
Programming and Data Structure

Sujoy Ghose

Sudeshna Sarkar

Jayanta Mukhopadhyay

Dept. of Computer Science & Engineering.

Indian Institute of Technology

Kharagpur

Spring Semester 2012 Programming and Data Structure 1

Problem solving
• Step 1:

– Clearly specify the problem to be solved.

• Step 2:
– Draw flowchart / write algorithm

• Step 3:
– Convert flowchart / algorithm into program code.

• Step 4:
– Compile the program into object code.

• Step 5:
– Execute the program.

Spring Semester 2012 Programming and Data Structure 2

Flowchart: basic symbols

Spring Semester 2012 Programming and Data Structure 3

Computation

Input / Output

Decision Box

Start / Stop

Contd.

Spring Semester 2012 Programming and Data Structure 4

Flow of

control

Connector

Example 1: Adding three numbers

Spring Semester 2012 Programming and Data Structure 5

READ A, B, C

S = A + B + C

OUTPUT S

STOP

START

Example 1: Adding three numbers

Spring Semester 2012 Programming and Data Structure 6

READ A, B, C

S = A + B + C

OUTPUT S

STOP

START #include <stdio.h>
int main()
{
int a, b, c, sum;

scanf(“%d%d%d”,&a, &b, &c);

sum = a + b + c;

printf(“%d”,sum);

return 0;
}

Variable Declaration

Example 2: Larger of two numbers

Spring Semester 2012 Programming and Data Structure 7

START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

Example 3: Largest of three numbers

Spring Semester 2012 Programming and Data Structure 8

START

READ X, Y, Z

IS
LAR > Z?

IS
X > Y?

LAR = X LAR = Y

OUTPUT LAR OUTPUT Z

STOP STOP

YES

YES

NO

NO

Example 3: Largest of three numbers

Spring Semester 2012 Programming and Data Structure 9

START

READ X, Y, Z

IS
LAR > Z?

IS
X > Y?

LAR = X LAR = Y

OUTPUT LAR OUTPUT Z

STOP STOP

YES

YES

NO

NO

#include <stdio.h>
/* FIND THE LARGEST OF THREE NUMBERS */

int main()
{

int a, b, c, lar;
scanf (“%d %d %d”, &x, &y, &z);

if (x>y)
lar = x;

else lar = y;

if (lar > z)
printf(“Largest is %d”, lar);

else printf(“Largest is %d”, z);
return 0;

}

Example 4: Sum of first N natural numbers

Spring Semester 2012 Programming and Data Structure 10

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

Example 5: SUM = 12 + 22 + 32 + N2

Spring Semester 2012 Programming and Data Structure 11

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT*COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms

Spring Semester 2012 Programming and Data Structure 12

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT * (COUNT+1)

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

Example 7: Computing Factorial

Spring Semester 2012 Programming and Data Structure 13

START

READ N

PROD = 1
COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT PROD

STOP

YESNO

Example 8: Computing ex series up to N terms

Spring Semester 2012 Programming and Data Structure 14

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM  X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

Example 9: Computing ex series up to 4 decimal places

Spring Semester 2012 Programming and Data Structure 15

START

READ X

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM  X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001?

OUTPUT SUM

STOP

YESNO

Example 10: Roots of a quadratic
equation

Spring Semester 2012 Programming and Data Structure 16

Ax2 + Bx + C = 0

Example 11: Grade computation

MARKS  90  Ex

89  MARKS  80  A

79  MARKS  70  B

69  MARKS  60  C

59  MARKS  50  D

49  MARKS  35  P

34  MARKS  F

Spring Semester 2012 Programming and Data Structure 17

Grade Computation (contd.)

Spring Semester 2012 Programming and Data Structure 18

START

READ MARKS

OUTPUT “Ex”

MARKS  90? MARKS  80? MARKS  70?

OUTPUT “A” OUTPUT “B”

STOPSTOPSTOP

A

YESYESYES

NONONO

Spring Semester 2012 Programming and Data Structure 19

MARKS  60?

STOP

OUTPUT “C”

A MARKS  50? MARKS  35?

