
Functions

Courtsey: University of Pittsburgh-CSD-KhalifaSpring Semester 2012 Programming and Data Structure 1

Introduction

• Function
– A self-contained program segment that carries out

some specific, well-defined task.

• Some properties:
– Every C program consists of one or more

functions.
• One of these functions must be called “main”.

• Execution of the program always begins by carrying out
the instructions in “main”.

– A function will carry out its intended action
whenever it is called or invoked.

Spring Semester 2012 Programming and Data Structure 2

– In general, a function will process information that
is passed to it from the calling portion of the
program, and returns a single value.

• Information is passed to the function via special
identifiers called arguments or parameters.

• The value is returned by the “return” statement.

– Some function may not return anything.

• Return data type specified as “void”.

Spring Semester 2012 Programming and Data Structure 3

#include <stdio.h>

int factorial (int m)

{

int i, temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

int n;

for (n=1; n<=10; n++)

printf (“%d! = %d \n”,

n, factorial (n));

}

Spring Semester 2012 Programming and Data Structure 4

Functions: Why?

• Functions
– Modularize a program
– All variables declared inside functions are local variables

• Known only in function defined

– Parameters
• Communicate information between functions
• They also become local variables.

• Benefits
– Divide and conquer

• Manageable program development

– Software reusability
• Use existing functions as building blocks for new programs
• Abstraction - hide internal details (library functions)

– Avoids code repetition

Spring Semester 2012 Programming and Data Structure 5

Defining a Function

• A function definition has two parts:

– The first line.

– The body of the function.

return-value-type function-name (parameter-list)
{

declarations and statements
}

Spring Semester 2012 Programming and Data Structure 6

• The first line contains the return-value-type, the function
name, and optionally a set of comma-separated arguments
enclosed in parentheses.
– Each argument has an associated type declaration.

– The arguments are called formal arguments or formal parameters.

• Example:
int gcd (int A, int B)

• The argument data types can also be declared on the next line:

int gcd (A, B)

int A, B;

Spring Semester 2012 Programming and Data Structure 7

• The body of the function is actually a
compound statement that defines the
action to be taken by the function.

int gcd (int A, int B)
{

int temp;
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
return (A);

}

Spring Semester 2012 Programming and Data Structure 8

BODY

• When a function is called from some other
function, the corresponding arguments in the
function call are called actual arguments or actual
parameters.
– The formal and actual arguments must match in their

data types.

• Point to note:
– The identifiers used as formal arguments are “local”.

• Not recognized outside the function.

• Names of formal and actual arguments may differ.

Spring Semester 2012 Programming and Data Structure 9

#include <stdio.h>

/* Compute the GCD of four numbers */

main()

{

int n1, n2, n3, n4, result;

scanf (“%d %d %d %d”, &n1, &n2, &n3, &n4);

result = gcd (gcd (n1, n2), gcd (n3, n4));

printf (“The GCD of %d, %d, %d and %d is %d \n”,

n1, n2, n3, n4, result);

}

Spring Semester 2012 Programming and Data Structure 10

Function Not Returning Any Value

• Example: A function which only prints if a
number if divisible by 7 or not.

void div7 (int n)

{

if ((n % 7) == 0)

printf (“%d is divisible by 7”, n);

else

printf (“%d is not divisible by 7”, n);

return;

}

Spring Semester 2012 Programming and Data Structure 11

OPTIONAL

• Returning control

– If nothing returned
• return;

• or, until reaches right brace

– If something returned
• return expression;

Spring Semester 2012 Programming and Data Structure 12

Function: An Example

Spring Semester 2012 Programming and Data Structure 13

#include <stdio.h>

int square(int x)

{

int y;

y=x*x;

return(y);

}

void main()

{

int a,b,sum_sq;

printf(“Give a and b \n”);

scanf(“%d%d”,&a,&b);

sum_sq=square(a)+square(b);

printf(“Sum of squares= %d \n”,sum_sq);

}

Function declaration

Name of function

parameter

Return data-type

Functions called

Parameters Passed

Invoking a function call : An Example
• #include <stdio.h>

• int square(int x)
• {
• int y;
•

• y=x*x;
• return(y);
• }

• void main()
• {
• int a,b,sum_sq;

• printf(“Give a and b \n”);
• scanf(“%d%d”,&a,&b);

• sum_sq=square(a)+square(b);

