## Class Test 1

Roll no: $\qquad$ Name: $\qquad$ Section: $\qquad$
Write your answers in the question paper itself. Be neat and tidy. $]$
Answer all questions. Not all blanks carry equal marks.

1. Supply single-line answers to the following parts.
(a) Let n , i and sum be int variables. The user enters a positive value of n . Which of the following program segments prints the largest value of sum?
(i) sum $=0$; $i=1$; while (++i < n) sum += i; printf("\%d", sum);
(ii) sum $=0$; $i=1$; while (i++ < n) sum += i; printf("\%d", sum);
(iii) for (sum $=0, i=1$; $i<n$; $i++$ ) sum $+=i ;$ printf("\%d", sum);
(iv) for (sum $=0, i=1$; $i<=n$; ++i) sum $+=i$; printf("\%d", sum); (iv)
(b) What is printed by the following program?
```
main ()
{
    int x = 0, y = 10, z = 20;
    while (1) {
            x++;
            if (y > z) break;
            y += 4*x; z += 2*x;
        }
    printf("x = %d, y = %d, z = %d", x, y, z);
}
x = 4, y = 34, z = 32
```

(c) What is printed by the following program?

```
main() {
    int x = 1, y = 0, z = 1, t;
    for (t = 0; t < 10; ++t) {
        y += (x) ? z : -z;
        z++; x = !x;
    }
    printf("y = %d", y);
}
```

$y=-5$
(d) What is printed by the following program?

```
main ()
{
    int x = 0;
    if (x = 0) printf("Case (a): %d", x);
    else if (x -= 7) printf("Case (b): %d", x);
    else printf("Case (c): %d", x);
}
```

2. A positive integer is called square-free if it is not divisible by the square of any prime number. For example, $98=2 \times 7^{2}, 99=3^{2} \times 11,100=2^{2} \times 5^{2}$ are not square-free, whereas 101 (a prime) and $102=2 \times 3 \times 17$ are square-free. Your task is to find the divisor $m$ of a positive integer $n$ supplied by the user, such that $m$ is square-free and as large as possible. Indeed, $m$ is the product of all the distinct prime factors of $n$, each taken only once. For example, for $n=98,99,100,101,102$, the values of $m$ will be $14=2 \times 7,33=3 \times 11,10=$ $2 \times 5,101,102=2 \times 3 \times 17$, respectively. Complete the following program to solve this problem.
```
main ()
{
    int n, m, d;
    scanf("%d", &n); /* Assume that a positive integer is entered as n */
    d = 2; m = 1; /* Initialize d (potential divisors of n) and m (the output) */
    while (_n > 1 ) { /* Supply a condition on n */
        if ( n % d == 0 ) { /* if n is divisible by d */
                /* If the above condition is true, then d is prime (see the note below) */
                m = m * d ; /* Record this prime factor of n in m */
                /* Write a loop to remove all factors of the prime d from n */
                        while (n % d == 0) n = n / d;
        }
        d++; /* Check the next potential divisor in the next iteration */
    }
    printf("The desired square-free divisor is %d\n", m);
}
```

Notice that in this program, the condition of if can be true only when $d$ is prime. This is because if $d$ is composite, then we have taken out all the prime factors of $d$ from $n$ before the division by $d$ is made. For example, we remove all factors of 2 and 3 from $n$ before we divide $n$ by $6,9,12, \ldots$ There is no necessity to explicitly check the condition whether $d$ is prime.
3. In this exercise, your task is to evaluate a polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with floating-point coefficients $a_{i}$ at a floating-point value of $x$. The user supplies the degree $d$, the value of $x$, and then the coefficients $a_{0}, a_{1}, \ldots, a_{d}$. In the following program, the variable sum accumulates the desired output value, and the variable xpower stores the value of $x^{i}$ in the $i$-th iteration. Complete the program.

```
main ()
{
    int i, d;
    float x, a, sum, xpower;
    scanf( __%d%f", &d, &x ); /* Read both d and x from the user */
    xpower = 1 ; sum = 0 ; /* Initialize */
    /* Loop for reading the coefficients and updating sum and xpower */
```



```
        scanf( __%f", &a ); /* Read ai to a */
        sum += a * xpower; /* Update sum */
            xpower *= x;
                            /* Update xpower for next iteration */
    }
    printf("The polynomial evaluates to %f\n", sum);
}
```