OUTPUT “D” OUTPUT “P” OUTPUT “F”

STOP STOP STOP

YESYESYES

NONONO

Homework
Design flowchart / algorithm

1. Take as input an integer n and a sequence of n numbers

and prints their average.

2. Take a number as input and a base as input (both integers)

and prints the digits of the number to the given base.

For example, given 46 and 3, the output should be (from

least significant to most significant) 1, 2, 0, 1.

Spring Semester 2012 Programming and Data Structure 20

The C Character Set

• The C language alphabet:

A,B,..Z a, b, ..z

0, 1,..9

Certain special characters:

, . ; % \ | ~ # ? () ‘ “ + ^ & * - _ + = [] { } < >

blank tab newline

Spring Semester 2012 Programming and Data Structure 21

Identifiers and Keywords

• Identifiers
– Names given to various program elements

(variables, constants, functions, etc.)
– May consist of letters, digits and the underscore

(‘_’) character, with no space between.
– First character must be a letter.
– An identifier can be arbitrary long.

• Some C compilers recognize only the first few
characters of the name (16 or 31).

– Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different.

Spring Semester 2012 Programming and Data Structure 22

Contd.

• Keywords

– Reserved words that have standard, predefined
meanings in C.

– Cannot be used as identifiers.

– OK within comments.

– Standard C keywords:

Spring Semester 2012 Programming and Data Structure 23

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

Valid and Invalid Identifiers

X

abc

10abc

simple interest

simple_interest

Simple-interest

a123

LIST

stud_name

Employee_1

avg_empl_salary

“hello”

(area)

%rate

Spring Semester 2012 Programming and Data Structure 24

Valid and Invalid Identifiers

 X

 abc

 10abc

 simple interest

 simple_interest

 Simple-interest

 a123

 LIST

 stud_name

 Employee_1

 avg_empl_salary

 “hello”

 (area)

 %rate

Spring Semester 2012 Programming and Data Structure 25

Data Types in C

int :: integer quantity

Typically occupies 4 bytes (32 bits) in memory.

char :: single character

Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a
decimal point)

Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Spring Semester 2012 Programming and Data Structure 26

Contd.

• Some of the basic data types can be augmented
by using certain data type qualifiers:
– short

– long

– signed

– unsigned

• Typical examples:
– short int

– long int

– unsigned int

Spring Semester 2012 Programming and Data Structure 27

Some Examples of Data Types

• int

0, 25, -156, 12345, 99820

• char

‘a’, ‘A’, ‘*’, ‘/’, ‘ ’

• float

23.54, 0.00345, 25.0

2.5E12, 1.234e-5

Spring Semester 2012 Programming and Data Structure 28

E or e means “10 to

the power of”

Constants

Spring Semester 2012 Programming and Data Structure 29

Constants

Numeric

Constants

Character

Constants

stringsingle

character

floating-

point

integer

Integer Constants

• Consists of a sequence of digits, with possibly
a plus or a minus sign before it.

– Embedded spaces, commas and non-digit
characters are not permitted between digits.

• Maximum and minimum values (for 32-bit
representations)

Maximum :: 2 147 483 647 (2^31  1)

Minimum ::  2 147 483 648 ( 2^31)

Spring Semester 2012 Programming and Data Structure 30

Floating-point Constants

• Can contain fractional parts.

• Very large or very small numbers can be
represented.

23000000 can be represented as 2.3e7

• Two different notations:
1. Decimal notation

25.0, 0.0034, .84, -2.234

2. Exponential (scientific) notation
3.45e23, 0.123e-12, 123E2

Spring Semester 2012 Programming and Data Structure 31

E or e means “10 to

the power of”

Single Character Constants

• Contains a single character enclosed within a pair
of single quote marks.
– Examples :: ‘2’, ‘+’, ‘Z’

• Some special backslash characters
‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote

‘\”’ double quote

‘\\’ backslash

‘\0’ null

Spring Semester 2012 Programming and Data Structure 32

String Constants

• Sequence of characters enclosed in double
quotes.

– The characters may be letters, numbers, special
characters and blank spaces.

• Examples:

“nice”, “Good Morning”, “3+6”, “3”, “C”

• Differences from character constants:

– ‘C’ and “C” are not equivalent.

– ‘C’ has an equivalent integer value while “C” does not.

