

Instructions: Answer all seven questions. Total marks = 10 + 15 x 6 = 100. Time = 3hrs. Write your answer
only in the space provided. Use any other space for rough work. The question paper has total 12 pages.

Rough Work

1. (i) The value of a[2] after executing the code below is:

int a[5] = {0}; for (i = 1; i < 5; i++) a[i] = a[i - 1] + i;

(ii) What does the following program print?

include <stdio.h >

int f (int x, int *py, int **ppz)

{

int y, z;

**ppz += 1; z = **ppz;

*py += 2; y = *py;

x += 3;

return x+y+z;

}

int main() {

int c, *b, **a;

c = 4; b = &c; a = &b;

printf(“%d”, f(c, b, a));

return 0;

}

(iii) The code below dynamically allocates space for a 2-D array:

double **arr;

arr = (double **) malloc(10 * sizeof(double *));

for (i = 0; i < 10; i++)

arr[i] = (double *) malloc(5 * sizeof(double));

How many values are stored in this array, and how are they organized?

A. 15 values, organized as one array of 10 values and a separate array of 5 values.
B. 50 values, organized as an array with 10 rows and 5 columns.
C. 50 values, organized as an array with 5 rows and 10 columns.
D. 100 values, organized as an array with 10 rows and 10 columns.
E 216 values, and they are not organized at all.

(iv) Following stack operations are performed on an initially empty stack:
push(5); push(1); push(4); push(3); pop(); push(2); pop(); pop(); push(8); push(7); pop();

What is the value stored in top of the stack after the above operations?

(v) Following queue operations are performed on an initially empty queue:

enqueue(6); enqueue(12); enqueue(13); dequeue(); dequeue(); enqueue(19); enqueue(21); enqueue(22);

dequeue(); enqueue(20);

What is the value of the queue front after the above operations?

3

19

8

19

B

2. Many calendar systems e.g., Julian, Gregorian, Saka, Hijri etc are prevalent in different parts of the world. A

calendar system can be represented by the number of months in a year, and an array of the number of days in

each of these months. For example, in Gregorian calendar there are 12 months with 31, 28, 31, 30, 31, 30, 31,

31, 30, 31, 30, 31, days respectively. A structure to represent a calendar system can be defined as:

struct calendar { int months; int days[15];};

A structure to represent a date (without year) can be defined as: struct date {int dd; int mm;};

(i) Complete the function IsValidDate() which takes as input a date dt and a calendar system cs, and returns 1

if the date is valid according to the calendar system cs, or zero if otherwise. [3]

(ii) Complete the function Convert() which takes as input a valid date dt1 in calendar system cs1 and returns it

as a date dt2 in calendar system cs2. Assume that the start of years coincide in both calendar systems. [12]

int IsValidDate(struct date dt, struct calendar cs){

return (dt.mm <= cs.months) && (dt.dd <= cs.days[dt.mm-1]); }

struct date Convert(struct date dt1, struct calendar cs1, struct

calendar cs2){

struct date dt2;

int m, day_from_year_start = 0;

for (m = 0; m < (dt1.mm -1); m++){

 day_from_year_start = day_from_year_start + cs1.days[m];

} /* count of days from beginning of year is same for cs1 and cs2 */

day_from_year_start = day_from_year_start + dt1.dd;

m = 0;

while(day_from_year_start > cs2.days[m]) {

day_from_year_start = day_from_year_start – cs2.days[m];

m++;

}

dt2.mm = m+1;

dt2.dd = day_from_year_start;

return dt2; }

3. An element of a 2D array is a saddle point if it is the “maximum” in its column and the “minimum” in its

row. Assume all array elements as having distinct values. For example the element with index (1, 1) is a saddle

point for the matrix: 1 2 3

 7 5 6

 8 4 9

(i) Complete the function below to check if the element (r,c) is a saddle point for the matrix M of size n x n. [5]

(ii) Complete the program fragment below to print all the saddle points of the matrix M having size n x n.