• printf(“Sum of squares= %d \n”,sum_sq);
• }

Spring Semester 2012 Programming and Data Structure 14

Assume value of a is 10

10a

x 10

*

y 100

returns

Function Definitions

• Function definition format (continued)
return-value-type function-name(parameter-list)

{
declarations and statements

}

– Declarations and statements: function body (block)

• Variables can be declared inside blocks (can be nested)
• Function can not be defined inside another function

– Returning control

• If nothing returned
– return;

– or, until reaches right brace

• If something returned
– return expression;

Spring Semester 2012 Programming and Data Structure 15

An example of a function

int sum_of_digits(int n)
{

int sum=0;

while (n != 0) {
sum = sum + (n % 10);
n = n / 10;
}

return(sum);
}

Spring Semester 2012 Programming and Data Structure 16

Function name

Return

datatype

Parameter

ListLocal

variable

Expression
Return

statement

Variable
Scope

Spring Semester 2012 Programming and Data Structure 17

• int A;

• void main()
• { A = 1;

• myProc();

• printf ("A = %d\n", A);

• }

• void myProc()

• { int A = 2;

• while(A==2)

• {

• int A = 3;

• printf ("A = %d\n", A);

• break;

• }

• printf ("A = %d\n", A);

• }

• . . .

Printout:

A = 3

A = 2

A = 1

Function: Summary
#include <stdio.h>

int factorial (int m)

{

int i, temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

int n;

for (n=1; n<=10; n++)

printf (“%d! = %d \n”, n,
factorial (n));

}

Spring Semester 2012 Programming and Data Structure 18

Self contained programme

main()

is a function

Calling a function

Returned data-type

Function name

parameter

Return statement

Local vars

Some Points

• A function cannot be defined within another
function.

– All function definitions must be disjoint.

• Nested function calls are allowed.

– A calls B, B calls C, C calls D, etc.

– The function called last will be the first to return.

• A function can also call itself, either directly or
in a cycle.

– A calls B, B calls C, C calls back A.

– Called recursive call or recursion.

Spring Semester 2012 Programming and Data Structure 19

Math Library Functions

• Math library functions
– perform common mathematical calculations

– #include <math.h>

– cc <prog.c> -lm

• Format for calling functions
FunctionName (argument);

• If multiple arguments, use comma-separated list

– printf("%.2f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its argument

• All math functions return data type double

– Arguments may be constants, variables, or expressions

Spring Semester 2012 Programming and Data Structure 20

Math Library Functions

• double acos(double x) -- Compute arc cosine of x.
• double asin(double x) -- Compute arc sine of x.
• double atan(double x) -- Compute arc tangent of x.
• double atan2(double y, double x) -- Compute arc tangent of y/x.
• double ceil(double x) -- Get smallest integral value that exceeds x.

double floor(double x) -- Get largest integral value less than x.
• double cos(double x) -- Compute cosine of angle in radians.

double cosh(double x) -- Compute the hyperbolic cosine of x.
double sin(double x) -- Compute sine of angle in radians.
double sinh(double x) - Compute the hyperbolic sine of x.
double tan(double x) -- Compute tangent of angle in radians.
double tanh(double x) -- Compute the hyperbolic tangent of x.

• double exp(double x -- Compute exponential of x
double fabs (double x) -- Compute absolute value of x.
double log(double x) -- Compute log(x).
double log10 (double x) -- Compute log to the base 10 of x.
double pow (double x, double y) -- Compute x raised to the power y.
double sqrt(double x) -- Compute the square root of x.

http://www.cs.cf.ac.uk/Dave/C/node17.html#SECTION001710000000000000000

Spring Semester 2012 Programming and Data Structure 21

More about scanf and printf

Spring Semester 2012 Programming and Data Structure 22

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically
containing data types of the arguments to be read
in;

– the arguments arg1, arg2, … represent pointers to
data items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of characters,
with one character group for each input data item.

– ‘%’ sign, followed by a conversion character.

Spring Semester 2012 Programming and Data Structure 23

– Commonly used conversion characters:

c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a
data item, by specifying a number indicating the
field width before the conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Spring Semester 2012 Programming and Data Structure 24

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing
formatting information and data types of the
arguments to be output;

– the arguments arg1, arg2, … represent the
individual output data items.

• The conversion characters are the same as in
scanf.

Spring Semester 2012 Programming and Data Structure 25

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

Spring Semester 2012 Programming and Data Structure 26

Function Prototypes

• Usually, a function is defined before it is called.

