
Programming and Data Structure

Sujoy Ghose

Sudeshna Sarkar

AND

Jayanta Mukhopadhyay

Dept. of Computer Science & Engineering.

Indian Institute of Technology

Kharagpur

Spring Semester 2012 Programming and Data Structure 1

Some General Announcements

Spring Semester 2012 Programming and Data Structure 2

About the Course

• L-T-P rating of 3-1-0.

• There is a separate laboratory of 0-0-3.
– Grading will be separate.

• Tutorial classes (one hour per week) will be
conducted on a “per section” basis.

• Evaluation in the theory course:
– Mid-semester 30%

– End-semester 50%

– Two class tests and attendance 20%

Spring Semester 2012 Programming and Data Structure 3

Course Materials

• The slides for the lectures will be made
available on the web (in PDF form).

http://144.16.192.60/~pds

• All important announcements will be put up
on the web page.

Spring Semester 2012 Programming and Data Structure 4

http://144.16.192.60/~pds

ATTENDANCE IN THE CLASSES IS MANDATORY

Students having poor attendance will be
penalized in terms of the final grade /

deregistration.

Any student with less than 75% attendance
would be debarred from appearing in the

examinations.

Spring Semester 2012 Programming and Data Structure 5

Text/Reference Books

1. Kernighan and Ritchie

2. Programming with C

B.S. Gottfried, Schaum’s Outline Series, Tata
McGraw-Hill, 2006.

Spring Semester 2012 Programming and Data Structure 6

Introduction

Spring Semester 2012 Programming and Data Structure 7

What is a Computer?

Spring Semester 2012 Programming and Data Structure 8

Central

Processing

Unit

(CPU)

Input

Device

Output

Device

Main Memory

Storage Peripherals

It is a machine which can accept data, process them,

and output results.

• CPU

– All computations take place here in order for the
computer to perform a designated task.

– It has a large number of registers which temporarily
store data and programs (instructions).

– It has circuitry to carry out arithmetic and logic
operations, take decisions, etc.

– It retrieves instructions from the memory, interprets
(decodes) them, and perform the requested
operation.

Spring Semester 2012 Programming and Data Structure 9

• Main Memory
– Uses semiconductor technology

• Allows direct access

– Memory sizes in the range of 256 Mbytes to 4
Gbytes are typical today.

– Some measures to be remembered
• 1 K = 210 (= 1024)

• 1 M = 220 (= one million approx.)

• 1 G = 230 (= one billion approx.)

Spring Semester 2012 Programming and Data Structure 10

• Input Device
– Keyboard, Mouse, Scanner, Digital Camera

• Output Device
– Monitor, Printer

• Storage Peripherals
– Magnetic Disks: hard disk, floppy disk

• Allows direct (semi-random) access

– Optical Disks: CDROM, CD-RW, DVD

• Allows direct (semi-random) access

– Flash Memory: pen drives

• Allows direct access

– Magnetic Tape: DAT

• Only sequential access

Spring Semester 2012 Programming and Data Structure 11

Typical Configuration of a PC

• CPU: Pentium IV, 2.8 GHz

• Main Memory: 512 MB

• Hard Disk: 80 GB

• Floppy Disk: Not present

• CDROM: DVD combo-drive

• Input Device: Keyboard, Mouse

• Output Device: 17” color monitor

• Ports: USB, Firewire, Infrared

Spring Semester 2012 Programming and Data Structure 12

How does a computer work?

• Stored program concept.

– Main difference from a calculator.

• What is a program?

– Set of instructions for carrying out a specific task.

• Where are programs stored?

– In secondary memory, when first created.

– Brought into main memory, during execution.

Spring Semester 2012 Programming and Data Structure 13

Number System :: The Basics

• We are accustomed to using the so-called
decimal number system.
– Ten digits :: 0,1,2,3,4,5,6,7,8,9

– Every digit position has a weight which is a
power of 10.

• Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1

+ 7 x 10-2

Spring Semester 2012 Programming and Data Structure 14

Contd.

• A digital computer is built out of tiny
electronic switches.

– From the viewpoint of ease of manufacturing and
reliability, such switches can be in one of two
states, ON and OFF.

