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The break Statement
• Break out of the loop { }

– can use with

• while

• do while

• for

• switch
– does not work with 

• if  if else 

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after 
the structure.

Common uses of the break statement
Escape early from a loop
Skip the remainder of a switch 
structure



An Example
#include  <stdio.h>
int main( ) {

int fact, i;
fact = 1;  i = 1;
while  ( i<10 )    { /* run loop –break when fact >100*/

fact = fact * i;
if ( fact > 100 )  {

printf ("Factorial of %d  above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
return 0;

}



The continue Statement

• Skips the remaining statements in the body of 
a while, for or do/while structure. 

– Proceeds with the next iteration of the loop.

• while and do/while

– Loop-continuation test is evaluated immediately 
after the continue statement is executed.

• for structure

– update is evaluated, then expression2(condition)
is evaluated.



An Example with “break” & “continue”
fact = 1; i = 1; /* a program segment  to calculate 10 ! 

while  (1)  {

fact = fact * i;

i ++ ;

if  ( i<10 )

continue; /* not done yet ! Go to loop and 
perform next iteration*/

break;

}



Avoid using break or continue

• Some people consider the use of break or 
continue is poor program design

• Try to avoid using them.
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Avoid ‘break’ in loops
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Avoid ‘continue’ in loops



Programming Examples



1. Sum of first N 
natural numbers

START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

do {

sum = sum + count;

count = count + 1;

} while (count<=N) ;

printf (“Sum = %d\n”, sum) ;

return 0;

}



START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

for (count=1;count <= N;count++)  

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

Sum of first N 
natural numbers



Example 2: 
SUM = 12 + 22 + 32 + N2

START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT  COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N)  {

sum = sum + countcount;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}



Example 3: 
Computing Factorial

START

READ  N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  PROD

STOP

YESNO

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=0;count < N; count++)  {

prod =prod*count;

printf (“Factorial = %d\n”, prod) ;

return 0;

}



Example 4: Computing ex series up to N terms

START

READ  X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO



int main (  ) {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0; 
for (count = 0; count < n; count++)  {

sum += term;
term = term  x/count;

}
printf (“%f\n”, sum) ;
return 0;

}



Example 5: Computing ex series up to 4 decimal 

places

START

READ  X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM <  0.0001? OUTPUT  SUM

STOP

YESNO



int main () {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0; 
for (count = 0; term<0.0001; count++)  {

sum += term;
term = x/count;

}
printf (“%f\n”, sum) ;
return 0;

}



Example 6: Test if a number is prime or not

#include <stdio.h>

int main( ) {

int n;

scanf (“%d”, &n);

}



Example 6: Test if a number is prime or not
int main( ) {

int n;

scanf (“%d”, &n);

i = 2;

while (i < n)  {

if (n % i == 0)  {

printf (“%d is not a prime \n”, n);

}

i++;

}

printf (“%d is a prime \n”, n);

return 1;

}



Example 6: Test if a number is prime or not
int main( ) {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n)  {

if (n % i == 0)  {

printf (“%d is not a prime \n”, n);

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 0;

}



int main( ) {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n)  {

if (n % i == 0)  {

prime = 0;

break;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}



int main( ) {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n)  {

if (n % i == 0)  {

printf (“%d is not a prime \n”, n);

return 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 1;

}



int main( ) {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while ((i < n) && (prime ==1))  {

if (n % i == 0)  {

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}



More efficient – less number of iterations

int main(  ) {
int n, i=2;
scanf (“%d”, &n);
while (i < sqrt(n))  {

if (n % i == 0)  {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 1;

}
printf (“%d is a prime \n”, n);
return 0;

}



Example 7: Find the sum of digits of a number



Example 7: Find the sum of digits of a number

#include  <stdio.h>

int main( )  {

int n, sum=0;

scanf (“%d”, &n);

while (n != 0)  {

sum = sum + (n % 10);

n = n / 10;

}

printf (“The sum of digits of the number is %d \n”, sum);

return 0;

}



CS101 2012.1

float x;
scanf (“%f”, &x);
int numDivs = 0;
while (x > 1) {

x = x / 10;
numDivs = numDivs + 1;

}
printf(“%d\n”,numDivs);

Example 8: Approximating the logarithm

• How many times must we divide a number x by 10 until 
the result goes below 1?



Example 9: Computing ln x

• Must use arithmetic operations.

• Estimate the area under f(x) = 1/x from 1 to 
x. 

• Area approximated by small rectangles.



Riemann Integral

1 x



How many rectangles?

• More the better!  Say 1000.

• Total width of rectangles = x - 1.

• Width w of each = (x - 1)/1000

• x coordinate of left side of ith rectangle 

1 + (i-1)w.

• Height of ith rectangle = 1/(1+(i-1)w)‏



Program to compute ln

#define INTERVALS 1000
int main(  ){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;  
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i+1){

area = area + w*(1/(1+(i-1)*w);
}
printf (“ln %f = %f\n”, x,  area) ;
return 0;

}



Program to compute ln

#define INTERVALS 1000
int main(  ){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;  
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i++){

area  = w/(1 + iw) ;
}
printf (“ln %f = %f\n”, x,  area) ;
return 0;

}



Example 10: Decimal to binary conversion

int dec;

scanf (“%d”, &dec);

do

{

printf (“%2d”,  (dec % 2));

dec = dec / 2;

}  while (dec != 0);

printf (“\n”);



Example 11: 
Compute greatest common divisor (GCD) of two numbers

12 )  45  (  3

36

9  )  12  (  1

9

3  )  9  (  3

9

0 

The standard gcd algorithm is based on 
successive Euclidean division. 

