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Introduction

• Function
– A self-contained program segment that carries out 

some specific, well-defined task.

• Some properties:
– Every C program consists of one or more 

functions.
• One of these functions must be called “main”.

• Execution of the program always begins by carrying out 
the instructions in “main”.

– A function will carry out its intended action 
whenever it is called or invoked.
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– In general, a function will process information that 
is passed to it from the calling portion of the 
program, and returns a single value.

• Information is passed to the function via special 
identifiers called arguments or parameters.

• The value is returned by the “return” statement.

– Some function may not return anything.

• Return data type specified as “void”.

Spring Semester 2012 Programming and Data Structure 3



#include  <stdio.h>

int  factorial (int m)

{

int i, temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

int  n;

for  (n=1; n<=10; n++)

printf (“%d! = %d \n”,

n, factorial (n) );

}
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Functions: Why?

• Functions
– Modularize a program
– All variables declared inside functions are local variables

• Known only in function defined

– Parameters
• Communicate information between functions
• They also become local variables.

• Benefits
– Divide and conquer

• Manageable program development

– Software reusability
• Use existing functions as building blocks for new programs
• Abstraction - hide internal details (library functions)

– Avoids code repetition
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Defining a Function

• A function definition has two parts:

– The first line.

– The body of the function.

return-value-type  function-name  ( parameter-list )
{

declarations and statements
}
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• The first line contains the return-value-type, the function 
name, and optionally a set of comma-separated arguments 
enclosed in parentheses.
– Each argument has an associated type declaration.

– The arguments are called formal arguments or formal parameters.

• Example:
int  gcd  (int  A,  int  B)

• The argument data types can also be declared on the next line:

int  gcd  (A, B)

int  A, B;
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• The body of the function is actually a 
compound statement that defines the 
action to be taken by the function.

int  gcd  (int A, int B)
{

int  temp;
while ((B % A) != 0)  {

temp = B % A;
B = A;
A = temp;

}
return (A);

}
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• When a function is called from some other 
function, the corresponding arguments in the 
function call are called actual arguments or actual 
parameters.
– The formal and actual arguments must match in their 

data types.

• Point to note:
– The identifiers used as formal arguments are “local”.

• Not recognized outside the function.

• Names of formal and actual arguments may differ.
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#include  <stdio.h>

/* Compute the GCD of four numbers */

main()

{

int  n1, n2, n3, n4, result;

scanf (“%d %d %d %d”, &n1, &n2, &n3, &n4);

result  =  gcd ( gcd (n1, n2), gcd (n3, n4) );

printf (“The GCD of %d, %d, %d and %d is %d \n”,

n1, n2, n3, n4, result);

}
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Function Not Returning Any Value

• Example: A function which only prints if a 
number if divisible by 7 or not.

void  div7 (int n)

{

if  ((n % 7) == 0)

printf (“%d is divisible by 7”, n);

else

printf (“%d is not divisible by 7”, n);

return;

}
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• Returning control

– If nothing returned 
• return;

• or, until reaches right brace

– If something returned 
• return expression;

Spring Semester 2012 Programming and Data Structure 12



Function: An Example
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#include <stdio.h>

int square(int x)

{

int y;

y=x*x;

return(y);

}

void main()

{

int a,b,sum_sq;

printf(“Give a and b \n”);

scanf(“%d%d”,&a,&b);

sum_sq=square(a)+square(b);

printf(“Sum of squares= %d \n”,sum_sq);

} 

Function declaration

Name of function

parameter

Return data-type

Functions called 

Parameters Passed



Invoking a function call : An Example
• #include <stdio.h>

• int square(int x)
• {
• int y;
•

• y=x*x;
• return(y);
• }

• void main()
• {
• int a,b,sum_sq;

• printf(“Give a and b \n”);
• scanf(“%d%d”,&a,&b);

• sum_sq=square(a)+square(b);

• printf(“Sum of squares= %d \n”,sum_sq);
• } 
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Assume value of a is 10

10a

x 10

*

y 100

returns



Function Definitions 

• Function definition format (continued)
return-value-type  function-name( parameter-list )

{
declarations and statements

}

– Declarations and statements: function body (block)

• Variables can be declared inside blocks (can be nested)
• Function can not be defined inside another function

– Returning control

• If nothing returned 
– return;

– or, until reaches right brace

• If something returned 
– return expression;
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An example of a function

int sum_of_digits(int n)
{

int sum=0;

while (n != 0)  {
sum = sum + (n % 10);
n = n / 10;
}

return(sum);
}
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Function name

Return

datatype

Parameter

ListLocal

variable

Expression
Return

statement



Variable 
Scope
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• int A;

• void main()
• { A = 1;

• myProc();

• printf ( "A = %d\n", A);

• }

• void myProc()

• {    int A = 2;

• while( A==2 )

• {

• int A = 3;

• printf ( "A = %d\n", A);

• break;

• }

• printf ( "A = %d\n", A);

• }

• . . .