– A switch can represent a digit in the so-called
binary number system, 0 and 1.

• A computer works based on the binary
number system.

Spring Semester 2012 Programming and Data Structure 15

Concept of Bits and Bytes

• Bit
– A single binary digit (0 or 1).

• Nibble
– A collection of four bits (say, 0110).

• Byte
– A collection of eight bits (say, 01000111).

• Word
– Depends on the computer.

– Typically 4 or 8 bytes (that is, 32 or 64 bits).

Spring Semester 2012 Programming and Data Structure 16

Contd.

• A k-bit decimal number
– Can express unsigned integers in the range

0 to 10k – 1
• For k=3, from 0 to 999.

• A k-bit binary number
– Can express unsigned integers in the range

0 to 2k – 1
• For k=8, from 0 to 255.

• For k=10, from 0 to 1023.

Spring Semester 2012 Programming and Data Structure 17

Classification of Software

• Two categories:

1. Application Software

• Used to solve a particular problem.

• Editor, financial accounting, weather forecasting, etc.

2. System Software

• Helps in running other programs.

• Compiler, operating system, etc.

Spring Semester 2012 Programming and Data Structure 18

Computer Languages

• Machine Language

– Expressed in binary.

– Directly understood by the computer.

– Not portable; varies from one machine type to
another.

• Program written for one type of machine will not run
on another type of machine.

– Difficult to use in writing programs.

Spring Semester 2012 Programming and Data Structure 19

Contd.

• Assembly Language

– Mnemonic form of machine language.

– Easier to use as compared to machine language.

• For example, use “ADD” instead of “10110100”.

– Not portable (like machine language).

– Requires a translator program called assembler.

Spring Semester 2012 Programming and Data Structure 20

Assembler
Assembly

language

program

Machine

language

program

Contd.

• Assembly language is also difficult to use in
writing programs.

– Requires many instructions to solve a problem.

• Example: Find the average of three numbers.
MOV A,X ; A = X

ADD A,Y ; A = A + Y

ADD A,Z ; A = A + Z

DIV A,3 ; A = A / 3

MOV RES,A ; RES = A

Spring Semester 2012 Programming and Data Structure 21

In C,

RES = (X + Y + Z) / 3

High-Level Language
• Machine language and assembly language are

called low-level languages.
– They are closer to the machine.

– Difficult to use.

• High-level languages are easier to use.
– They are closer to the programmer.

– Examples:
• Fortran, Cobol, C, C++, Java.

– Requires an elaborate process of translation.
• Using a software called compiler.

– They are portable across platforms.

Spring Semester 2012 Programming and Data Structure 22

Contd.

Spring Semester 2012 Programming and Data Structure 23

Compiler Object code Linker

Library

HLL

program

Executable

code

To Summarize

• Assembler

– Translates a program written in assembly language
to machine language.

• Compiler

– Translates a program written in high-level
language to machine language.

Spring Semester 2012 Programming and Data Structure 24

Operating Systems

• Makes the computer easy to use.
– Basically the computer is very difficult to use.

– Understands only machine language.

• Operating systems make computers easy to use.

• Categories of operating systems:
– Single user

– Multi user
• Time sharing

• Multitasking

• Real time

Spring Semester 2012 Programming and Data Structure 25

Contd.

• Popular operating systems:
– DOS: single-user

– Windows 2000/XP: single-user multitasking

– Unix: multi-user

– Linux: a free version of Unix

• The laboratory class will be based on Linux.

• Question:
– How multiple users can work on the same

computer?

Spring Semester 2012 Programming and Data Structure 26

Contd.

• Computers connected in a network.

• Many users may work on a computer.

– Over the network.

– At the same time.

– CPU and other resources are shared among the
different programs.

• Called time sharing.

• One program executes at a time.

Spring Semester 2012 Programming and Data Structure 27

Multiuser Environment

Spring Semester 2012 Programming and Data Structure 28

Computer Computer ComputerComputer Computer Computer

Printer
User 1 User 2 User 4User 3 User 4

Computer Network

Basic Programming Concepts

Spring Semester 2012 Programming and Data Structure 29

Some Terminologies

• Algorithm / Flowchart
– A step-by-step procedure for solving a particular

problem.