Assume that value of n, and elements of the matrix M, are already available. [10]

int isSaddlePt(int M[100][100], int n, int r, int c){

int i, j, flag = 1;

for(i = 0; i < n; i++)

 if (M[i][c] > M[r][c]) {flag = 0; break;}

for(j = 0; j < n; j++)

 if (M[r][j] < M[r][c]) {flag = 0; break;}

return flag;

}

int M[100][100], n, i = 0, j = 0, flag = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++) {

 if (isSaddlePt(M, n, i, j)){

 printf(“M[%d][%d] is a saddle point.\n”, i, j);

 flag = 1; break; /* there can be only one */

} /* saddle point in a row */

 }

 if (flag == 1) {

i++; /* there can be only one */

flag = 0; /* saddle point in a column */

}

}

4. A user of a social networking site like facebook can be represented by a simplified structure consisting of a

unique uid, a username, number of friends, and a list of uid of users who are friends of the said user:
struct user { int uid; char username[30]; int num_frnds; int frnds[100]};

(i) Complete the function isFriend(struct user u1, struct user u2), that returns 1 if users u1 and u2 are friends.

Assume that if u1 is a friend of u2, u2 is also a friend of u1. [4]

(ii) A measure of closeness of two users is the number of mutual friends they have. Complete the function

mutualFriends(struct user u1, struct user u2), that returns the number of mutual friends of users u1 and u2. [8]

int isFriend(struct user u1, struct user u2) {

int i;

for (i = 0; i < u2.num_frnds; i++){

 if (u1.uid == u2.frnds[i]) return 1;

} /*check friend list of u2, for presence of u1 */

return 0;

}

int mutualFriends(struct user u1, struct user u2){

int i, j, mfcount = 0; /* mcount stores number of mutual friends */

for(i = 0; i < u1.num_frnds ; i++){

for(j = 0; j < u2.num_frnds ; j++){

if (u1.frnds[i] == u2.frnds[j])(There is an error in this

question. Other answers will also be awarded marks)

 mfcount ++;

 }

}

return mfcount;}

(iii) A measure of difference between two users is the sum total of number of users who are friend of u1 but

not of u2 and the number of users who are friend of u2 but not of u1. Assume that a user is not friend of

herself/himself. Complete the function: [3]

difference (struct user u1, struct user u2), that returns the difference value between users u1 and u2.

5. A robot lands on the surface of Mars and moves around to explore it. The robot’s location can be

represented by its (x, y) co-ordinates. The robot can move in one of the four directions in the co-ordinate

system: left (L), right (R), up (U), and down (D) in a single move. Every single move changes position in the

corresponding direction by 1 unit. In order to communicate its location to earth the robot transmits its initial

location (x, y), and a character string representing its move sequence. For example, if the initial location of the

robot is (1, 1) and the sequence of moves is “LURR”, the new location is (2, 2). A 2-dimensional location is

represented by the structure: struct location {int x; int y;};

(i) Complete the function newLocation(), which takes as input a location pointer locp, a single move (character
L/R/U/D), and updates the location after executing the move. [4]

(ii) Suppose that the robot has lost communication and can be in any one of n locations. The space-ship radar

now begins to search for it in a rectangular area. Complete the function boundingRectangle(), which takes as

input an array of n (< 10) locations and returns the smallest axis parallel rectangle which encloses all these

locations. A rectangle structure is defined in terms of the co-ordinates of its bottom left and top right corners

as: struct rectangle { int xbl; int ybl; int xtr; int ytr;}; [5]

int difference(struct user u1, struct user u2){

int mfcount = mutualFriends(u1, u2); /* think of friend list as set */

return (u1.num_frnds + u2.num_frnds – 2 * mfcount);

}

void newLocation(struct location *locp, char move){

switch(move){

case „L‟: locp->x--; break ;

 case „R‟: locp->x++; break ;

case „D‟: locp->y--; break ;

 case „U‟: locp->y++; break ;

}

}

(iii) The robot was exploring Mars and communicating its move sequence to Earth. However, in the process of

interplanetary communication a single character in the movement string was lost and had to be replaced by

