
Programming and Data Structure

Sudeshna Sarkar

Dept. of Computer Science & Engineering.

Indian Institute of Technology

Kharagpur

19 Jan 2012

Spring Semester 2012 Programming and Data Structure 1

The break Statement
• Break out of the loop { }

– can use with

• while

• do while

• for

• switch
– does not work with

• if  if else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after
the structure.

Common uses of the break statement
Escape early from a loop
Skip the remainder of a switch
structure

An Example
#include <stdio.h>
int main() {

int fact, i;
fact = 1; i = 1;
while (i<10) { /* run loop –break when fact >100*/

fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
return 0;

}

The continue Statement

• Skips the remaining statements in the body of
a while, for or do/while structure.

– Proceeds with the next iteration of the loop.

• while and do/while

– Loop-continuation test is evaluated immediately
after the continue statement is executed.

• for structure

– update is evaluated, then expression2(condition)
is evaluated.

An Example with “break” & “continue”
fact = 1; i = 1; /* a program segment to calculate 10 !

while (1) {

fact = fact * i;

i ++ ;

if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;

}

Avoid using break or continue

• Some people consider the use of break or
continue is poor program design

• Try to avoid using them.

Spring Semester 2012 Programming and Data Structure 6

Avoid ‘break’ in loops

Spring Semester 2012 Programming and Data Structure 7

Avoid ‘continue’ in loops

Programming Examples

1. Sum of first N
natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

do {

sum = sum + count;

count = count + 1;

} while (count<=N) ;

printf (“Sum = %d\n”, sum) ;

return 0;

}

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

for (count=1;count <= N;count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

Sum of first N
natural numbers

Example 2:
SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT  COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + countcount;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

Example 3:
Computing Factorial

START

READ N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT PROD

STOP

YESNO

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=0;count < N; count++) {

prod =prod*count;

printf (“Factorial = %d\n”, prod) ;

return 0;

}

Example 4: Computing ex series up to N terms

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; count < n; count++) {

sum += term;
term = term  x/count;

}
printf (“%f\n”, sum) ;
return 0;

}

Example 5: Computing ex series up to 4 decimal

places

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; term<0.0001; count++) {

sum += term;
term = x/count;

}
printf (“%f\n”, sum) ;
return 0;

}

Example 6: Test if a number is prime or not

#include <stdio.h>

int main() {

int n;

scanf (“%d”, &n);

}

Example 6: Test if a number is prime or not
int main() {

int n;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

}

i++;

}

printf (“%d is a prime \n”, n);

return 1;

}

Example 6: Test if a number is prime or not
int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 0;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

prime = 0;

break;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

return 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 1;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while ((i < n) && (prime ==1)) {

if (n % i == 0) {

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}

More efficient – less number of iterations

int main() {
int n, i=2;
scanf (“%d”, &n);
while (i < sqrt(n)) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 1;

}
printf (“%d is a prime \n”, n);
return 0;

}

Example 7: Find the sum of digits of a number

Example 7: Find the sum of digits of a number

#include <stdio.h>

int main() {

int n, sum=0;

scanf (“%d”, &n);

while (n != 0) {

sum = sum + (n % 10);

n = n / 10;

}

printf (“The sum of digits of the number is %d \n”, sum);

return 0;

}

CS101 2012.1

float x;
scanf (“%f”, &x);
int numDivs = 0;
while (x > 1) {

x = x / 10;
numDivs = numDivs + 1;

}
printf(“%d\n”,numDivs);

Example 8: Approximating the logarithm

• How many times must we divide a number x by 10 until
the result goes below 1?

Example 9: Computing ln x

• Must use arithmetic operations.

• Estimate the area under f(x) = 1/x from 1 to
x.

• Area approximated by small rectangles.

Riemann Integral

1 x

How many rectangles?

• More the better! Say 1000.

• Total width of rectangles = x - 1.

• Width w of each = (x - 1)/1000

• x coordinate of left side of ith rectangle

1 + (i-1)w.

• Height of ith rectangle = 1/(1+(i-1)w)‏

Program to compute ln

#define INTERVALS 1000
int main(){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i+1){

area = area + w*(1/(1+(i-1)*w);
}
printf (“ln %f = %f\n”, x, area) ;
return 0;

}

Program to compute ln

#define INTERVALS 1000
int main(){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i++){

area = w/(1 + iw) ;
}
printf (“ln %f = %f\n”, x, area) ;
return 0;

}

Example 10: Decimal to binary conversion

int dec;

scanf (“%d”, &dec);

do

{

printf (“%2d”, (dec % 2));

dec = dec / 2;

} while (dec != 0);

printf (“\n”);

Example 11:
Compute greatest common divisor (GCD) of two numbers

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

The standard gcd algorithm is based on
successive Euclidean division.

Let us try to render it as a sequence of
repetitive computations.

For the sake of simplicity, we assume that
whenever we write gcd(a,b) we mean
a>=b.

[Euclidean gcd theorem]
• Let a, b be positive integers and

r = a % b. Then gcd(a,b) = gcd(b,r).