– Should be independent of the programming
language.

• Program
– A translation of the algorithm/flowchart into a

form that can be processed by a computer.

– Typically written in a high-level language like C,
C++, Java, etc.

Spring Semester 2012 Programming and Data Structure 30

Variables and Constants

• Most important concept for problem solving
using computers.

• All temporary results are stored in terms of
variables and constants.

– The value of a variable can be changed.

– The value of a constant do not change.

• Where are they stored?

– In main memory.

Spring Semester 2012 Programming and Data Structure 31

Contd.

• How does memory look like (logically)?

– As a list of storage locations, each having a unique
address.

– Variables and constants are stored in these
storage locations.

– Variable is like a house, and the name of a variable
is like the address of the house.

• Different people may reside in the house, which is like
the contents of a variable.

Spring Semester 2012 Programming and Data Structure 32

Memory map

Spring Semester 2012 Programming and Data Structure 33

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address N-1

Every variable is

mapped to a

particular memory

address

Variables in Memory

Spring Semester 2012 Programming and Data Structure 34

10

20

21

105

Memory location

allocated to a variable X

X = 10

X = 20

X = X + 1

X = X * 5

Instruction executed

T

i

m

e

Variables in Memory (contd.)

Spring Semester 2012 Programming and Data Structure 35

20

20

18

18

Variable

X Y

X = 20

Y = 15

X = Y + 3

Y = X / 6

Instruction executed

?

15

15

3

T

i

m

e

Data types

• Three common data types used:

– Integer :: can store only whole numbers

• Examples: 25, -56, 1, 0

– Floating-point :: can store numbers with fractional
values.

• Examples: 3.14159, 5.0, -12345.345

– Character :: can store a character

• Examples: ‘A’, ‘a’, ‘*’, ‘3’, ‘ ’, ‘+’

Spring Semester 2012 Programming and Data Structure 36

Data Types (contd.)

• How are they stored in memory?
– Integer ::

• 16 bits

• 32 bits

– Float ::
• 32 bits

• 64 bits

– Char ::
• 8 bits (ASCII code)

• 16 bits (UNICODE, used in Java)

Spring Semester 2012 Programming and Data Structure 37

Actual number of bits

varies from one

computer to another

Problem solving
• Step 1:

– Clearly specify the problem to be solved.

• Step 2:
– Draw flowchart or write algorithm.

• Step 3:
– Convert flowchart (algorithm) into program code.

• Step 4:
– Compile the program into object code.

• Step 5:
– Execute the program.

Spring Semester 2012 Programming and Data Structure 38

Flowchart: basic symbols

Spring Semester 2012 Programming and Data Structure 39

Computation

Input / Output

Decision Box

Start / Stop

Contd.

Spring Semester 2012 Programming and Data Structure 40

Flow of

control

Connector

Example 1: Adding three numbers

Spring Semester 2012 Programming and Data Structure 41

READ A, B, C

S = A + B + C

OUTPUT S

STOP

START

Example 2: Larger of two numbers

Spring Semester 2012 Programming and Data Structure 42

START

STOP

READ X, Y

OUTPUT Y

IS

X>Y?

OUTPUT X

STOP

YES NO

Example 3: Largest of three numbers

Spring Semester 2012 Programming and Data Structure 43

START

READ X, Y, Z

IS

LAR > Z?

IS

X > Y?

LAR = X LAR = Y

OUTPUT LAR OUTPUT Z

STOP STOP

YES

YES

NO

NO

Example 4: Sum of first N natural numbers

Spring Semester 2012 Programming and Data Structure 44

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

Example 5: SUM = 12 + 22 + 32 + N2

Spring Semester 2012 Programming and Data Structure 45

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT*COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms

Spring Semester 2012 Programming and Data Structure 46

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT * (COUNT+1)

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

Example 7: Computing Factorial

Spring Semester 2012 Programming and Data Structure 47

START

READ N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT PROD

STOP

YESNO

Example 8: Computing ex series up to N terms

Spring Semester 2012 Programming and Data Structure 48

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

Example 9: Computing ex series up to 4 decimal places

Spring Semester 2012 Programming and Data Structure 49

START

READ X

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

TERM < 0.0001?
OUTPUT SUM

STOP

YESNO

Example 10: Roots of a quadratic
equation

Spring Semester 2012 Programming and Data Structure 50

ax2 + bx + c = 0

TRY YOURSELF

Example 11: Grade computation

MARKS  90  Ex

89  MARKS  80  A

79  MARKS  70  B

69  MARKS  60  C

59  MARKS  50  D

49  MARKS  35  P

34  MARKS  F

Spring Semester 2012 Programming and Data Structure 51

Grade Computation (contd.)