‘?’ (e.g., “LU?R”), where ‘?’ might be any of the four movements. Finally, after a total of m (<100) moves, the

robot exhausted its battery and became immobile. Since the final location of the robot is uncertain because of

the ‘?’ in the movement string, the space-ship radar has to search for it within an axis parallel search

rectangle. Complete the function searchBox() below, which takes as input the initial location of the robot loc,

a movement string moves (with a missing character replaced by ‘?’), total number of moves m (before getting

immobile), and returns the smallest rectangle where the robot might be finally located. [6]

struct rectangle boundingRectangle(struct location locs[10], int n){

struct rectangle box ; int i;

box.xbl = locs[0].x; box.ybl = locs[0].y;

box.xtr = locs[0].x; box.ytr = locs[0].y;

for(i = 1 ; i < n; i++){

 if(locs[i].x < box.xbl) box.xbl = locs[i].x;

 if(locs[i].x > box.xtr) box.xtr = locs[i].x;

 if(locs[i].y < box.ybl) box.ybl = locs[i].y;

 if(locs[i].y > box.ytr) box.ytr = locs[i].y;

}

return box;}

struct rectangle searchBox(struct location loc, char moves[100], int m){

int i; struct location ll[4]; /* stores possible final locations */

for(i = 0; i < m; i++){

if(moves[i] != „?‟) newLocation(&loc, moves[i]);

}

ll[0].x = loc.x-1; ll[0].y = loc.y;

ll[1].x = loc.x+1; ll[1].y = loc.y;

ll[2].x = loc.x; ll[2].y = loc.y-1;

ll[3].x = loc.x; ll[3].y = loc.y+1;

return boundingRectangle(ll,4); }

6. (i) Consider the stack data type: struct stack{ int data[MAXSIZE]; int top;};

Complete the following functions to (i) create an empty stack, (ii) check if a stack is empty, (iii) push into a non-

full stack, and (iv) pop from a non-empty stack. We define an empty stack to have top = -1. [5]

(ii) A decimal number is converted to a binary number by continually divide-by-2 to give a result and a

remainder of either a “1” or a “0” until the final result equals zero. For example, the binary equivalent of the

decimal number 9 is 1001. Complete the program below which uses a stack to print the binary equivalent of

the decimal number n. You can use the stack functions defined above. [10]

void push(struct stack *s, int x){

s->top ++ ;

s->data[s->top] = x;

}

int pop(struct stack *s){

int x = s->data[s->top];

s-> top --;

return x; }

#include <stdio.h>

#define MAXSIZE 128

void main(){

struct stack s; int n;

scanf(“%d”, &n);

s = create();

while(n != 0){

push(&s, n%2); /* divide-by-2, and store remainder in stack */

n = n/2; /* continue with result of division */

}

printf(“The binary number is: \n“); /*get binary number from stack */

while(!isempty(&s)) printf(“%d”,pop(&s));

}

struct stack create(){

struct stack s;

s.top = -1;

return s; }

int isempty(struct stack *s){

return (s->top == -1) ;

}

7. (i) Complete the SortedMerge() function below that takes two non-empty lists, each of which is sorted

in increasing order, and merges the them into one list which is in increasing order. SortedMerge() should

return the new list. Assume that the elements of the lists are distinct and there are no common elements

among the lists. For example if the first linked list a is 5->10->15 and the other linked list b is 2->3->20, then

SortedMerge() should return a pointer to the head node of the merged list 2->3->5->10->15->20. The

linked list node structure is defined as: struct node {int data; struct node *next;}. [7]

(ii) Now, complete the recursive function, RecursiveSortedMerge(),to merge two sorted lists. [8]

struct node *SortedMerge(struct node *a, struct node*b){

struct node *mergedList, *head;

if(a->data < b->data) mergedList = a; else mergedList = b;

head = mergedList;

while(a!= NULL && b != NULL){

 if(a->data < b->data){mergedList->next = a; a = a->next; }

 else{ mergedList->next = b ; b = b->next;}

 mergedList = mergedList->next;

 } /* if a list is exhausted before the other */

 if(a == NULL) mergedList->next = b;

 else mergedList->next = a;

 return head;

}

struct node* RecursiveSortedMerge(struct node* a, struct node* b){
struct node* result = NULL;

if (a==NULL) return(b); /* base cases */

else if (b==NULL) return(a);

if (a->data < b->data) { /* pick either a or b, and recur */

result = a;

result->next = RecursiveSortedMerge(a->next, b);

}

else {

result = b;

result->next = RecursiveSortedMerge(a, b->next);

}

return(result);

}

Rough Work

Rough Work

