
Arrays

Spring 2012 Programming and Data Structure 1

Basic Concept

• Many applications require multiple data
items that have common characteristics.

– In mathematics, we often express such groups
of data items in indexed form:

• x1, x2, x3, …, xn

• Why are arrays essential for some
applications?

– Take an example.

– Finding the minimum of a set of numbers.

Spring 2012 Programming and Data Structure 2

Spring 2012 Programming and Data Structure 3

if ((a <= b) && (a <= c))

min = a;

else

if (b <= c)

min = b;

else

min = c;

if ((a <= b) && (a <= c) && (a <= d))

min = a;

else

if ((b <= c) && (b <= d))

min = b;

else

if (c <= d)

min = c;

else

min = d;

3 numbers 4 numbers

The Problem

• Suppose we have 10 numbers to handle.

• Or 20.

• Or 100.

• How to tackle this problem?

• Solution:

–Use arrays.

Spring 2012 Programming and Data Structure 4

Using Arrays
• All the data items constituting the group share

the same name.

int x[10];

• Individual elements are accessed by specifying
the index.

Spring 2012 Programming and Data Structure 5

x[0] x[1] x[2] x[9]

x is a 10-element one

dimensional array

Declaring Arrays

• Like variables, the arrays that are used in a
program must be declared before they are
used.

• General syntax:
type array-name [size];

– type specifies the type of element that will be
contained in the array (int, float, char, etc.)

– size is an integer constant which indicates the
maximum number of elements that can be stored
inside the array.

• marks is an array containing a maximum of 5 integers.

Spring 2012 Programming and Data Structure 6

int marks[5];

• Examples:
int x[10];

char line[80];

float points[150];

char name[35];

• If we are not sure of the exact size of the array,
we can define an array of a large size.

int marks[50];

though in a particular run we may only be using,
say, 10 elements.

Spring 2012 Programming and Data Structure 7

How an array is stored in memory?

• Starting from a given memory location, the
successive array elements are allocated space in
consecutive memory locations.

• Let
x: starting address of the array in memory
k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at address
x + i*k
• First array index assumed to start at zero.

Spring 2012 Programming and Data Structure 8

Array a

x x+k x+2k

Accessing Array Elements

• A particular element of the array can be accessed
by specifying two things:
– Name of the array.

– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.

• Example:
– An array is defined as int x[10];

– The first element of the array x can be accessed as
x[0], fourth element as x[3], tenth element as x[9],
etc.

Spring 2012 Programming and Data Structure 9

Contd.

• The array index must evaluate to an integer
between 0 and n-1 where n is the number of
elements in the array.

a[x+2] = 25;

b[3*x-y] = a[10-x] + 5;

Spring 2012 Programming and Data Structure 10

A Warning

• In C, while accessing array elements, array
bounds are not checked.

• Example:
int marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an
error.

– Rather, it may result in unpredictable program results.

Spring 2012 Programming and Data Structure 11

Initialization of Arrays
• General form:

type array_name[size] = { list of values };

• Examples:
int marks[5] = {72, 83, 65, 80, 76};
char name*4+ = ,‘A’, ‘m’, ‘i’, ‘t’-;

• Some special cases:
– If the number of values in the list is less than the

number of elements, the remaining elements are
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};
 total[0]=24.2, total[1]=-12.5, total[2]=35.1,

total[3]=0,
total[4]=0

Spring 2012 Programming and Data Structure 12

Contd.

– The size may be omitted. In such cases the
compiler automatically allocates enough space for
all initialized elements.

int flag[] = {1, 1, 1, 0};

char name*+ = ,‘A’, ‘m’, ‘i’, ‘t’-;

Spring 2012 Programming and Data Structure 13

Example 1: Find the minimum of a set of 10 numbers

Spring 2012 Programming and Data Structure 14

#include <stdio.h>

main()

{

int a[10], i, min;

printf(“Give 10 values \n”);

for (i=0; i<10; i++)

scanf (“%d”, &a[i]);

min = 99999;

for (i=0; i<10; i++)

{

if (a[i] < min)

min = a[i];

}

printf (“\n Minimum is %d”, min);

}

Array

declaration

Accessing

Array Element

Reading

Array Element

Spring 2012 Programming and Data Structure 15

#include <stdio.h>

#define size 10

main()

{

int a[size], i, min;

printf(“Give 10 values \n”);

for (i=0; i<size; i++)

scanf (“%d”, &a[i]);

min = 99999;

for (i=0; i<size; i++)

{

if (a[i] < min)

min = a[i];

}

printf (“\n Minimum is %d”, min);

}

Alternate

Version 1

Change only one

line to change the

problem size

Spring 2012 Programming and Data Structure 16

#include <stdio.h>

main()

{

int a[100], i, min, n;

printf(“Give number of elements (n) \n”);

scanf (“%d”, &n); /* Number of elements */

printf(“Input all n integers \n”);

for (i=0; i<n; i++)

scanf (“%d”, &a[i]);

min = 99999;

for (i=0; i<n; i++)