Printout:

--------------

A = 3

A = 2

A = 1



Function: Summary
#include  <stdio.h>

int factorial (int m)

{

int i, temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

int  n;

for  (n=1; n<=10; n++)

printf (“%d! = %d \n”, n, 
factorial (n) );

}
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Self contained programme

main()

is a function

Calling a function

Returned data-type

Function name

parameter

Return statement

Local vars



Some Points

• A function cannot be defined within another 
function.

– All function definitions must be disjoint.

• Nested function calls are allowed.

– A calls B, B calls C, C calls D, etc.

– The function called last will be the first to return.

• A function can also call itself, either directly or 
in a cycle.

– A calls B, B calls C, C calls back A.

– Called recursive call or recursion.
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Math Library Functions

• Math library functions 
– perform common mathematical calculations

– #include <math.h>

– cc <prog.c> -lm

• Format for calling functions
FunctionName (argument);

• If multiple arguments, use comma-separated list

– printf( "%.2f", sqrt( 900.0 ) );

• Calls function sqrt, which returns the square root of its argument

• All math functions return data type double

– Arguments may be constants, variables, or expressions
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Math Library Functions

• double acos(double x) -- Compute arc cosine of x.   
• double asin(double x) -- Compute arc sine of x. 
• double atan(double x) -- Compute arc tangent of x.
• double atan2(double y, double x) -- Compute arc tangent of y/x. 
• double ceil(double x) -- Get smallest integral value that exceeds x.

double floor(double x) -- Get largest integral value less than x. 
• double cos(double x) -- Compute cosine of angle in radians. 

double cosh(double x) -- Compute the hyperbolic cosine of x.
double sin(double x) -- Compute sine of angle in radians. 
double sinh(double x) - Compute the hyperbolic sine of x. 
double tan(double x) -- Compute tangent of angle in radians. 
double tanh(double x) -- Compute the hyperbolic tangent of x. 

• double exp(double x -- Compute exponential of x 
double fabs (double x ) -- Compute absolute value of x. 
double log(double x) -- Compute log(x). 
double log10 (double x ) -- Compute log to the base 10 of x. 
double pow (double x, double y) -- Compute x raised to the power y. 
double sqrt(double x) -- Compute the square root of x. 

http://www.cs.cf.ac.uk/Dave/C/node17.html#SECTION001710000000000000000
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More about scanf and printf
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Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically 
containing data types of the arguments to be read 
in; 

– the arguments arg1, arg2, … represent pointers to 
data items in memory.

Example:  scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of characters, 
with one character group for each input data item.

– ‘%’ sign, followed by a conversion character.
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– Commonly used conversion characters:

c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a 
data item, by specifying a number indicating the 
field width before the conversion character.

Example:    scanf (“%3d %5d”, &a, &b);
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Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing 
formatting information and data types of the 
arguments to be output; 

– the arguments arg1, arg2, … represent the 
individual output data items.

• The conversion characters are the same as in 
scanf.
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• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f  %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.
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Function Prototypes

• Usually, a function is defined before it is called.

– main() is the last function in the program.

– Easy for the compiler to identify function 
definitions in a single scan through the file.

• However, many programmers prefer a top-
down approach, where the functions follow 
main().

– Must be some way to tell the compiler.

– Function prototypes are used for this purpose.

• Only needed if function definition comes after use.
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Function Prototype (Contd.)

– Function prototypes are usually written at the 
beginning of a program, ahead of any functions 
(including main()).

– Examples:
int  gcd (int A, int B);

void div7 (int number);

• Note the semicolon at the end of the line.

• The argument names can be different; but it is a good 
practice to use the same names as in the function 
definition.
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Function Prototype: Examples

#include  <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{

int i, m, n, sum=0;
printf(“Input m and n \n”);

scanf (“%d %d”, &m, &n);

for (i=1; i<=m; i+=2)
sum = sum + ncr (n, i);

printf (“Result: %d \n”, sum);
}

int  ncr (int n, int r)
{

return (fact(n) / fact(r) / fact(n-r));
}

int  fact (int n)
{

int  i, temp=1;
for (i=1; i<=n; i++)

temp *= I;
return (temp);

