
Control Statements

Spring Semester 2012 Programming and Data Structure 1

What do they do?

• Allow different sets of instructions to be
executed depending on the outcome of a
logical test.
– Whether TRUE or FALSE.

– This is called branching.

• Some applications may also require that a set
of instructions be executed repeatedly,
possibly again based on some condition.
– This is called looping.

Spring Semester 2012 Programming and Data Structure 2

How do we specify the conditions?

• Using relational operators.

– Four relation operators: <, <=, >, >=

– Two equality operations: ==, !=

• Using logical operators / connectives.

– Two logical connectives: &&, | |

– Unary negation operator: !

Spring Semester 2012 Programming and Data Structure 3

Examples

count <= 100

(math+phys+chem)/3 >= 60

(sex==‘M’) && (age>=21)

(marks>=80) && (marks<90)

(balance>5000) | | (no_of_trans>25)

! (grade==‘A’)

! ((x>20) && (y<16))

Spring Semester 2012 Programming and Data Structure 4

The conditions evaluate to …

• Zero

– Indicates FALSE.

• Non-zero

– Indicates TRUE.

– Typically the condition TRUE is represented by the
value ‘1’.

Spring Semester 2012 Programming and Data Structure 5

Branching: The if Statement

• Diamond symbol (decision symbol) - indicates
decision is to be made.
– Contains an expression that can be TRUE or

FALSE.

– Test the condition, and follow appropriate path.

• Single-entry / single-exit structure.

• General syntax:
if (condition) { …….. }

– If there is a single statement in the block, the
braces can be omitted.

Spring Semester 2012 Programming and Data Structure 6

The if Selection Structure

Spring Semester 2012 Programming and Data Structure 7

true

false

grade >= 60 print “Passed”

A decision can be made on

any expression.

zero - false

nonzero - true

if (grade>=60)

printf(“Passed \n”);

Example

#include <stdio.h>

main()

{

int a,b,c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);

if ((b>=a) && (b>=c))

printf (“\n The largest number is: %d”, b);

if ((c>=a) && (c>=b))

printf (“\n The largest number is: %d”, c);

}

Spring Semester 2012 Programming and Data Structure 8

Branching: The if-else Statement

• Also a single-entry / single-exit structure.

• Allows us to specify two alternate blocks of
statements, one of which is executed
depending on the outcome of the condition.

• General syntax:
if (condition) { …… block 1 ……. }

else { …….. block 2 …….. }

– If a block contains a single statement, the braces
can be deleted.

Spring Semester 2012 Programming and Data Structure 9

The if/else Selection Structure

Spring Semester 2012 Programming and Data Structure 10

if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

truefalse

print

“Failed”

print “Passed”

grade >= 60

if-else syntax

if (expression)

{

statement1;

statement2;

.

statement_n;

}

if (expression)
{

statement_1;
statement_2;

.
statement_n;

}
else
{

Statement_1;
.

Statement_m;
}

Spring Semester 2012 Programming and Data Structure 11

if (grade>=60)

printf(“Passed \n”);
if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

Nesting of if-else Structures

• It is possible to nest if-else statements, one
within another.

• All if statements may not be having the “else”
part.

– Confusion??

• Rule to be remembered:

– An “else” clause is associated with the closest
preceding unmatched “if”.

Spring Semester 2012 Programming and Data Structure 12

if e1 s1

else if e2 s2

if e1 s1

else if e2 s2

else s3

if e1 if e2 s1

else s2

else s3

if e1 if e2 s1

else s2

Spring Semester 2012 Programming and Data Structure 13

?

if e1 s1 if e1 s1

else if e2 s2 else if e2 s2

if e1 s1 if e1 s1

else if e2 s2 else if e2 s2

else s3 else s3

if e1 if e2 s1 if e1 if e2 s1

else s2 else s2

else s3 else s3

if e1 if e2 s1 if e1 if e2 s1

else s2 else s2

Spring Semester 2012 Programming and Data Structure 14

Example

#include <stdio.h>

main()

{

int a,b,c;

scanf (“%d %d %d”, &a, &b, &c);

if (a>=b)

if (a>=c)

printf (“\n The largest number is: %d”, a);

else printf (“\n The largest number is: %d”, c);

else

if (b>=c)

printf (“\n The largest number is: %d”, b);

else printf (“\n The largest number is: %d”, c);