Spring Semester 2012 Programming and Data Structure 33

Variables

• It is a data name that can be used to store a
data value.

• Unlike constants, a variable may take different
values in memory during execution.

• Variable names follow the naming convention
for identifiers.

– Examples :: temp, speed, name2, current

Spring Semester 2012 Programming and Data Structure 34

Example

Spring Semester 2012 Programming and Data Structure 35

int a, b, c;
char x;

a = 3;
b = 50;
c = a – b;
x = ‘d’;

b = 20;
a = a + 1;
x = ‘G’;

Variables

Constants

Declaration of Variables

• There are two purposes:
1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

• General syntax:
data-type variable-list;

• Examples:
int velocity, distance;

int a, b, c, d;

float temp;

char flag, option;

Spring Semester 2012 Programming and Data Structure 36

A First Look at Pointers

• A variable is assigned a specific memory location.
– For example, a variable speed is assigned

memory location 1350.

– Also assume that the memory location 1350 contains
the data value 100.

– When we use the name speed in an expression, it
refers to the value 100 stored in the memory location.

distance = speed  time;

• Thus every variable has an address (in memory),
and its contents.

Spring Semester 2012 Programming and Data Structure 37

Adress and Content

Spring Semester 2012 Programming and Data Structure 38

1349

1350

1351

1352

speed

100

int speed;

speed=100;

speed 100

&speed 1350

Contd.

• In C terminology, in an expression
speed refers to the contents of the memory
location.

&speed refers to the address of the memory
location.

• Examples:
printf (“%f %f %f”, speed, time, distance);

scanf (“%f %f”, &speed, &time);

Spring Semester 2012 Programming and Data Structure 39

An Example

Spring Semester 2012 Programming and Data Structure 40

#include <stdio.h>
int main()
{

float speed, time, distance;

scanf (“%f %f”, &speed, &time);
distance = speed  time;
printf (“\n The distance traversed is: \n”, distance);
return 0;

}

Address of speed

Content of speed

Assignment Statement
• Used to assign values to variables, using the

assignment operator (=).
• General syntax:

variable_name = expression;
type variable_name = expression;

• Examples:
int velocity = 20;
b = 15; temp = 12.5;
A = A + 10;
v = u + f  t;
s = u  t + 0.5  f  t  t;

Spring Semester 2012 Programming and Data Structure 41

lvalue and assignment operator

• Requires an lvalue as its left operand.

• l-value: represents an object stored in memory, which is
neither a constant nor a result of computation.

• So a variable can be an lvalue, but neither any expressions nor
any constant.

12 = i ; // WRONG

i + j = 0 ; // WRONG

i = j ; // WRONG

i++ = j ; // WRONG

X+10 = Y2; // WRONG

Spring Semester 2012 Programming and Data Structure 42

type identifier = expression ;

CS101 2012.1

Assigning values to variables

• Lhs = rhs
• Lhs is a lvalue. Can be a variable name. Later we will

consider arrays, pointers etc.
• Rhs is an expression compatible with the type of the

lhs
centigrade = 5*(fahrenheit – 32)/9;

• Assignment statement has value = rhs
• A value can be assigned to a variable at the time the

variable is declared.
int speed = 30;
char flag = ‘y’;

Contd.

• Several variables can be assigned the same
value using multiple assignment operators.

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 0.0;

Spring Semester 2012 Programming and Data Structure 44

CS101 2012.1

Example: swapping two numbers

float x = 5, y = 11;
float temporary ;
temporary = x;
x = y;
y = temporary;

x y temporary

5 11

5 11 5

11 11 5

11 5 5

Can you swap

without using a

temporary

variable?

Operators in Expressions

Spring Semester 2012 Programming and Data Structure 46

Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators

Arithmetic Operators

• Addition :: +

• Subtraction :: –

• Division :: /

• Multiplication :: *

• Modulus :: %

Spring Semester 2012 Programming and Data Structure 47

Examples

Spring Semester 2012 Programming and Data Structure 48

distance = rate  time ;

netIncome = income  tax ;

speed = distance / time ;

area = PI  radius  radius;

y = a  x  x + b  x + c;

quotient = dividend / divisor;

remain =dividend % divisor;

Contd.