– main() is the last function in the program.

– Easy for the compiler to identify function
definitions in a single scan through the file.

• However, many programmers prefer a top-
down approach, where the functions follow
main().

– Must be some way to tell the compiler.

– Function prototypes are used for this purpose.

• Only needed if function definition comes after use.

Spring Semester 2012 Programming and Data Structure 27

Function Prototype (Contd.)

– Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main()).

– Examples:
int gcd (int A, int B);

void div7 (int number);

• Note the semicolon at the end of the line.

• The argument names can be different; but it is a good
practice to use the same names as in the function
definition.

Spring Semester 2012 Programming and Data Structure 28

;

Function Prototype: Examples

#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{

int i, m, n, sum=0;
printf(“Input m and n \n”);

scanf (“%d %d”, &m, &n);

for (i=1; i<=m; i+=2)
sum = sum + ncr (n, i);

printf (“Result: %d \n”, sum);
}

int ncr (int n, int r)
{

return (fact(n) / fact(r) / fact(n-r));
}

int fact (int n)
{

int i, temp=1;
for (i=1; i<=n; i++)

temp *= I;
return (temp);

}

Spring Semester 2012 Programming and Data Structure 29

Prototype

declaration
Function

definition

Header Files

• Header files
– contain function prototypes for library functions

– <stdlib.h> , <math.h> , etc

– Load with

#include <filename>

– #include <math.h>

• Custom header files
– Create file with functions

– Save as filename.h

– Load in other files with #include "filename.h"

– Reuse functions

Spring Semester 2012 Programming and Data Structure 30

Spring Semester 2012 Programming and Data Structure 31

/* Finding the maximum of three integers */

#include <stdio.h>

int maximum(int, int, int); /* function prototype */

int main()

{

int a, b, c;

printf("Enter three integers: ");

scanf("%d%d%d", &a, &b, &c);

printf("Maximum is: %d\n", maximum(a, b, c));

return 0;

}

/* Function maximum definition */

int maximum(int x, int y, int z)

{

int max = x;

if (y > max)

max = y;

if (z > max)

max = z;

return max;

}

Function

Definition

Function

Calling

Prototype

Declaration

Calling Functions: Call by Value and Call by Reference

• Used when invoking functions

• Call by value
– Copy of argument passed to function

– Changes in function do not effect original

– Use when function does not need to modify argument

• Avoids accidental changes

• Call by reference
– Passes original argument

– Changes in function effect original

– Only used with trusted functions

• For now, we focus on call by value

Spring Semester 2012 Programming and Data Structure 32

An Example: Random Number Generation

• rand function
– Prototype defined in <stdlib.h>
– Returns "random" number between 0 and RAND_MAX (at least

32767)
i = rand();

– Pseudorandom
• Preset sequence of "random" numbers
• Same sequence for every function call

• Scaling
– To get a random number between 1 and n
1 + (rand() % n)

• rand % n returns a number between 0 and n-1
• Add 1 to make random number between 1 and n
1 + (rand() % 6) // number between 1 and 6

Spring Semester 2012 Programming and Data Structure 33

Random Number Generation: Contd.

• srand function
– Prototype defined in <stdlib.h>

– Takes an integer seed - jumps to location in
"random" sequence

srand(seed);

Spring Semester 2012 Programming and Data Structure 34

Spring Semester 2012 Programming and Data Structure 35

1 /* A programming example

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 int main()

7 {

8 int i;

9 unsigned seed;

10

11 printf("Enter seed: ");

12 scanf("%u", &seed);

13 srand(seed);

14

15 for (i = 1; i <= 10; i++) {

16 printf("%10d ", 1 + (rand() % 6));

17

18 if (i % 5 == 0)

19 printf("\n");

20 }

21

22 return 0;

23 }

Algorithm

1. Initialize seed

2. Input value for seed

2.1 Use srand to change random sequence

2.2 Define Loop

3. Generate and output random numbers

Program Output

Spring Semester 2012 Programming and Data Structure 36

Enter seed: 867

2 4 6 1 6

1 1 3 6 2

Enter seed: 67

6 1 4 6 2

1 6 1 6 4

Enter seed: 67

6 1 4 6 2

1 6 1 6 4

#include: Revisited

• Preprocessor statement in the following form

#include “filename”

• Filename could be specified with complete

path.