Spring Semester 2012 Programming and Data Structure 52

START

READ MARKS

OUTPUT “Ex”

MARKS  90? MARKS  80? MARKS  70?

OUTPUT “A” OUTPUT “B”

STOPSTOPSTOP

A

YESYESYES

NONONO

Spring Semester 2012 Programming and Data Structure 53

MARKS  60?

STOP

OUTPUT “C”

A MARKS  50? MARKS  35?

OUTPUT “D” OUTPUT “P” OUTPUT “F”

STOP STOP STOP

YESYESYES

NONONO

Programming in C

Spring Semester 2012 Programming and Data Structure 54

Introduction to C
• C is a general-purpose, structured programming language.

– Resembles other high-level structured programming languages, such
as Pascal and Fortran-77.

– Also contains additional features which allow it to be used at a lower
level.

• C can be used for applications programming as well as for
systems programming.

• There are only 32 keywords and its strength lies in its built-in
functions.

• C is highly portable, since it relegated much computer-
dependent features to its library functions.

Spring Semester 2012 Programming and Data Structure 55

History of C

• Originally developed in the 1970’s by Dennis Ritchie at AT&T
Bell Laboratories.
– Outgrowth of two earlier languages BCPL and B.

• Popularity became widespread by the mid 1980’s, with the
availability of compilers for various platforms.

• Standardization has been carried out to make the various C
implementations compatible.
– American National Standards Institute (ANSI)

– GNU

Spring Semester 2012 Programming and Data Structure 56

Structure of a C program

• Every C program consists of one or more
functions.
– One of the functions must be called main.
– The program will always begin by executing the main

function.
• Each function must contain:

– A function heading, which consists of the function
name, followed by an optional list of arguments
enclosed in parentheses.

– A list of argument declarations.
– A compound statement, which comprises the

remainder of the function.

Spring Semester 2012 Programming and Data Structure 57

Contd.

• Each compound statement is enclosed within
a pair of braces: ‘{‘ and ‘}’
– The braces may contain combinations of

elementary statements and other compound
statements.

• Comments may appear anywhere in a
program, enclosed within delimiters ‘/*’ and
‘*/’.
– Example:

a = b + c; /* ADD TWO NUMBERS */

Spring Semester 2012 Programming and Data Structure 58

Sample C program #1

Spring Semester 2012 Programming and Data Structure 59

#include <stdio.h>

main()

{

printf (“\n Our first look at a C program \n”);

}

Header file includes functions

for input/output

Main function is executed when

you run the program. (Later we will

see how to pass its parameters)

Curly braces within which

statements are executed one

after another.
Statement for

printing the sentence

within double quotes

(“..”). „\n‟ denotes end

of line.
Our first look at a C program

Sample C program #2

Spring Semester 2012 Programming and Data Structure 60

#include <stdio.h>

main()

{

int a, b, c;

a = 10;

b = 20;

c = a + b;

printf (“\n The sum of %d and %d is %d\n”,

a,b,c);

}

Integers variables declared

before their usage.

Control character for printing

value of a in decimal digits.

The sum of 10 and 20 is 30

Sample C program #3

Spring Semester 2012 Programming and Data Structure 61

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>b) && (a>c)) /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if (b>c) /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}

Input statement for reading

three variables from the keyboard

Conditional

statement

Comments within /* .. */

Sample C program #4

Spring Semester 2012 Programming and Data Structure 62

float myfunc (float r)

{

float a;

a = PI * r * r;

return (a); /* return result */

}

#include <stdio.h>

#define PI 3.1415926

/* Compute the area of a circle */

main()

{

float radius, area;

float myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

Preprocessor statement.

