
1 of 8

Indian Institute of Technology Kharagpur
Programming and Data Structures (CS10001)
Autumn 2017-18: Mid-Semester Examination

Time: 2 Hours Full Marks: 60

INSTRUCTIONS
1. Answer ALL questions
2. Please write the answers either within the boxes provided or on the blank lines to be filled up. Any

answer written elsewhere will not be evaluated.
3. You may use the last two blank pages for your rough works.

Q.1. Answer the following questions as directed.

a) What will get displayed when the following program is executed? [1]

b) What will get displayed when the following program is executed? [1]

c) What is the 8-bit two’s complement representation of the decimal number ̶ 37? [2]

#include <stdio.h>
int main() {
 int x = -5, y = 10;
 if (x > y) x = 1;
 else if (y < 0) x = x ∗ (-1);
 else x = 2 ∗ x;
 printf(“x=%d\n”, x);
 return 0;
}

#include <stdio.h>
int main() {
 int x = 2, y = 17, result = 5;
 result -= x/5 ∗ 13 ∗ y/3 ∗ x;
 printf(“result=%d\n”, result);
 return 0;
}

result=5

x=-10

11011011

2 of 8

d) What will get displayed when the following program is executed? [1]

e) What will get displayed when the following program is executed? [2]

f) What value will the following function return when called as recur(3)? [2]

g) What value will the following function return when called as g(1024)? [1]

h) What is the binary number corresponding to the hexadecimal number C5.75? [2]

int recur(int data) {
 if (data > 2)
 return (recur(data - 1) - recur(data - 2));
 else return 1;
}

int g(int n) {
 if (n < 2) return n;
 return g(n/2);
}

#include <stdio.h>
int main() {
 int sum = 1, index = 9;
 do {
 index = index - 1;
 sum = 2 ∗ sum;
 } while (index > 9);
 printf(“sum=%d, index=%d\n”, sum, index);
 return 0;
}

#include <stdio.h>
int main() {
 char a = 'a';
 while ((a > 'a') && (a <= 'c')) a++;
 printf(“%c\n”, a);
 return 0;
}

a

sum=2, index=8

0

1

11000101.01110101

3 of 8

i) Consider the program segment given below to read a letter from a..z and A..Z from the keyboard

and convert it to uppercase if not already so. It is assumed that the user will only input a character
from a..z and A..Z. Fill up the missing line with a single C expression so that the variable ch will
contain the character in uppercase. Do not use any library functions. [2]

j) The following program segment is supposed to check whether the values stored by three integer
variables a, b, and c are in ascending order. However, it contains an error. Encircle the part of the
program that contains the error and write only that part corrected. [1]

Q.2. Answer the following questions as directed.

a) What will get displayed when the following program is executed? [2]

b) What will get displayed when the following program is executed? [2]

#include <stdio.h>
int main() {
 int i;
 for (i = 1; i = -1; i++)
 if (i < 5) break;
 printf(“%d\n”, i);
 return 0;
}

#include <stdio.h>
void increment(int i) {
 i++;
}
int main() {
 int i = 0, j = 0;
 while (i++ < 10) increment(j);
 printf(“i=%d, j=%d\n”, i, j);
 return 0;
}

char ch;
ch = getchar();

ch = (ch>=’A’)&&(ch<=’Z’)?ch:’A’+ch-‘a’;

if (a < b < c)
 printf(“Numbers in ascending order \n”);
else printf(“Not in ascending order\n”);

((a<b) && (b<c))

-1

i=11, j=0

4 of 8

c) What will get displayed when the following program is executed? [2]

d) What will get displayed when the following function is called as f(2, 8)? [2]

e) What will get displayed when the following program is executed? [2]

#include <stdio.h>
int main() {
 float j = 1.0, i = 2.0;
 int n = 0;
 while (i/j > 0.05) {
 j = j + j;
 n++;
 }
 printf(“n=%d, j=%f\n”, n, j);
 return 0;
}

int f(int x, int y) {
 int sum = 0;
 y--;
 if (x == 0) return 0;
 else {
 printf(“%d : “, x);
 sum = y + f(x – 1, y);
 printf (“%d : “, sum);
 }
 return sum;
}

#include <stdio.h>
int main() {
 int sum = 0, i = 3;
 while (i < 100) {

 sum = sum + i;
 i = i + 3;

 }
 printf(“sum=%d, i=%d\n”, sum, i);
 return 0;
}

n=6, j=64.000000

2 : 1 : 6 : 13 :

sum=1683, i=102

5 of 8

Q.3.
a) A number is said to be perfect if it is the sum of all its factors (except itself). For example, 6 has

factors 1, 2, 3 and 1+2+3 = 6, hence it is perfect. Also, 28 = 1+2+4+7+14 is perfect. In the
following function checkPerfect fill up the missing lines so that it returns 1 if n is a perfect
number and 0 if n is not a perfect number. [2 + 2]

b) The following function strEqual takes two strings S1 and S2 as parameters. Fill up the missing
lines in the function so that it returns 1 if the two strings are the same, 0 otherwise.
 [1 + 2 + 2]

int checkPerfect(int n) {
 int i, sum = 0;
 for (i = 1; i < n; i++) {

 if (n % i == 0)

 sum += i;
 }

 return (sum == n);

int strEqual(char S1[], char S2[])
{
 int i = 0;