#include “/usr/home/rajan/myfile.h”

• The content of the corresponding file will be

included in the present file before compilation and the
compiler will compile thereafter considering the content
as it is.

Spring Semester 2012 Programming and Data Structure 37

#include: Contd.

Spring Semester 2012 Programming and Data Structure 38

#include “myfile.h”

main()

{

printf(“Give value of x \n”);

scanf(“%d”,&x);

printf(“Square of x=%d \n”,x*x);

}

#include <stdio.h>

int x;

#include <stdio.h>

int x;

main()

{

printf(“Give value of x \n)”;

scanf(“%d”,&x);

printf(“Square of x=%d \n”,x*x);

}

prog.c

myfile.h

#include <filename.h>

It includes the file “filename.h” from a

specific directory known as include directory.

/usr/include/filename.h

#define: Macro definition

• Preprocessor directive in the following form

#define string1 string2

• Replaces the string1 by string2 wherever it
occurs before compilation, e.g.

#define PI 3.14

Spring Semester 2012 Programming and Data Structure 39

#include <stdio.h>

#define PI 3.14

main()

{

float r=4.0,area;

area=PI*r*r;

}

#include <stdio.h>

main()

{

float r=4.0,area;

area=3.14*r*r;

}

#define with argument

• #define statement may be used with
argument e.g.

#define sqr(x) ((x)*(x))

Spring Semester 2012 Programming and Data Structure 40

#include <stdio.h>

#define sqr(x) ((x)*(x))

main()

{

int y=5;

printf(“value=%d \n”, sqr(y)+3);

}

#include <stdio.h>

main()

{

int y=5;

printf(“value=%d \n”, ((y)*(y))+3);

}

Which one

is faster to

execute?
sqr(x) written

as macro definition?

sqr(x) written

as an ordinary function?

#define with arguments: A Caution

• #define sqr(x) x*x

– How macro substitution will be carried out?

r = sqr(a) + sqr(30); r = a*a + 30*30;

r = sqr(a+b); r = a+b*a+b;

– The macro definition should have been written
as:

#define sqr(x) (x)*(x)

r = (a+b)*(a+b);

Spring Semester 2012 Programming and Data Structure 41

WRONG?

Recursion

• A process by which a function calls itself
repeatedly.

– Either directly.

• X calls X.

– Or cyclically in a chain.

• X calls Y, and Y calls X.

• Used for repetitive computations in which each
action is stated in terms of a previous result.

– fact(n) = n * fact (n-1)

Spring Semester 2012 Programming and Data Structure 42

Contd.

• For a problem to be written in recursive form,
two conditions are to be satisfied:

– It should be possible to express the problem in
recursive form.

– The problem statement must include a stopping
condition

fact(n) = 1, if n = 0

= n * fact(n-1), if n > 0

Spring Semester 2012 Programming and Data Structure 43

• Examples:
– Factorial:

fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

– GCD:
gcd (m, m) = m
gcd (m, n) = gcd (m-n, n), if m > n
gcd (m, n) = gcd (n, n-m), if m < n

– Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1

Spring Semester 2012 Programming and Data Structure 44

Example 1 :: Factorial

Spring Semester 2012 Programming and Data Structure 45

long int fact (n)

int n;

{

if (n = = 0)

return (1);

else

return (n * fact(n-1));

}

Mechanism of Execution

• When a recursive program is executed, the
recursive function calls are not executed
immediately.

– They are kept aside (on a stack) until the stopping
condition is encountered.

– The function calls are then executed in reverse
order.

Spring Semester 2012 Programming and Data Structure 46

Example :: Calculating fact(4)

– First, the function calls will be processed:
fact(4) = 4 * fact(3)

fact(3) = 3 * fact(2)

fact(2) = 2 * fact(1)

fact(1) = 1 * fact(0)

– The actual values return in the reverse order:
fact(0) = 1

fact(1) = 1 * 1 = 1

fact(2) = 2 * 1 = 2

fact(3) = 3 * 2 = 6

fact(4) = 4 * 6 = 24

Spring Semester 2012 Programming and Data Structure 47

Another Example :: Fibonacci number

• Fibonacci number f(n) can be defined as:

f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2), if n > 1

– The successive Fibonacci numbers are:

0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:

Spring Semester 2012 Programming and Data Structure 51

int f (int n)

{

if (n < 2) return (n);

else return (f(n-1) + f(n-2));

}

Tracing Execution

• How many times the
function is called when
evaluating f(4) ?