}
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Header Files

• Header files
– contain function prototypes for library functions

– <stdlib.h> , <math.h> , etc

– Load with 

#include <filename>

– #include <math.h>

• Custom header files
– Create file with functions 

– Save as filename.h

– Load in other files with #include "filename.h"

– Reuse functions
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/* Finding the maximum of three integers */

#include <stdio.h>

int maximum( int, int, int );   /* function prototype */

int main()

{

int a, b, c;

printf( "Enter three integers: " );

scanf( "%d%d%d", &a, &b, &c );

printf( "Maximum is: %d\n", maximum( a, b, c ) );

return 0;

}

/* Function maximum definition */

int maximum( int x, int y, int z )

{

int max = x;

if ( y > max )

max = y;

if ( z > max )

max = z;

return max;

}

Function

Definition

Function

Calling

Prototype

Declaration



Calling Functions: Call by Value and Call by Reference

• Used when invoking functions

• Call by value
– Copy of argument passed to function

– Changes in function do not effect original

– Use when function does not need to modify argument

• Avoids accidental changes

• Call by reference 
– Passes original argument

– Changes in function effect original

– Only used with trusted functions

• For now, we focus on call by value
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An Example: Random Number Generation

• rand function
– Prototype defined in  <stdlib.h>
– Returns "random" number between 0 and RAND_MAX (at least 

32767)
i = rand();

– Pseudorandom
• Preset sequence of "random" numbers
• Same sequence for every function call

• Scaling
– To get a random number between 1 and n
1 + ( rand() % n )

• rand % n returns a number between 0 and n-1
• Add 1 to make random number between 1 and n
1 + ( rand() % 6)   // number between 1 and 6
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Random Number Generation: Contd.

• srand function
– Prototype defined in <stdlib.h>

– Takes an integer seed - jumps to location in 
"random" sequence

srand( seed );
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1 /* A programming example

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 int main()

7 {

8 int i;

9 unsigned seed;

10

11 printf( "Enter seed: " );

12 scanf( "%u", &seed );

13 srand( seed );

14

15 for ( i = 1; i <= 10; i++ ) {

16 printf( "%10d ", 1 + ( rand() % 6 ) );

17

18 if ( i % 5 == 0 )

19 printf( "\n" );

20 }

21

22 return 0;

23 }

Algorithm

1.  Initialize seed

2.  Input value for seed

2.1  Use srand to change random sequence

2.2  Define Loop 

3.  Generate and output random numbers



Program Output
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Enter seed: 867

2         4         6         1         6

1         1         3         6         2 

Enter seed: 67

6         1         4         6         2

1         6         1         6         4

Enter seed: 67

6         1         4         6         2

1         6         1         6         4 



#include: Revisited

• Preprocessor statement in the following form

#include “filename”

• Filename could be specified with complete

path.

#include “/usr/home/rajan/myfile.h”

• The content of the corresponding file will be

included in the present file before compilation and the 
compiler will compile thereafter considering the content 
as it is.
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#include: Contd.
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#include “myfile.h”

main()

{

printf(“Give value of x \n”);

scanf(“%d”,&x);

printf(“Square of x=%d \n”,x*x);

}

#include <stdio.h>

int x;

#include <stdio.h>

int x;

main()

{

printf(“Give value of x \n)”;

scanf(“%d”,&x);

printf(“Square of x=%d \n”,x*x);

}

prog.c

myfile.h

#include <filename.h>

It includes the file “filename.h” from a

specific directory known as include directory.

/usr/include/filename.h



#define: Macro definition

• Preprocessor directive in the following form

#define string1 string2

• Replaces the string1 by string2 wherever it 
occurs before compilation, e.g.

#define PI 3.14
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#include <stdio.h>

#define PI 3.14

main()

{

float r=4.0,area;

area=PI*r*r;

}

#include <stdio.h>

main()

{

float r=4.0,area;

area=3.14*r*r;

}



#define with argument

• #define statement may be used with 
argument e.g.

#define sqr(x)  ((x)*(x))
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#include <stdio.h>

#define sqr(x) ((x)*(x))

main()

{

int y=5;

printf(“value=%d \n”, sqr(y)+3);

}

#include <stdio.h>

main()

{

int y=5;

printf(“value=%d \n”, ((y)*(y))+3);

}

Which one 

is faster to 

execute?
sqr(x) written

as macro definition?

sqr(x) written

as an ordinary function?



#define with arguments: A Caution

• #define   sqr(x)   x*x

– How macro substitution will be carried out?

r = sqr(a) + sqr(30);    r = a*a + 30*30;

r = sqr(a+b);                r = a+b*a+b;

– The macro definition should have been written 
as:

#define  sqr(x)  (x)*(x)

r = (a+b)*(a+b);
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Recursion

• A process by which a function calls itself 
repeatedly.