 /∗ Go on until the end of either of the strings ∗/

 while (s1[i] != '\0' && s2[i] != ’\0’)

 {
 if (S1[i] != S2[i]) return 0;
 i++;
 }
 if (s1[i] == '\0' && s2[i] =='\0')

return 1;
 else

return 0;
}

6 of 8

Q.4.
a) The following recursive function find_power should return xn when called as find_power(x,n),

n being a non-negative integer. Fill up the missing lines in the function so that it returns xn.
 [1 + 1 + 2]

b) Fill up the missing lines in the following program so that it will display the sum of the elements
of the array A when executed. [2 + 2]

float find_power(float x, int n) {

if (n == 0)

 return 1;

else
 return x*find_power(x,n-1);

}

#include <stdio.h>
int main() {

int i, n, k = 0, A[10], lim;
 printf("Enter number of elements ");
 scanf("%d", &n);
 printf("Enter the elements ");
 for (i = 0; i < n; i++)

 scanf("%d", &A[i]);
 for (i = 0, lim = n/2; i < lim; i++) {

 /∗ Accumulate Sum ∗/

 k = k + A[i]+A[n-i-1];

 }
if (lim <(n-lim)) /∗ if middle element left out ∗/

 k = k + A[i];
printf("%d\n", k);

 return 0;
}

7 of 8

Q.5.
a) The following program is supposed to insert a new integer value x into an already sorted (in

ascending order) array A containing n distinct integers. You can assume that x does not already
exist in A, and there is space available to insert x in A. For example, assume that n is 10, and A
has the elements 10, 20, 30, 40, 60, 70, 80, 90, 100, 110, and x is 56. After insertion of x, the
array would become 10, 20, 30, 40, 56, 60, 70, 80, 90, 100, 110, and n would be 11. Fill up the
missing lines in the program so that the program inserts x in the sorted array A.
 [2 + 2 + 2 + 2]

b) The following recursive function reverse takes as parameters an integer array A and two other
integers leftIndex and rightIndex which are indices of A. After the function returns, only the
part of the array from leftIndex to rightIndex (including both) should be reversed if leftIndex <
rightIndex. For example, if the elements of the array A are 1, 2, 3, 4, 5, 6, 7, and the function
call reverse(A,2,6) is made, then on return, the array A will contain 1, 2, 7, 6, 5, 4, 3 (i.e., A[0]
and A[1] remain unchanged, and A[2] to A[6] get reversed). Fill up the missing lines in the
function so that it reverses the part of the array A between leftIndex and rightIndex.

 [1 + 3]

void reverse(int A[], int leftIndex, int rightIndex) {
 int temp;
 if (leftIndex < rightIndex) {
 temp = A[leftIndex];
 A[leftIndex] = A[rightIndex];
 A[rightIndex] = temp;
 reverse(A, leftIndex+1, rightIndex-1);
 }
}

#include <stdio.h>
int main(){
 int x, i = 0, j, n, A[100];
 scanf("%d%d", &n, &x);
 for (j = 0; j < n; j++) scanf("%d", &A[j]);

 while (x > A[i] && i < n) i++; /∗ find position after which to insert ∗/

 for (j=n; j>= i+1; j--) /∗ make space for inserting x ∗/

 A[j] = A[j-1];

 n++;

 A[i] = x; /∗ insert the element at the required place ∗/

 for (i = 0; i < n; i++) printf("%d ", A[i]);
 return 0;

8 of 8

Q.6.

The function closest given below takes as parameters an integer array A, the number of elements n
in A, and an integer val. Assume that all integers in the array A are distinct and A is already sorted
in ascending order. The function returns the index of the element in A with minimum absolute
difference with val (i.e., it returns the index i such that |A[i] – val| is minimum). If more than one
element has the same minimum absolute difference with val, then it returns the smallest index. For
example, if A contains the elements 10, 13, 15, 19, 110 and val is 18, the function returns 3, which
is the index of 19 (as |19 − 18| is the minimum). However, if val is 14, it returns 1 (as both |15 − 14|
and |13 – 14| are the minimum, 13 occurs at index 1 and 15 at index 2, and 1 is the smaller index).
Fill up the missing lines in the function so that it does the above. [2 + 2 + 2]

--- The End---

int closest(int A[], int n, int val) {
 int index, i;
 if (val < A[0]) /∗ smaller than the smallest element ∗/
 index = 0;
 else if (val > A[n-1]) /∗ larger than the largest element ∗/
 index = n - 1;
 else {

 /∗ find the elements closest to val ∗/

 for (i = 0; A[i]<val ; i++) ;

 if ((A[i]-val)<(val-A[i-1]))

 /∗ if current element closest ∗/
 index = i;

 else index= i-1 ; /∗ set index to the closest element ∗/

 }
 return index;
}