• Inefficiency:
– Same thing is computed

several times.

Spring Semester 2012 Programming and Data Structure 52

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

9 times

Example Codes: fibonacci()

– Code for the fibonacci function
long fibonacci(long n)

{

if (n == 0 || n == 1) // base case

return n;

else

return fibonacci(n - 1) +
fibonacci(n – 2);

}

Spring Semester 2012 Programming and Data Structure 53

Performance Tip

• Avoid Fibonacci-style recursive
programs which result in an
exponential “explosion” of calls.

Spring Semester 2012 Programming and Data Structure 57

Example: Towers of Hanoi Problem

Spring Semester 2012 Programming and Data Structure 58

5

4

3

2
1

LEFT CENTER RIGHT

• The problem statement:

– Initially all the disks are stacked on the LEFT pole.

– Required to transfer all the disks to the RIGHT
pole.

• Only one disk can be moved at a time.

• A larger disk cannot be placed on a smaller disk.

Spring Semester 2012 Programming and Data Structure 59

• Recursive statement of the general problem of
n disks.

– Step 1:

• Move the top (n-1) disks from LEFT to CENTER.

– Step 2:

• Move the largest disk from LEFT to RIGHT.

– Step 3:

• Move the (n-1) disks from CENTER to RIGHT.

Spring Semester 2012 Programming and Data Structure 60

#include <stdio.h>

void transfer (int n, char from, char to, char temp);

main()
{

int n; /* Number of disks */
scanf (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);

}

void transfer (int n, char from, char to, char temp)
{

if (n > 0) {
transfer (n-1, from, temp,to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}
return;

}

Spring Semester 2012 Programming and Data Structure 61

Spring Semester 2012 Programming and Data Structure 62

Spring Semester 2012 Programming and Data Structure 63

Recursion vs. Iteration
• Repetition

– Iteration: explicit loop

– Recursion: repeated function calls

• Termination
– Iteration: loop condition fails

– Recursion: base case recognized

• Both can have infinite loops

• Balance
– Choice between performance (iteration) and good

software engineering (recursion)

Spring Semester 2012 Programming and Data Structure 64

Performance Tip

• Avoid using recursion in performance
situations. Recursive calls take time
and consume additional memory.

Spring Semester 2012 Programming and Data Structure 66

How are function calls implemented?

• In general, during program execution
– The system maintains a stack in memory.

• Stack is a last-in first-out structure.

• Two operations on stack, push and pop.

– Whenever there is a function call, the activation
record gets pushed into the stack.

• Activation record consists of the return address in the
calling program, the return value from the function,
and the local variables inside the function.

– At the end of function call, the corresponding
activation record gets popped out of the stack.

Spring Semester 2012 Programming and Data Structure 67

Spring Semester 2012 Programming and Data Structure 68

main()

{

……..

x = gcd (a, b);

……..

}

int gcd (int x, int y)

{

……..

……..

return (result);

}

Return Addr

Return Value

Local

Variables

Before call After call After return

S
T
A

C
K

Spring Semester 2012 Programming and Data Structure 69

main()

{

……..

x = ncr (a, b);

……..

}

int ncr (int n, int r)

{

return (fact(n)/

fact(r)/fact(n-r));

}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)

{

………

return (result);

}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

What happens for recursive calls?
• What we have seen ….

– Activation record gets pushed into the stack when
a function call is made.

– Activation record is popped off the stack when the
function returns.

• In recursion, a function calls itself.
– Several function calls going on, with none of the

function calls returning back.
• Activation records are pushed onto the stack

continuously.
• Large stack space required.
• Activation records keep popping off, when the

termination condition of recursion is reached.

Spring Semester 2012 Programming and Data Structure 70

• We shall illustrate the process by an example
of computing factorial.

– Activation record looks like:

Spring Semester 2012 Programming and Data Structure 71

Return Addr

Return Value

Local

Variables

Example:: main() calls fact(3)

Spring Semester 2012 Programming and Data Structure 72

int fact (int n)

{

if (n = = 0)

return (1);

else

return (n * fact(n-1));

}

main()

{

int n;

n = 4;

printf (“%d \n”, fact(n));

}

Spring Semester 2012 Programming and Data Structure 73

RA .. main

-

n = 3

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n = 1

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n = 1

RA .. fact

1

n = 0

RA .. main

-

n = 3

RA .. fact

-

n = 2

RA .. fact

1*1 = 1

n = 1

RA .. main

-

n = 3

RA .. fact

2*1 = 2

n = 2

RA .. main

3*2 = 6

n = 3

TRACE OF THE STACK DURING EXECUTION

main

calls

fact

fact

returns

to main

Do Yourself
• Trace the activation records for the following version of Fibonacci

sequence.

