	the	1’s	complement	of	a	
number?	
–  Complement	every	bit	of	the	number	(1à0	and	0à1).	
– MSB	will	indicate	the	sign	of	the	number.	

			0		à		posi6ve	
			1		à		nega6ve	

Example		::		n=4	
0000		à		+0	
0001		à		+1	
0010		à		+2	
0011		à		+3	
0100		à		+4	
0101		à		+5	
0110		à		+6	
0111		à		+7	

1000		à		-7	
1001		à		-6	
1010		à		-5	
1011		à		-4	
1100		à		-3	
1101		à		-2	
1110		à		-1	
1111		à		-0	

To find the representation of -4, first note that

 +4 = 0100

 -4 = 1’s complement of 0100 = 1011

One’s	Complement	RepresentaJon	

•  Range	of	numbers	that	can	be	represented:	
					Maximum		::		+	(2n-1	–	1)	
					Minimum			::		-	(2n-1	–	1)	

•  A	problem:	
					Two	different	representa6ons	of	zero.	

				+0			à			0	000….0	
				-0				à			1	111….1	

•  Advantage	of	1’s	complement	representa6on	
–  Subtrac6on	can	be	done	using	addi6on.	
–  Leads	to	substan6al	saving	in	circuitry.	

Two’s	Complement	RepresentaJon	
•  Basic	idea:	
–  Posi6ve	numbers	are	represented	exactly	as	in	sign-
magnitude	form.	

– Nega6ve	numbers	are	represented	in	2’s	complement	
form.	

•  How	to	compute	the	2’s	complement	of	a	
number?	
–  Complement	every	bit	of	the	number	(1à0	and	0à1),	and	
then	add	one	to	the	resul6ng	number.	

– MSB	will	indicate	the	sign	of	the	number.	
			0		à		posi6ve	
			1		à		nega6ve	

Example		::		n=4	
0000		à		+0	
0001		à		+1	
0010		à		+2	
0011		à		+3	
0100		à		+4	
0101		à		+5	
0110		à		+6	
0111		à		+7	

1000		à		-8	
1001		à		-7	
1010		à		-6	
1011		à		-5	
1100		à		-4	
1101		à		-3	
1110		à		-2	
1111		à		-1	

To find the representation of, say, -4, first note that

 +4 = 0100

 -4 = 2’s complement of 0100 = 1011+1 = 1100

Storage	and	number	system	in	
Programming	

•  In	C	
– short	int	
•  16	bits			è			+	(215-1)		to		-215	

–  int	
•  32	bits			è			+	(231-1)		to		-231	

–  long	int	
•  64	bits			è			+	(263-1)		to		-263	

	

Storage	and	number	system	in	
Programming	

•  Range	of	numbers	that	can	be	represented:	
					Maximum		::		+	(2n-1	–	1)	
					Minimum			::		-	2n-1	

	
•  Advantage:	
–  	Unique	representa:on	of	zero.	
–  	Subtrac6on	can	be	done	using	addi6on.	
–  	Leads	to	substan6al	saving	in	circuitry.	

•  Almost	all	computers	today	use	the	2’s	complement	
representa6on	for	storing	nega6ve	numbers.	

Subtrac6on	Using	Addi6on	::	1’s	
Complement	

•  How	to	compute	A	–	B	?	
–  Compute	the	1’s	complement	of	B	(say,	B1).	
–  Compute	R	=	A	+	B1		
–  If	the	carry	obtained	aher	addi6on	is	‘1’	

•  Add	the	carry	back	to	R		(called	end-around	carry).	
•  That	is,	R	=	R	+	1.	
•  The	result	is	a	posi6ve	number.	

				Else	
•  The	result	is	nega6ve,	and	is	in	1’s	complement	form.	

	

Example	1		::		6	–	2	

1’s	complement	of	2		=		1101	
		6			::			0110	
	-2			::			1101	
										1	0011	
																				1	
													0100				è		+4	

End-around
carry

Assume 4-bit
representations.

Since there is a carry, it is
added back to the result.

The result is positive.

R
B1

A

A	=	6		(0110)	
B	=	2		(0010)	
6	–	2	=	A	-	B	

Example	2		::		3	–	5	

1’s	complement	of	5		=		1010	
	
		3			::			0011	
	-5			::			1010	
													1101																									
	
																				

Assume 4-bit representations.

Since there is no carry, the
result is negative.

1101 is the 1’s complement of
0010, that is, it represents –2.

A

B1

R

-2

Subtrac6on	Using	Addi6on	::	2’s	
Complement	

•  How	to	compute	A	–	B	?	
	
– Compute	the	2’s	complement	of	B	(say,	B2).	
	
– Compute	R	=	A	+	B2	
		
–  Ignore	carry	if	it	is	there.	
	
– The	result	is	in	2’s	complement	form.	
	