}

Spring Semester 2012 Programming and Data Structure 15

Example

#include <stdio.h>

main()

{

int a,b,c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);

else if (b>c)

printf (“\n The largest number is: %d”, b);

else

printf (“\n The largest number is: %d”, c);

}

Spring Semester 2012 Programming and Data Structure 16

Confusing Equality (==) and Assignment (=) Operators

• Dangerous error

– Does not ordinarily cause syntax errors

– Any expression that produces a value can be used in control structures

– Nonzero values are true, zero values are false

• Example:

if (payCode == 4)

printf("You get a bonus!\n");

Checks paycode, if it is 4 then a bonus is awarded

Spring Semester 2012 Programming and Data Structure 18

Equality check improper

if (payCode = 4)

printf("You get a bonus!\n");

Equality check proper

if (payCode == 4)

printf("You get a bonus!\n");

Generalization of expression evaluation in C

• Assignment (=) operation is also a part of

expression.

Spring Semester 2012 Programming and Data Structure 19

i=3; Returns the value 3

after assigning it to i.

int i=4, j ;

if(i=3)

j=0;

else

j=1;

j?

Whatever be the value of i,

j is always 0.

int i=4, j ;

if(i==3)

j=0;

else

j=1;

j=1

More about expressions

• Increment (++) and Decrement (--)Operations

Prefix operation

Postfix operation

Spring Semester 2012 Programming and Data Structure 20

++i;

i++;

--i;

i--;

First increment / decrement and then used in evaluation

increment / decrement operation after being used in evaluation

int t,m=1;

t=++m;

int t,m=1;

t=m++;

m=2;

t=2;
m=2;

t=1;

Some More Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a;

a = 11, x = 61

x = 50 + a++;

x = 60, a = 11

x = a++ + --b;

b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation

dependent)

Spring Semester 2012 Programming and Data Structure 21

Ternary conditional operator (?:)

– Takes three arguments (condition, value if true, value if
false)

– Returns the evaluated value accordingly.

Spring Semester 2012 Programming and Data Structure 22

grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

(expr1)? (expr2): (expr3);

Example:

interest = (balance>5000) ? balance*0.2 : balance*0.1;

Returns a value

The switch Statement
• This causes a particular group of statements to be

chosen from several available groups.
– Uses “switch” statement and “case” labels.

– Syntax of the “switch” statement:

switch (expression) {

case expression-1: { …….. }

case expression-2: { …….. }

case expression-m: { …….. }

default: { ……… }

}

Spring Semester 2012 Programming and Data Structure 23

The switch Multiple-Selection Structure

Spring Semester 2012 Programming and Data Structure 24

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

Example

switch (letter) {

case 'A':

printf("First letter\n");

break;

case 'Z':

printf("Last letter\n");

break;

default :

printf("Middle letter\n");

break;

}

Spring Semester 2012 Programming and Data Structure 25

Example

switch (choice = toupper(getchar())) {

case ‘R’: printf (“RED \n”);

break;

case ‘G’: printf (“GREEN \n”);

break;

case ‘B’: printf (“BLUE \n”);

break;

default: printf (“Invalid choice \n”);

}

Spring Semester 2012 Programming and Data Structure 26

Example
switch (choice = getchar()) {

case ‘r’:

case ‘R’: printf (“RED \n”);

break;

case ‘g’:

case ‘G’: printf (“GREEN \n”);

break;

case ‘b’:

case ‘B’: printf (“BLUE \n”);

break;

default: printf (“Invalid choice \n”);

}

Spring Semester 2012 Programming and Data Structure 28

The break Statement

• Used to exit from a switch or terminate from a
loop.

– Already illustrated in the switch examples.

• With respect to “switch”, the “break”
statement causes a transfer of control out of
the entire “switch” statement, to the first
statement following the “switch” statement.