Spring Semester 2012 Programming and Data Structure 74

#include <stdio.h>

int f (int n)

{

int a, b;

if (n < 2) return (n);

else {

a = f(n-1);

b = f(n-2);

return (a+b); }

}

main() {

printf(“Fib(4) is: %d \n”, f(4));

}

Return Addr

(either main,

or X, or Y)

Return Value

Local

Variables

(n, a, b)

X

Y

main

Storage Class of Variables

Spring Semester 2012 Programming and Data Structure 75

What is Storage Class?

• It refers to the permanence of a variable, and
its scope within a program.

• Four storage class specifications in C:

– Automatic: auto

– External: extern

– Static: static

– Register: register

Spring Semester 2012 Programming and Data Structure 76

Automatic Variables

• These are always declared within a function and
are local to the function in which they are
declared.
– Scope is confined to that function.

• This is the default storage class specification.
– All variables are considered as auto unless

explicitly specified otherwise.

– The keyword auto is optional.

– An automatic variable does not retain its value once
control is transferred out of its defining function.

Spring Semester 2012 Programming and Data Structure 77

Spring Semester 2012 Programming and Data Structure 78

#include <stdio.h>

int factorial(int m)

{

auto int i;

auto int temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

}

main()

{

auto int n;

for (n=1; n<=10; n++)

printf (“%d! = %d \n”,

n, factorial (n));

}

Static Variables
• Static variables are defined within individual functions and have the

same scope as automatic variables.

• Unlike automatic variables, static variables retain their values
throughout the life of the program.

– If a function is exited and re-entered at a later time, the
static variables defined within that function will retain
their previous values.

– Initial values can be included in the static variable
declaration.

• Will be initialized only once.

• An example of using static variable:
– Count number of times a function is called.

Spring Semester 2012 Programming and Data Structure 79

Spring Semester 2012 Programming and Data Structure 80

#include <stdio.h>

int factorial (int n)

{

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main()

{

int i=6;

printf (“Value is: %d \n”, factorial(i));

}

EXAMPLE 1

• Program output:
n=6, count=1

n=5, count=2

n=4, count=3

n=3, count=4

n=2, count=5

n=1, count=6

n=0, count=7

Value is: 720

Spring Semester 2012 Programming and Data Structure 81

Spring Semester 2012 Programming and Data Structure 82

#include <stdio.h>

int fib (int n)

{

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n < 2) return n;

else return (fib(n-1) + fib(n-2));

}

main()

{

int i=4;

printf (“Value is: %d \n”, fib(i));

}

EXAMPLE 2

• Program output:

n=4, count=1

n=3, count=2

n=2, count=3

n=1, count=4

n=0, count=5

n=1, count=6

n=2, count=7

n=1, count=8

n=0, count=9

Value is: 3 [0,1,1,2,3,5,8,….]

Spring Semester 2012 Programming and Data Structure 83

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

Register Variables

• These variables are stored in high-speed
registers within the CPU.

– Commonly used variables may be declared as
register variables.

– Results in increase in execution speed.

– The allocation is done by the compiler.

Spring Semester 2012 Programming and Data Structure 84

External Variables

• They are not confined to single functions.

• Their scope extends from the point of
definition through the remainder of the
program.
– They may span more than one functions.

– Also called global variables.

• Alternate way of declaring global variables.
– Declare them outside the function, at the

beginning.

Spring Semester 2012 Programming and Data Structure 85

Spring Semester 2012 Programming and Data Structure 86

#include <stdio.h>

int count=0; /** GLOBAL VARIABLE **/

int factorial (int n)

{

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main() {

int i=6;

printf (“Value is: %d \n”, factorial(i));

printf (“Count is: %d \n”, count);

}

• Program output:
n=6, count=1

n=5, count=2

n=4, count=3

n=3, count=4

n=2, count=5

n=1, count=6

n=0, count=7

Value is: 720

Count is: 7

Spring Semester 2012 Programming and Data Structure 87