Example	1		::		6	–	2	

2’s	complement	of	2		=		1101	+	1		=		1110	
	
		6			::			0110	
	-2			::			1110	
										1	0100	
																				
														

A

B2

R

Ignore carry +4

Example	2		::		3	–	5	

2’s	complement	of	5		=		1010	+	1		=		1011	
	
		3			::			0011	
	-5			::			1011	
													1110																							
	
																				

A

B2

R

-2

Example	3		::		-3	–	5	

2’s	complement	of	3		=		1100	+	1		=		1101	
2’s	complement	of	5		=		1010	+	1		=		1011	
	
	
	-3			::			1101	
	-5			::			1011	
										1	1000	
																				
														Ignore carry -8

FloaJng-point	Numbers	

•  The	representa6ons	discussed	so	far	applies	only	to	
integers.	
–  Cannot	represent	numbers	with	frac6onal	parts.	

•  We	can	assume	a	decimal	point	before	a	2’s	
complement	number.	
–  In	that	case,	pure	frac6ons	(without	integer	parts)	can	be	
represented.	

•  We	can	also	assume	the	decimal	point	somewhere	in	
between.	
–  This	lacks	flexibility.	
–  Very	large	and	very	small	numbers	cannot	be	represented.	

Representa6on	of	Floa6ng-Point	
Numbers	

•  A	floa6ng-point	number	F	is	represented	by	a	
doublet		<M,E>	:	
				F		=		M		x		BE	

•  B		à		exponent	base	(usually	2)	
•  M	à	man6ssa	
•  E		à	exponent	

– M	is	usually	represented	in	2’s	complement	form,	with	
an	implied	decimal	point	before	it.	

•  For	example,		
				In	decimal,	

	0.235	x	106	

				In	binary,	
			0.101011	x	20110	

Example		::		32-bit	representa6on	

–  M	represents	a	2’s	complement	frac6on	
				1		>		M		>		-1	

–  E	represents	the	exponent	(in	2’s	complement	form)	
			127		>		E		>		-128	

•  Points	to	note:	
–  The	number	of	significant	digits	depends	on	the	number	of	
bits	in	M.	
•  6	significant	digits	for	24-bit	man6ssa.	

–  The	range	of	the	number	depends	on	the	number	of	bits	in	
E.	
•  1038		to		10-38		for	8-bit	exponent.	

M E

24 8

FloaJng	point	number:			
IEEE	Standard	754	

•  Storage	Layout	

Sign	 Exponent	 FracJon	/	
ManJssa	

Single	Precision	 1	[31]	 8	[30–23]	 23	[22–00]	
Double	Precision	 1	[63]	 11	[62–52]	 52	[51–00]	

Single:	 	SEEEEEEE			EMMMMMMM					MMMMMMMM				MMMMMMMM		
Double:		SEEEEEEE			EEEEMMMM										MMMMMMMM				MMMMMMMM	 	

	MMMMMMMM				MMMMMMMM				MMMMMMMM				MMMMMMMM	

Ambiguity	

•  A	number	can	be	represented	in	many	ways:	
	
172.93		
=	(10101100.1110111000...)2		
=	(1.01011001110111000...)2	x	27		
=	(0.101011001110111000...)2	x	28	

Normal	form	

•  The	normal	form	can	be	interpreted	as:	
	
(-1)S x

(1.M22M21...M1M0)2 x

2 ^^((E7E6...E1E0)2 - 127)

Normal	form	

•  Biggest:	
0	11111110	1111111	11111111	11111111	
2128	
	

•  Smallest	posi6ve:	
0	00000001	0000000	00000000	00000000	
2-126	
	

•  Nega6ve	is	symmetrical.	

Denormalized	form	

•  The	exponent	bits	are	zero.	
•  The	number	is	interpreted	as:	
	
(-1)S x

(0.M22M21...M1M0)2 x

2-126

Denormalized	form	

•  Biggest	posi6ve	value:	
0	00000000	1111111	11111111	11111111	
2-126	-	2-149	

•  Smallest	posi6ve	value:	
0	00000000	0000000	00000000	00000001	
2-149	

•  Nega6ve	is	symmetric.	

IEEE	Standard	754	

•  Ranges	of	Floa6ng-Point	Numbers	
	Since	every	floa6ng-point	number	has	a	corresponding,	negated	value	

(by	toggling	the	sign	bit),	the	ranges	above	are	symmetric	around	zero.	

Denormalized	 Normalized	 Approximate	
Decimal	

Single	
Precision	

±	2−149	to	
(1−2−23)×2−126	

±	2−126	to	
(2−2−23)×2127	

±	≈10−44.85	to	
≈1038.53	

Double	
Precision	

±	2−1074	to	
(1−2−52)×2−1022	

±	2−1022	to	
(2−2−52)×21023	

±	≈10−323.3	to	
≈10308.3	

1.  The	sign	bit	is	0	for	posi6ve,	1	for	nega6ve.	
2.  The	exponent	base	is	two.	
3.  The	exponent	field	contains	127	plus	the	true	exponent	for	single-precision,	or	

1023	plus	the	true	exponent	for	double	precision.	
4.  The	first	bit	of	the	man6ssa	is	typically	assumed	to	be	1.f,	where	f	is	the	field	of	

frac6on	bits.	