{

if (a[i] < min)

min = a[i];

}

printf (“\n Minimum is %d”, min);

}

Alternate

Version 2

Define an array of

large size and use

only the required

number of elements

Example 2:
Computing gpa

Spring 2012 Programming and Data Structure 17

#include <stdio.h>

#define nsub 6

main()

{

int grade_pt[nsub], cred[nsub], i,

gp_sum=0, cred_sum=0, gpa;

printf(“Input gr. points and credits for six subjects \n”);

for (i=0; i<nsub; i++)

scanf (“%d %d”, &grade_pt[i], &cred[i]);

for (i=0; i<nsub; i++)

{

gp_sum += grade_pt[i] * cred[i];

cred_sum += cred[i];

}

gpa = gp_sum / cred_sum;

printf (“\n Grade point average: is %d”, gpa);

}

Handling two arrays

at the same time

Things you cannot do

• You cannot

– use = to assign one array variable to another

a = b; /* a and b are arrays */

– use == to directly compare array variables

if (a = = b) ………..

– directly scanf or printf arrays

printf (“……”, a);

Spring 2012 Programming and Data Structure 18

How to copy the elements of one array to another?

• By copying individual elements

int a[25],b[25];

for (j=0; j<25; j++)

a[j] = b[j];

Spring 2012 Programming and Data Structure 19

How to read the elements of an array?

• By reading them one element at a time

int a[25];

for (j=0; j<25; j++)

scanf (“%f”, &a*j+);

• The ampersand (&) is necessary.

• The elements can be entered all in one line or
in different lines.

Spring 2012 Programming and Data Structure 20

How to print the elements of an array?

• By printing them one element at a time.
for (j=0; j<25; j++)

printf (“\n %f”, a*j+);

– The elements are printed one per line.

printf (“\n”);

for (j=0; j<25; j++)

printf (“ %f”, a*j+);

– The elements are printed all in one line (starting
with a new line).

Spring 2012 Programming and Data Structure 21

Example: Matrix Addition

Spring 2012 Programming and Data Structure 22

#include <stdio.h>

main()

{

int a[100][100], b[100][100],

c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)

for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)

for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for (p=0; p<m; p++)

for (q=0; q<n; q++)

c[p]q] = a[p][q] + b[p][q];

for (p=0; p<m; p++)

{

printf (“\n”);

for (q=0; q<n; q++)

printf (“%f ”, a[p][q]);

}

}

Passing Arrays to a Function
• An array name can be used as an argument to a function.

– Permits the entire array to be passed to the function.

– Array name is passed as the parameter, which is effectively the
address of the first element.

• Rules:
– The array name must appear by itself as argument, without

brackets or subscripts.

– The corresponding formal argument is written in the same
manner.

• Declared by writing the array name with a pair of empty brackets.

• Dimension or required number of elements to be passed as

a separate parameter.

Spring 2012 Programming and Data Structure 23

Example: Average of numbers

Spring 2012 Programming and Data Structure 24

#include <stdio.h>

float avg(float [], int);

main()

{

float a[]={4.0, 5.0, 6.0, 7.0};

printf("%f \n", avg(a,4));

}

float avg (float x[], int n)

{

float sum=0;

int i;

for(i=0; i<n; i++)

sum+=x[i];

return(sum/(float) n);

}

5.5000

prototype

Array name passed

Array as parameter

Number of

Elements used

The Actual Mechanism

• When an array is passed to a function, the
values of the array elements are not passed to
the function.
– The array name is interpreted as the address of the

first array element.

– The formal argument therefore becomes a pointer
to the first array element.

– When an array element is accessed inside the
function, the address is calculated using the
formula stated before.

– Changes made inside the function are thus also
reflected in the calling program.

Spring 2012 Programming and Data Structure 26

Contd.

• Passing parameters in this way is called

call-by-reference.

• Normally parameters are passed in C using

call-by-value.

• Basically what it means?
– If a function changes the values of array elements,

then these changes will be made to the original array
that is passed to the function.

– This does not apply when an individual element is
passed on as argument.

Spring 2012 Programming and Data Structure 27

Example: Minimum of a set of
numbers

Spring 2012 Programming and Data Structure 28

#include <stdio.h>

main()

{

int a[100], i, n;

scanf (“%d”, &n);

for (i=0; i<n; i++)

scanf (“%d”, &a[i]);

printf (“\n Minimum is %d”,

minimum (a, n));

}

int minimum (x, size)

int x[], size;

{

int i, min = 99999;

for (i=0; i<size; i++)

if (min < a[i])

min = a[i];

return (min);

}

Some Exercise Problems to Try Out

• Find the mean and standard deviation of a set
of n numbers.

• A shop stores n different types of items. Given
the number of items of each type sold during
a given month, and the corresponding unit
prices, compute the total monthly sales.

Spring 2012 Programming and Data Structure 29