Spring Semester 2012 Programming and Data Structure 29

The Essentials of Repetition

• Loop

– Group of instructions computer executes repeatedly while some condition
remains true

• Counter-controlled repetition

– Definite repetition - know how many times loop will execute

– Control variable used to count repetitions

• Sentinel-controlled repetition

– Indefinite repetition

– Used when number of repetitions not known

– Sentinel value indicates "end of data"

Spring Semester 2012 Programming and Data Structure 30

Counter-Controlled Repetition

• Counter-controlled repetition requires

– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the control variable (i.e.,
whether looping should continue).

– increment (or decrement) by which the control variable is
modified each time through the loop.

Spring Semester 2012 Programming and Data Structure 31

int counter =1; //initialization

while (counter <= 10) { //repetition condition

printf("%d\n", counter);

++counter; //increment

}

Counter-Controlled Repetition

• Counter-controlled repetition requires

– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the control variable (i.e.,
whether looping should continue).

– increment (or decrement) by which the control variable is
modified each time through the loop.

Spring Semester 2012 Programming and Data Structure 32

int counter;

for (counter=1;counter<=10;counter++)

printf(“%d\n”,counter);

while Statement
while (condition)

statement_to_repeat;

while (condition) {

statement_1;

...

statement_N;

}

Spring Semester 2012 Programming and Data Structure 33

/* Weight loss program */

while (weight > 65) {

printf("Go, exercise, ");

printf("then come back. \n");

printf("Enter your weight: ");

scanf("%d", &weight);

}

int digit = 0;

while (digit <= 9)

printf (“%d \n”, digit++);

Spring Semester 2012 Programming and Data Structure 34

C

statement(s)

true

false

Single-entry /

single-exit

structure

do-while Statement

Spring Semester 2012 Programming and Data Structure 35

/* Weight loss program */

do {

printf("Go, exercise, ");

printf("then come back. \n");

printf("Enter your weight: ");

scanf("%d", &weight);

} while (weight > 65) ;

do {

statement-1

statement-2

.

.

statement-n

} while (condition);

At least one round

of exercise ensured.

Spring Semester 2012 Programming and Data Structure 36

C

statement(s)

true

false

Single-entry /

single-exit

structure

int digit = 0;

do

printf (“%d \n”, digit++);

while (digit <= 9);

for Statement
for (initial; condition; iteration)

statement_to_repeat;

for (initial; condition; iteration) {

statement_1;

...

statement_N;

}

Spring Semester 2012 Programming and Data Structure 37

fact = 1; /* Calculate 10 ! */

for (i = 1; i < =10; i++)

fact = fact * i;
No

semicolon

after last

expression

All are expressions.

initial expr1

condition expr2

iterationexpr3

• How it works?

– “expression1” is used to initialize some variable
(called index) that controls the looping action.

– “expression2” represents a condition that must be
true for the loop to continue.

– “expression3” is used to alter the value of the
index initially assigned by “expression1”.

Spring Semester 2012 Programming and Data Structure 38

int digit;

for (digit=0; digit<=9; digit++)

printf (“%d \n”, digit);

• How it works?

– “expression1” is used to initialize some variable
(called index) that controls the looping action.

– “expression2” represents a condition that must be
true for the loop to continue.

– “expression3” is used to alter the value of the
index initially assigned by “expression1”.

Spring Semester 2012 Programming and Data Structure 39

Spring Semester 2012 Programming and Data Structure 40

expression2

statement(s)

true

false
Single-entry /

single-exit

structure

expression1

expression3

int digit;

for (digit=0; digit<=9; digit++)

printf (“%d \n”, digit);

The For Structure: Notes and Observations

• Arithmetic expressions

– Initialization, loop-continuation, and increment can contain
arithmetic expressions.

– e.g. Let x = 2 and y = 10

for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to

for (j = 2; j <= 80; j += 5)

• "Increment" may be negative (decrement)

• If loop continuation condition initially false

– Body of for structure not performed

– Control proceeds with statement after for structure

Spring Semester 2012 Programming and Data Structure 41

Initialization
Loop continuation

Increment

for :: Examples
int fact = 1, i;

for (i=1; i<=10; i++)

fact = fact * i;

int sum = 0, N, count;

scanf (“%d”, &N);

for (i=1; i<=N, i++)

sum = sum + i * i;

printf (“%d \n”, sum);

Spring Semester 2012 Programming and Data Structure 42

• The comma operator

– We can give several statements separated by
commas in place of “expression1”, “expression2”,
and “expression3”.