– Either directly.

• X calls X.

– Or cyclically in a chain.

• X calls Y, and Y calls X.

• Used for repetitive computations in which each 
action is stated in terms of a previous result.

– fact(n) = n * fact (n-1)
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Contd.

• For a problem to be written in recursive form, 
two conditions are to be satisfied:

– It should be possible to express the problem in 
recursive form.

– The problem statement must include a stopping 
condition

fact(n)  =  1,                      if  n = 0

=  n * fact(n-1),   if  n > 0
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• Examples:
– Factorial:

fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

– GCD:
gcd (m, m) = m
gcd (m, n) = gcd (m-n, n), if m > n
gcd (m, n) = gcd (n, n-m), if m < n

– Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1
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Example 1 :: Factorial
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long  int  fact (n)

int  n;

{

if   (n = = 0)

return (1);

else

return  (n * fact(n-1));

} 



Mechanism of Execution

• When a recursive program is executed, the 
recursive function calls are not executed 
immediately.

– They are kept aside (on a stack) until the stopping 
condition is encountered.

– The function calls are then executed in reverse 
order.
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Example :: Calculating fact(4)

– First, the function calls will be processed:
fact(4) = 4 * fact(3)

fact(3) = 3 * fact(2)

fact(2) = 2 * fact(1)

fact(1) = 1 * fact(0)

– The actual values return in the reverse order:
fact(0) = 1

fact(1) = 1 * 1 = 1

fact(2) = 2 * 1 = 2

fact(3) = 3 * 2 = 6

fact(4) = 4 * 6 = 24
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Another Example :: Fibonacci number

• Fibonacci number f(n) can be defined as:

f(0)  =  0

f(1)  =  1

f(n)  =  f(n-1) + f(n-2),   if  n > 1

– The successive Fibonacci numbers are:

0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:
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int   f (int n)

{

if  (n  < 2)   return (n);

else  return (f(n-1) + f(n-2));

}



Tracing Execution

• How many times the 
function is called when 
evaluating f(4) ?

• Inefficiency:
– Same thing is computed 

several times.
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f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

9 times



Example Codes: fibonacci()

– Code for the fibonacci function
long fibonacci( long n )

{

if (n == 0 || n == 1)  // base case

return n;

else

return fibonacci( n - 1) +
fibonacci( n – 2 );

}
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Performance Tip 

• Avoid Fibonacci-style recursive 
programs which result in an 
exponential “explosion” of calls.
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Example: Towers of Hanoi Problem
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5

4

3

2
1

LEFT CENTER RIGHT



• The problem statement:

– Initially all the disks are stacked on the LEFT pole.

– Required to transfer all the disks to the RIGHT 
pole.

• Only one disk can be moved at a time.

• A larger disk cannot be placed on a smaller disk.
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• Recursive statement of the general problem of 
n disks.

– Step 1: 

• Move the top (n-1) disks from LEFT to CENTER.

– Step 2: 

• Move the largest disk from LEFT to RIGHT.

– Step 3: 

• Move the (n-1) disks from CENTER to RIGHT.
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#include  <stdio.h>

void  transfer (int n, char from, char to, char temp);

main()
{

int  n;  /* Number of disks */
scanf (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);

}

void  transfer (int n, char from, char to, char temp)
{

if  (n > 0)  {
transfer  (n-1, from, temp,to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}
return;

}
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Recursion vs. Iteration
• Repetition

– Iteration:  explicit loop

– Recursion:  repeated function calls

• Termination
– Iteration: loop condition fails

– Recursion: base case recognized

• Both can have infinite loops

• Balance 
– Choice between performance (iteration) and good 

software engineering (recursion)
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Performance Tip 

• Avoid using recursion in performance 
situations. Recursive calls take time 
and consume additional memory.

Spring Semester 2012 Programming and Data Structure 66



How are function calls implemented?

• In general, during program execution
– The system maintains a stack in memory.

• Stack is a last-in first-out structure.

• Two operations on stack, push and pop.

– Whenever there is a function call, the activation 
record gets pushed into the stack.

• Activation record consists of the return address in the 
calling program, the return value from the function, 
and the local variables inside the function.

– At the end of  function call, the corresponding 
activation record gets popped out of the stack.
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main()

{

……..

x = gcd (a, b);

……..

}

int gcd (int x, int y)

{

……..

……..

return (result);

}

Return Addr

Return Value

Local 

Variables

Before call After call After return

S
T
A

C
K
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main()

{

……..

x = ncr (a, b);

……..