Special	numbers	
32-bit value Interpretation
0 1111 1111 0000000 00000000 00000000 +Inf

1 1111 1111 0000000 00000000 00000000 -Inf

0 1111 1111 Any nonzero 23-bit value NaN

1 1111 1111 Any nonzero 23-bit value NaN

0 0000 0000 0000000 00000000 00000000 +0

1 0000 0000 0000000 00000000 00000000 -0

IEEE	Standard	754	

There	are	four	dis6nct	numerical	ranges	that	single-
precision	floa6ng-point	numbers	are	not	able	to	
represent:	
	
1.  Nega6ve	numbers	less	than	−(2−2−23)	×	2127	(nega:ve	

overflow)	
2.  Nega6ve	numbers	greater	than	−2−149	(nega:ve	underflow)	
3.  Posi6ve	numbers	less	than	2−149	(posi:ve	underflow)	
4.  Posi6ve	numbers	greater	than	(2−2−23)	×	2127	(posi:ve	

overflow)	

Special	Values	
•  Zero		

−0	and	+0	are	dis6nct	values,	though	they	both	compare	as	equal.	
	

•  Denormalized		
If	the	exponent	is	all	0s,	but	the	frac6on	is	non-zero,	then	the	value	is	a	denormalized	
number,	which	now	has	an	assumed	leading	0	before	the	binary	point.	Thus,	this	
represents	a	number	(−1)s	×	0.f	×	2−126,	where	s	is	the	sign	bit	and	f	is	the	frac6on.	For	
double	precision,	denormalized	numbers	are	of	the	form	(−1)s	×	0.f	×	2−1022.	From	this	
you	can	interpret	zero	as	a	special	type	of	denormalized	number.	
	

•  Infinity		
The	values	+∞	and	−∞	are	denoted	with	an	exponent	of	all	1s	and	a	frac6on	of	all	0s.	
The	sign	bit	dis6nguishes	between	nega6ve	infinity	and	posi6ve	infinity.	Being	able	to	
denote	infinity	as	a	specific	value	is	useful	because	it	allows	opera6ons	to	con6nue	past	
overflow	situa6ons.	Opera:ons	with	infinite	values	are	well	defined	in	IEEE	floa:ng	
point.	
	

•  Not	A	Number		
The	value	NaN	(Not	a	Number)	is	used	to	represent	a	value	that	does	not	represent	a	
real	number.	NaN's	are	represented	by	a	bit	pawern	with	an	exponent	of	all	1s	and	a	
non-zero	frac6on.		

RepresentaJon	of	Characters	

•  Many	applica6ons	have	to	deal	with	non-numerical	
data.	
–  Characters	and	strings.	
–  There	must	be	a	standard	mechanism	to	represent	alphanumeric	and	

other	characters	in	memory.	

•  Three	standards	in	use:	
–  Extended	Binary	Coded	Decimal	Interchange	Code	(EBCDIC)	

•  Used	in	older	IBM	machines.	

–  American	Standard	Code	for	Informa6on	Interchange	(ASCII)	
•  Most	widely	used	today.	

–  UNICODE	
•  Used	to	represent	all	interna6onal	characters.	
•  Used	by	Java.	

ASCII	Code	

•  Each	individual	character	is	numerically	encoded	into	
a	unique	7-bit	binary	code.	
–  A	total	of	27	or	128	different	characters.	
–  A	character	is	normally	encoded	in	a	byte	(8	bits),	with	the	
MSB	not	been	used.	

•  The	binary	encoding	of	the	characters	follow	a	
regular	ordering.	
–  Digits	are	ordered	consecu6vely	in	their	proper	numerical	
sequence	(0	to	9).	

–  Lewers	(uppercase	and	lowercase)	are	arranged	
consecu6vely	in	their	proper	alphabe6c	order.	

	

Some	Common	ASCII	Codes	
‘A’		::		41	(H)			65	(D)	
‘B’		::		42	(H)			66	(D)	
………..	
‘Z’		::		5A	(H)		90	(D)	
	
‘a’		::		61	(H)			97	(D)	
‘b’		::		62	(H)			98	(D)	
………..	
‘z’		::		7A	(H)		122	(D)	
	

‘0’		::		30	(H)			48	(D)	
‘1’		::		31	(H)			49	(D)	
………..	
‘9’		::		39	(H)			57	(D)	
	
‘(‘			::		28	(H)		40	(D)	
‘+’		::		2B	(H)		43	(D)	
‘?’		::			3F	(H)		63	(D)	
‘\n’	::		0A	(H)		10	(D)	
‘\0’	::			00	(H)		00	(D)	
	

Character	Strings	
•  Two	ways	of	represen6ng	a	sequence	of	
characters	in	memory.	
–  The	first	loca6on	contains	the	number	of	characters	in	
the	string,	followed	by	the	actual	characters.	

	
–  The	characters	follow	one	another,	and	is	terminated	
by	a	special	delimiter.	

		

o e H 5 l l

⊥ l e H o l

String	RepresentaJon	in	C	

•  In	C,	the	second	approach	is	used.	
–  The	‘\0’	character	is	used	as	the	string	delimiter.	

•  Example:	
“Hello”							è	
	

•  A	null	string	“”	occupies	one	byte	in	memory.	
–  Only	the	‘\0’	character.	

‘\0’ l e H o l