for (fact=1, i=1; i<=10; i++)

fact = fact * i;

for (sum=0, i=1; i<=N, i++)

sum = sum + i * i;

Spring Semester 2012 Programming and Data Structure 43

Specifying “Infinite Loop”

while (1) {

statements

}

for (; ;)

{

statements

}

Spring Semester 2012 Programming and Data Structure 44

do {

statements

} while (1);

break Statement
• Break out of the loop { }

– can use with
• while
• do while
• for
• switch

– does not work with
• if {}
• else {}

Spring Semester 2012 Programming and Data Structure 45

Causes immediate exit from a while, for, do/while or switch structure

Program execution continues with the first statement after the

structure

Common uses of the break statement

Escape early from a loop

Skip the remainder of a switch structure

A Complete Example

#include <stdio.h>
main()
{

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
}

Spring Semester 2012 Programming and Data Structure 46

continue Statement

• continue

– Skips the remaining statements in the body of a while, for or
do/while structure

• Proceeds with the next iteration of the loop

– while and do/while
• Loop-continuation test is evaluated immediately after the
continue statement is executed

– for structure
• Increment expression is executed, then the loop-continuation test

is evaluated.

expression3 is evaluated, then expression2 is

evaluated.

Spring Semester 2012 Programming and Data Structure 47

An Example with “break” & “continue”

fact = 1; i = 1; /* a program to calculate 10 !

while (1) {

fact = fact * i;

i ++ ;

if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;

}

Spring Semester 2012 Programming and Data Structure 48

Some Examples

Spring Semester 2012 Programming and Data Structure 49

Example 1: Test if a number is prime or not

#include <stdio.h>
main()
{

int n, i=2;
scanf (“%d”, &n);
while (i < n) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}

Spring Semester 2012 Programming and Data Structure 50

More efficient??

#include <stdio.h>

main()

{

int n, i=3;

scanf (“%d”, &n);

while (i < sqrt(n)) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

exit;

}

i = i + 2;

}

printf (“%d is a prime \n”, n);

}

Spring Semester 2012 Programming and Data Structure 51

Example 2: Find the sum of digits of a number

#include <stdio.h>

main()

{

int n, sum=0;

scanf (“%d”, &n);

while (n != 0) {

sum = sum + (n % 10);

n = n / 10;

}

printf (“The sum of digits of the number is %d \n”, sum);

}

Spring Semester 2012 Programming and Data Structure 52

Example 3: Decimal to binary conversion

#include <stdio.h>

main()

{

int dec;

scanf (“%d”, &dec);

do

{

printf (“%2d”, (dec % 2));

dec = dec / 2;

} while (dec != 0);

printf (“\n”);

}

Spring Semester 2012 Programming and Data Structure 53

Example 4: Compute GCD of two numbers

#include <stdio.h>

main()

{

int A, B, temp;

scanf (%d %d”, &A, &B);

if (A > B) { temp = A; A = B; B = temp; }

while ((B % A) != 0) {

temp = B % A;

B = A;

A = temp;

}

printf (“The GCD is %d”, A);

}

Spring Semester 2012 Programming and Data Structure 54

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

Initial: A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3

B % A = 0 GCD is 3

Shortcuts in Assignments

• Additional assignment operators:
+ =, – =, * =, / =, % =

a += b is equivalent to a = a + b

a *= (b+10) is equivalent to a = a * (b + 10)

and so on.

Spring Semester 2012 Programming and Data Structure 55

More about scanf and printf

Spring Semester 2012 Programming and Data Structure 56

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically
containing data types of the arguments to be read
in;

– the arguments arg1, arg2, … represent pointers to
data items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of characters,
with one character group for each input data item.

– ‘%’ sign, followed by a conversion character.

Spring Semester 2012 Programming and Data Structure 57

– Commonly used conversion characters:

c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a
data item, by specifying a number indicating the
field width before the conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Spring Semester 2012 Programming and Data Structure 58

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing
formatting information and data types of the
arguments to be output;

– the arguments arg1, arg2, … represent the
individual output data items.

• The conversion characters are the same as in
scanf.

Spring Semester 2012 Programming and Data Structure 59

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

Spring Semester 2012 Programming and Data Structure 60