Replace PI by 3.1415926

before compilation.

Example of a function

Called as per need from

Main programme.

Function called.

main() is also a function

Spring Semester 2012 Programming and Data Structure 63

#include <stdio.h>

main()

{

int a, b, c;

a = 10;

b = 20;

c = a + b;

printf (“\n The sum of %d and %d is %d\n”,

a,b,c);

}

Desirable Programming Style

• Clarity
– The program should be clearly written.

– It should be easy to follow the program logic.

• Meaningful variable names
– Make variable/constant names meaningful to enhance program clarity.

• ‘area’ instead of ‘a’

• ‘radius’ instead of ‘r’

• Program documentation
– Insert comments in the program to make it easy to understand.

– Never use too many comments.

Spring Semester 2012 Programming and Data Structure 64

Contd.

• Program indentation

– Use proper indentation.

– Structure of the program should be immediately
visible.

Spring Semester 2012 Programming and Data Structure 65

Indentation Example #1 :: Good Style

Spring Semester 2012 Programming and Data Structure 66

#include <stdio.h>

#define PI 3.1415926

/* Compute the area of a circle */

main()

{

float radius, area;

float myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

float myfunc (float r)

{

float a;

a = PI * r * r;

return (a); /* return result */

}

Indentation Example #1 :: Bad Style

Spring Semester 2012 Programming and Data Structure 67

#include <stdio.h>

#define PI 3.1415926

/* Compute the area of a circle */

main()

{

float radius, area;

float myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

float myfunc (float r)

{

float a;

a = PI * r * r;

return (a); /* return result */

}

Indentation Example #2 :: Good Style

Spring Semester 2012 Programming and Data Structure 68

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>b) && (a>c)) /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if (b>c) /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}

Indentation Example #2 :: Bad Style

Spring Semester 2012 Programming and Data Structure 69

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>b) && (a>c)) /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if (b>c) /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}

The C Character Set

• The C language alphabet:

– Uppercase letters ‘A’ to ‘Z’

– Lowercase letters ‘a’ to ‘z’

– Digits ‘0’ to ‘9’

– Certain special characters:

Spring Semester 2012 Programming and Data Structure 70

! # % ^ & * ()

- _ + = ~ [] \

| ; : „ “ { } ,

. < > / ? blank

Identifiers and Keywords

• Identifiers
– Names given to various program elements

(variables, constants, functions, etc.)
– May consist of letters, digits and the underscore

(‘_’) character, with no space between.
– First character must be a letter.
– An identifier can be arbitrary long.

• Some C compilers recognize only the first few
characters of the name (16 or 31).

– Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different.

Spring Semester 2012 Programming and Data Structure 71

Contd.

• Keywords

– Reserved words that have standard, predefined
meanings in C.

– Cannot be used as identifiers.

– OK within comments.

– Standard C keywords:

Spring Semester 2012 Programming and Data Structure 72

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

Valid and Invalid Identifiers

• Valid identifiers
X

abc

simple_interest

a123

LIST

stud_name

Empl_1

Empl_2

avg_empl_salary

• Invalid identifiers
10abc

my-name

“hello”

simple interest

(area)

%rate

Spring Semester 2012 Programming and Data Structure 73

Data Types in C

int :: integer quantity

Typically occupies 4 bytes (32 bits) in memory.

char :: single character

Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a

decimal point)

Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point

number

Spring Semester 2012 Programming and Data Structure 74

Contd.

• Some of the basic data types can be augmented
by using certain data type qualifiers:
– short

– long

– signed

– unsigned

• Typical examples:
– short int

– long int

– unsigned int

Spring Semester 2012 Programming and Data Structure 75

Some Examples of Data Types

• int

0, 25, -156, 12345, 99820

• char

‘a’, ‘A’, ‘*’, ‘/’, ‘ ’

• float

23.54, 0.00345, 25.0

2.5E12, 1.234e-5

Spring Semester 2012 Programming and Data Structure 76

E or e means “10 to

the power of”

Constants

Spring Semester 2012 Programming and Data Structure 77

Constants

Numeric

Constants

Character

Constants

stringsingle

character

floating-

point

integer

Integer Constants

• Consists of a sequence of digits, with possibly
a plus or a minus sign before it.