• Suppose x and y are two integer variables,
whose values are 13 and 5 respectively.

Spring Semester 2012 Programming and Data Structure 49

x + y 18

x – y 8

x  y 65

x / y 2

x % y 3

Operator Precedence

• In decreasing order of priority
1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

• For operators of the same priority, evaluation
is from left to right as they appear.

• Parenthesis may be used to change the
precedence of operator evaluation.

Spring Semester 2012 Programming and Data Structure 50

Examples: Arithmetic expressions

a + b  c – d / e  a + (b  c) – (d / e)

a  – b + d % e – f  a  (– b) + (d % e) – f

a – b + c + d  (((a – b) + c) + d)

x  y  z  ((x  y)  z)

a + b + c  d  e  (a + b) + ((c  d)  e)

Spring Semester 2012 Programming and Data Structure 51

Integer Arithmetic

• When the operands in an arithmetic
expression are integers, the expression is
called integer expression, and the operation is
called integer arithmetic.

• Integer arithmetic always yields integer
values.

Spring Semester 2012 Programming and Data Structure 52

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the final
value is an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

• The modulus operator cannot be used with real
operands.

Spring Semester 2012 Programming and Data Structure 53

Mixed-mode Arithmetic

• When one of the operands is integer and the
other is real, the expression is called a mixed-
mode arithmetic expression.

• If either operand is of the real type, then only
real arithmetic is performed, and the result is
a real number.

25 / 10  2

25 / 10.0  2.5

• Some more issues will be considered later.

Spring Semester 2012 Programming and Data Structure 54

• Mixing types may result in precision loss,
overflow, underflow and ability to process full
range.

Spring Semester 2012 Programming and Data Structure 55

Problem of value assignment

• Assignment operation
variable= expression_value;

or
variable1 = variable2;

Data type of the RHS should be compatible
with that of LHS.

If a floating point number is assigned to an integer
variable, there will be truncation, may lead to
loss.

Spring Semester 2012 Programming and Data Structure 56

Type Casting

int a=10, b=4, c;

float x, y;

c = a / b;

x = a / b;

y = (float) a / b;

The value of c will be 2

The value of x will be 2.0

The value of y will be 2.5

Type Casting

Spring Semester 2012 Programming and Data Structure 58

int x;
float r=3.0;

x= (int)(2*r);

Type casting of a floating
point expression to an integer
variable.

double perimeter;
float pi=3.14;
int r=3;

perimeter=2.0* (double) pi * (double) r;

Type casting
to double

Relational Operators

• Used to compare two quantities.

Spring Semester 2012 Programming and Data Structure 59

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false

• When arithmetic expressions are used on either side
of a relational operator, the arithmetic expressions
will be evaluated first and then the results compared.

a + b > c – d is the same as (a+b) > (c+d)

Spring Semester 2012 Programming and Data Structure 60

Examples

• Sample code segment in C

if (x > y)

printf (“%d is larger\n”, x);

else

printf (“%d is larger\n”, y);

Spring Semester 2012 Programming and Data Structure 61

Logical Operators

• There are two logical operators in C (also
called logical connectives).

&&  Logical AND

||  Logical OR

– They act upon operands that are themselves
logical expressions.

– The individual logical expressions get combined
into more complex conditions that are true or
false.

Spring Semester 2012 Programming and Data Structure 62

– Logical AND

• Result is true if both the operands are true.

– Logical OR

• Result is true if at least one of the operands are true.

Spring Semester 2012 Programming and Data Structure 63

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

Input / Output

• printf
– Performs output to the standard output device

(typically defined to be the screen).

– It requires a format string in which we can specify:
• The text to be printed out.
• Specifications on how to print the values.

printf ("The number is %d.\n", num) ;
• The format specification %d causes the value listed after the

format string to be embedded in the output as a decimal
number in place of %d.

• Output will appear as: The number is 125.

Spring Semester 2012 Programming and Data Structure 64

Input

• scanf
– Performs input from the standard input device, which is

the keyboard by default.

– It requires a format string and a list of variables into which
the value received from the input device will be stored.

– It is required to put an ampersand (&) before the names of
the variables.

scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d %d”, &a, &b);

Spring Semester 2012 Programming and Data Structure 65