Let us try to render it as a sequence of 
repetitive computations. 

For the sake of simplicity, we assume that 
whenever we write gcd(a,b) we mean 
a>=b. 

[Euclidean gcd theorem] 
• Let a, b be positive integers and 

r = a % b. Then gcd(a,b) = gcd(b,r).

• If a is an integral multiple of b, we have 
r=0, and so by the theorem 
gcd(a,b)=gcd(b,0)=b. 



GCD algorithm

As long as b is not equal to 0 do the following: 
Compute the remainder r = a rem b. 
Replace a by b and b by r. 

Report a as the desired gcd. 



GCD algorithm
As long as b is not equal to 0 do the following: 

Compute the remainder r = a rem b. 
Replace a by b and b by r. 

Report a as the desired gcd. 

if  (a > b)  { 

temp = a;  a = b;  b = temp; 

}

while (b != 0)  {

rem = a % b;

a = b;

b = rem;

}



Example 11: Compute GCD of two numbers

int main( ) {

int a, b, rem, temp;

scanf (%d %d”, &a, &b);

if  (a > b)  { 

temp = a;  a = b;  b = temp; 

}

while (b != 0)  {

rem = a % b;

a = b;

b = rem;

}

printf (“The GCD is %d”, a);

return 0;

}

12 )  45  (  3

36

9  )  12  (  1

9

3  )  9  (  3

9

0 
Initial:         A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3

B % A = 0    GCD is 3



Exercise 1
sin() takes a value in radians and returns the sin of it. Use the sin 

function to plot a sin wave vertically using stars (it should look 
something like this):

*
* 

*
*

*
*

*
*

*
*
* 

*
*

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a 
number between 0 and 60 and print that many spaces before printing the 
* then print a '\n'



[sudeshna@facweb temp]$ ./a.out
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

[sudeshna@facweb temp]$



Exercise 2

Write a C program to compute the following 
series:

x - x^2/(2*1) + 2*x^3/(3*2*1) -
3*x^4/(4*3*2*1) + .....

The value of x will be read from the user. The 
sum is to be computed over 10 terms. Print 
the partial sums as well as the final sum. 



Exercise 3

It is known that the harmonic number Hn converges 
to k + ln n as n tends to infinity. 

Here ln is the natural logarithm and k is a constant 
known as Euler's constant. In this exercise you are 
asked to compute an approximate value for 
Euler's constant.

Generate the values of Hn and ln n successively for 
n=1,2,3,..., and compute the difference kn = Hn -
ln n. Stop when kn-kn-1 is less than a specific error 
bound (say 10-8). 



Exercise 4

Write a C program that takes as input a number 
and computes and prints the following:

1. the sum of the digits of the number 

2. the number reversed 

3. the sum of the original number and the 
reversed number



Exercise 5

Write a program that find can find the roots of a 
mathematical function using the bisection method. 
Assume that the function has exactly one root in that 
interval. 
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Basis of Bisection Method - 1

 

 x 

 f(x) 

 xu 
 x 

Theorem An equation f(x)=0, where f(x) is a real, continuous 
function, has at least one root between xl and xu if f(xl) f(xu) < 0.



 

 x 

 f(x) 

 xu 
 x 
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Basis of Bisection Method - 2
If function f(x) does not change sign between two 

points, roots of the equation f(x)=0   may still exist 
between the two points.



 

 x 

 f(x) 

 xu 
 x 
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Basis of Bisection Method - 3

If the function  f(x) does not change sign between two 
points, there may not be any roots for the equation 
f(x) =0 between the two points.

 

 x 

 f(x) 

 xu 

 x 

 xf

  0xf



 

 x 

 f(x) 

 xu  x 
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Basis of Bisection Method - 4

If the function f(x) changes sign between two points, 
more than one root for the equation f(x)=0 may exist 
between the two points.

 xf

  0xf
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Algorithm for Bisection Method
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Step 1

Choose x and xu as two guesses for the root such that f(x) 
f(xu) < 0, or in other words, f(x) changes sign between x and 
xu. This was demonstrated in Figure 1.

 

 x 

 f(x) 

 xu 
 x 

Figure 1



 

 x 

 f(x) 

 xu 
 x 

 xm 
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Step 2

Estimate the root, xm of the equation f (x) = 0 as the mid point
between x and xu as

x
x

m =  
 xu 

2
 

Figure 5   Estimate of xm
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Step 3

Now check the following

a) If   f(x)f(xm)<0, then the root lies between x and xm; 
then x = x ; xu = xm.

b) If If f(x)f(xm)>0, then the root lies between xm and xu; 
then x = xm;  xu = xu.

c) If If f(x)f(xm)==0 , then the root is xm.  Stop the algorithm 
if this is true.
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Step 4

x
x

m =  
 xu 

2
 

100



new

m

old

m

new

a
x

xx
m

root of estimatecurrent  new

mx

root of estimate previousold

mx

Find the new estimate of the root

Find the absolute relative approximate error

where
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Step 5

Is            ?

Yes

No

Go to Step 2 using new 

upper and lower guesses.

Stop the algorithm

Compare the absolute relative approximate error       with the 
pre-specified error tolerance     .

a

s

sa 

Note one should also check whether the number of iterations 
is more than the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the user 
about it.



Bisection Method

Check the value of the function at the middle of the interval.

if it is positive, 

replace the left endpoint with the middle point; 

if it is negative, replace the right endpoint with the middle point. 

Stay in a loop doing this until the interval size is less than 
epsilon. The interval end points ( xleft and xright ) and the 
tolerance for the approximation (epsilon ) are entered by the 
user. 