– Embedded spaces, commas and non-digit
characters are not permitted between digits.

• Maximum and minimum values (for 32-bit
representations)

Maximum :: 2147483647

Minimum :: – 2147483648

Spring Semester 2012 Programming and Data Structure 78

Floating-point Constants

• Can contain fractional parts.

• Very large or very small numbers can be
represented.

23000000 can be represented as 2.3e7

• Two different notations:
1. Decimal notation

25.0, 0.0034, .84, -2.234

2. Exponential (scientific) notation
3.45e23, 0.123e-12, 123E2

Spring Semester 2012 Programming and Data Structure 79

e means “10 to

the power of”

Single Character Constants

• Contains a single character enclosed within a pair
of single quote marks.
– Examples :: ‘2’, ‘+’, ‘Z’

• Some special backslash characters
‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote

‘\”’ double quote

‘\\’ backslash

‘\0’ null

Spring Semester 2012 Programming and Data Structure 80

String Constants

• Sequence of characters enclosed in double
quotes.

– The characters may be letters, numbers, special
characters and blank spaces.

• Examples:

“nice”, “Good Morning”, “3+6”, “3”, “C”

• Differences from character constants:

– ‘C’ and “C” are not equivalent.

– ‘C’ has an equivalent integer value while “C” does not.

Spring Semester 2012 Programming and Data Structure 81

Variables

• It is a data name that can be used to store a
data value.

• Unlike constants, a variable may take different
values in memory during execution.

• Variable names follow the naming convention
for identifiers.

– Examples :: temp, speed, name2, current

Spring Semester 2012 Programming and Data Structure 82

Example

Spring Semester 2012 Programming and Data Structure 83

int a, b, c;

char x;

a = 3;

b = 50;

c = a – b;

x = „d‟;

b = 20;

a = a + 1;

x = „G‟;

Variables

Constants

Declaration of Variables

• There are two purposes:
1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

• General syntax:
data-type variable-list;

• Examples:
int velocity, distance;

int a, b, c, d;

float temp;

char flag, option;

Spring Semester 2012 Programming and Data Structure 84

A First Look at Pointers

• A variable is assigned a specific memory location.
– For example, a variable speed is assigned memory

location 1350.

– Also assume that the memory location contains the
data value 100.

– When we use the name speed in an expression, it
refers to the value 100 stored in the memory location.

distance = speed * time;

• Thus every variable has an address (in memory),
and its contents.

Spring Semester 2012 Programming and Data Structure 85

Adress and Content

Spring Semester 2012 Programming and Data Structure 86

1349

1350

1351

1352

speed

100

int speed;

speed=100;

speed 100

&speed 1350

Contd.

• In C terminology, in an expression
speed refers to the contents of the memory
location.

&speed refers to the address of the memory
location.

• Examples:
printf (“%f %f %f”, speed, time, distance);

scanf (“%f %f”, &speed, &time);

Spring Semester 2012 Programming and Data Structure 87

An Example

Spring Semester 2012 Programming and Data Structure 88

#include <stdio.h>

main()

{

float speed, time, distance;

scanf (“%f %f”, &speed, &time);

distance = speed * time;

printf (“\n The distance traversed is: \n”, distance);

}

Address of speed

Content of speed

Assignment Statement
• Used to assign values to variables, using the

assignment operator (=).

• General syntax:
variable_name = expression;

• Examples:
velocity = 20;

b = 15; temp = 12.5;

A = A + 10;

v = u + f * t;

s = u * t + 0.5 * f * t * t;

Spring Semester 2012 Programming and Data Structure 89

Contd.

• A value can be assigned to a variable at the
time the variable is declared.

int speed = 30;

char flag = ‘y’;

• Several variables can be assigned the same
value using multiple assignment operators.