}

int ncr (int n, int r)

{

return (fact(n)/

fact(r)/fact(n-r));

}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)

{

………

return (result);

}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr



What happens for recursive calls?
• What we have seen ….

– Activation record gets pushed into the stack when 
a function call is made.

– Activation record is popped off the stack when the 
function returns.

• In recursion, a function calls itself.
– Several function calls going on, with none of the 

function calls returning back.
• Activation records are pushed onto the stack 

continuously.
• Large stack space required.
• Activation records keep popping off, when the 

termination condition of recursion is reached.
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• We shall illustrate the process by an example 
of computing factorial.

– Activation record looks like:
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Return Addr

Return Value

Local 

Variables



Example:: main() calls fact(3)
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int  fact (int n)

{

if   (n = = 0)

return (1);

else

return  (n * fact(n-1));

} 

main()

{

int  n;

n = 4;

printf (“%d \n”, fact(n) );

}
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RA .. main

-

n = 3

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n = 1

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n = 1

RA .. fact

1

n = 0

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

1*1 = 1

n = 1

RA .. main

-

n = 3

RA .. fact

2*1 = 2

n = 2

RA .. main

3*2 = 6

n = 3

TRACE OF THE STACK DURING EXECUTION

main 

calls 

fact

fact 

returns 

to main



Do Yourself
• Trace the activation records for the following version of Fibonacci 

sequence.
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#include <stdio.h>

int   f (int n)

{

int a, b;

if  (n  < 2)   return (n);

else  {

a = f(n-1);

b = f(n-2);

return (a+b);  }

}

main() {

printf(“Fib(4) is: %d \n”, f(4));

}

Return Addr

(either main, 

or X, or Y)

Return Value

Local 

Variables

(n, a, b)

X

Y

main



Storage Class of Variables
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What is Storage Class?

• It refers to the permanence of a variable, and 
its scope within a program.

• Four storage class specifications in C:

– Automatic:  auto

– External:  extern

– Static:  static

– Register:  register

Spring Semester 2012 Programming and Data Structure 76



Automatic Variables

• These are always declared within a function and 
are local to the function in which they are 
declared.
– Scope is confined to that function.

• This is the default storage class specification.
– All variables are considered as auto unless 

explicitly specified otherwise.

– The keyword auto is optional.

– An automatic variable does not retain its value once 
control is transferred out of its defining function.
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#include <stdio.h>

int factorial(int m)

{

auto int i;

auto int temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

auto int  n;

for (n=1; n<=10; n++)

printf (“%d! = %d \n”, 

n, factorial (n));

}



Static Variables
• Static variables are defined within individual functions and have the 

same scope as automatic variables.

• Unlike automatic variables, static variables retain their values 
throughout the life of the program.

– If a function is exited and re-entered at a later time, the 
static variables defined within that function will retain 
their previous values.

– Initial values can be included in the static variable 
declaration.

• Will be initialized only once.

• An example of using static variable:
– Count number of times a function is called.
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#include <stdio.h>

int factorial (int n)

{

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main()

{

int i=6;

printf (“Value is: %d \n”, factorial(i));

}

EXAMPLE 1



• Program output:
n=6, count=1

n=5, count=2

n=4, count=3

n=3, count=4

n=2, count=5

n=1, count=6

n=0, count=7

Value is: 720
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#include <stdio.h>

int fib (int n)

{

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n < 2) return n;

else return (fib(n-1) + fib(n-2));

}

main()

{

int i=4;

printf (“Value is: %d \n”, fib(i));

}

EXAMPLE 2



• Program output:

n=4, count=1

n=3, count=2

n=2, count=3

n=1, count=4

n=0, count=5

n=1, count=6

n=2, count=7

n=1, count=8

n=0, count=9

Value is: 3      [0,1,1,2,3,5,8,….]
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f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)



Register Variables

• These variables are stored in high-speed 
registers within the CPU.

– Commonly used variables may be declared as 
register variables.

– Results in increase in execution speed.

– The allocation is done by the compiler.
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External Variables

• They are not confined to single functions.

• Their scope extends from the point of 
definition through the remainder of the 
program.
– They may span more than one functions.

– Also called global variables.

• Alternate way of declaring global variables.
– Declare them outside the function, at the 

beginning.
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#include <stdio.h>

int count=0;   /** GLOBAL VARIABLE **/

int factorial (int n)

{

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main()  {

int i=6;

printf (“Value is: %d \n”, factorial(i));

printf (“Count is: %d \n”, count);

}



• Program output:
n=6, count=1

n=5, count=2

n=4, count=3

n=3, count=4

n=2, count=5

n=1, count=6

n=0, count=7

Value is: 720

Count is: 7
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