• If a is an integral multiple of b, we have
r=0, and so by the theorem
gcd(a,b)=gcd(b,0)=b.

GCD algorithm

As long as b is not equal to 0 do the following:
Compute the remainder r = a rem b.
Replace a by b and b by r.

Report a as the desired gcd.

GCD algorithm
As long as b is not equal to 0 do the following:

Compute the remainder r = a rem b.
Replace a by b and b by r.

Report a as the desired gcd.

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

Example 11: Compute GCD of two numbers

int main() {

int a, b, rem, temp;

scanf (%d %d”, &a, &b);

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

printf (“The GCD is %d”, a);

return 0;

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0
Initial: A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3

B % A = 0  GCD is 3

Exercise 1
sin() takes a value in radians and returns the sin of it. Use the sin

function to plot a sin wave vertically using stars (it should look
something like this):

*
*

*
*

*
*

*
*

*
*
*

*
*

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a
number between 0 and 60 and print that many spaces before printing the
* then print a '\n'

[sudeshna@facweb temp]$./a.out
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

[sudeshna@facweb temp]$

Exercise 2

Write a C program to compute the following
series:

x - x^2/(2*1) + 2*x^3/(3*2*1) -
3*x^4/(4*3*2*1) +

The value of x will be read from the user. The
sum is to be computed over 10 terms. Print
the partial sums as well as the final sum.

Exercise 3

It is known that the harmonic number Hn converges
to k + ln n as n tends to infinity.

Here ln is the natural logarithm and k is a constant
known as Euler's constant. In this exercise you are
asked to compute an approximate value for
Euler's constant.

Generate the values of Hn and ln n successively for
n=1,2,3,..., and compute the difference kn = Hn -
ln n. Stop when kn-kn-1 is less than a specific error
bound (say 10-8).

Exercise 4

Write a C program that takes as input a number
and computes and prints the following:

1. the sum of the digits of the number

2. the number reversed

3. the sum of the original number and the
reversed number

Exercise 5

Write a program that find can find the roots of a
mathematical function using the bisection method.
Assume that the function has exactly one root in that
interval.

http://numericalmethods.eng.usf.edu
45

Basis of Bisection Method - 1

 x

 f(x)

 xu
 x

Theorem An equation f(x)=0, where f(x) is a real, continuous
function, has at least one root between xl and xu if f(xl) f(xu) < 0.

 x

 f(x)

 xu
 x

http://numericalmethods.eng.usf.edu
46

Basis of Bisection Method - 2
If function f(x) does not change sign between two

points, roots of the equation f(x)=0 may still exist
between the two points.

 x

 f(x)

 xu
 x

http://numericalmethods.eng.usf.edu
47

Basis of Bisection Method - 3

If the function f(x) does not change sign between two
points, there may not be any roots for the equation
f(x) =0 between the two points.

 x

 f(x)

 xu

 x

 xf

  0xf

 x

 f(x)

 xu x

http://numericalmethods.eng.usf.edu
48

Basis of Bisection Method - 4

If the function f(x) changes sign between two points,
more than one root for the equation f(x)=0 may exist
between the two points.

 xf

  0xf

http://numericalmethods.eng.usf.edu
49

Algorithm for Bisection Method

http://numericalmethods.eng.usf.edu
50

Step 1

Choose x and xu as two guesses for the root such that f(x)
f(xu) < 0, or in other words, f(x) changes sign between x and
xu. This was demonstrated in Figure 1.

 x

 f(x)

 xu
 x

Figure 1

 x

 f(x)

 xu
 x

 xm

http://numericalmethods.eng.usf.edu
51

Step 2

Estimate the root, xm of the equation f (x) = 0 as the mid point
between x and xu as

x
x

m =
 xu 

2

Figure 5 Estimate of xm

http://numericalmethods.eng.usf.edu
52

Step 3

Now check the following

a) If f(x)f(xm)<0, then the root lies between x and xm;
then x = x ; xu = xm.

b) If If f(x)f(xm)>0, then the root lies between xm and xu;
then x = xm; xu = xu.

c) If If f(x)f(xm)==0 , then the root is xm. Stop the algorithm
if this is true.

http://numericalmethods.eng.usf.edu
53

Step 4

x
x

m =
 xu 

2

100



new

m

old

m

new

a
x

xx
m

root of estimatecurrent new

mx

root of estimate previousold

mx

Find the new estimate of the root

Find the absolute relative approximate error

where

http://numericalmethods.eng.usf.edu
54

Step 5

Is ?

Yes

No

Go to Step 2 using new

upper and lower guesses.

Stop the algorithm

Compare the absolute relative approximate error with the
pre-specified error tolerance .

a

s

sa 

Note one should also check whether the number of iterations
is more than the maximum number of iterations allowed. If so,
one needs to terminate the algorithm and notify the user
about it.

Bisection Method

Check the value of the function at the middle of the interval.

if it is positive,

replace the left endpoint with the middle point;

if it is negative, replace the right endpoint with the middle point.

Stay in a loop doing this until the interval size is less than
epsilon. The interval end points (xleft and xright) and the
tolerance for the approximation (epsilon) are entered by the
user.