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 0.0;

Spring Semester 2012 Programming and Data Structure 90

Operators in Expressions

Spring Semester 2012 Programming and Data Structure 91

Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators

Arithmetic Operators

• Addition :: +

• Subtraction :: –

• Division :: /

• Multiplication :: *

• Modulus :: %

Spring Semester 2012 Programming and Data Structure 92

Examples

Spring Semester 2012 Programming and Data Structure 93

distance = rate * time ;

netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

remain =dividend % divisor;

Contd.

• Suppose x and y are two integer variables,
whose values are 13 and 5 respectively.

Spring Semester 2012 Programming and Data Structure 94

x + y 18

x – y 8

x * y 65

x / y 2

x % y 3

Operator Precedence

• In decreasing order of priority
1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

• For operators of the same priority, evaluation
is from left to right as they appear.

• Parenthesis may be used to change the
precedence of operator evaluation.

Spring Semester 2012 Programming and Data Structure 95

Examples: Arithmetic expressions

a + b * c – d / e  a + (b * c) – (d / e)

a * – b + d % e – f  a * (– b) + (d % e) – f

a – b + c + d  (((a – b) + c) + d)

x * y * z  ((x * y) * z)

a + b + c * d * e  (a + b) + ((c * d) * e)

Spring Semester 2012 Programming and Data Structure 96

Integer Arithmetic

• When the operands in an arithmetic
expression are integers, the expression is
called integer expression, and the operation is
called integer arithmetic.

• Integer arithmetic always yields integer
values.

Spring Semester 2012 Programming and Data Structure 97

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the final
value is an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

• The modulus operator cannot be used with real
operands.

Spring Semester 2012 Programming and Data Structure 98

Mixed-mode Arithmetic

• When one of the operands is integer and the
other is real, the expression is called a mixed-
mode arithmetic expression.

• If either operand is of the real type, then only
real arithmetic is performed, and the result is
a real number.

25 / 10  2

25 / 10.0  2.5

• Some more issues will be considered later.

Spring Semester 2012 Programming and Data Structure 99

Problem of value assignment

• Assignment operation
variable= expression_value;

or
variable1=variable2;

Data type of the RHS should be compatible
with that of LHS.

e.g. four byte floating point number is not
allowed to be assigned to a two byte
integer variable.

Spring Semester 2012 Programming and Data Structure 100

Type Casting

Spring Semester 2012 Programming and Data Structure 101

int x;

float r=3.0;

x= (int)(2*r);

Type casting of a floating

point expression to an integer

variable.

double perimeter;

float pi=3.14;

int r=3;

perimeter=2.0* (double) pi * (double) r;

Type casting

to double

Relational Operators

• Used to compare two quantities.

Spring Semester 2012 Programming and Data Structure 102

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false

• When arithmetic expressions are used on
either side of a relational operator, the
arithmetic expressions will be evaluated first
and then the results compared.

a + b > c – d is the same as (a+b) > (c+d)

Spring Semester 2012 Programming and Data Structure 103

Examples

• Sample code segment in C

if (x > y)

printf (“%d is larger\n”, x);

else

printf (“%d is larger\n”, y);

Spring Semester 2012 Programming and Data Structure 104

Logical Operators

• There are two logical operators in C (also called
logical connectives).

&&  Logical AND

| |  Logical OR

• What they do?

– They act upon operands that are themselves logical
expressions.

– The individual logical expressions get combined into
more complex conditions that are true or false.

Spring Semester 2012 Programming and Data Structure 105

– Logical AND

• Result is true if both the operands are true.

– Logical OR

• Result is true if at least one of the operands are true.

Spring Semester 2012 Programming and Data Structure 106

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

Input / Output

• printf
– Performs output to the standard output device

(typically defined to be the screen).

– It requires a format string in which we can specify:
• The text to be printed out.

• Specifications on how to print the values.

printf ("The number is %d.\n", num) ;

• The format specification %d causes the value listed
after the format string to be embedded in the output as
a decimal number in place of %d.

• Output will appear as: The number is 125.

Spring Semester 2012 Programming and Data Structure 107

• scanf
– Performs input from the standard input device, which

is the keyboard by default.

– It requires a format string and a list of variables into
which the value received from the input device will be
stored.

– It is required to put an ampersand (&) before the
names of the variables.

scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d %d”, &a, &b);

Spring Semester 2012 Programming and Data Structure 108

