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Some General Announcements
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About the Course

• L-T-P rating of 3-1-0.

• There is a separate laboratory of 0-0-3.
– Grading will be separate.

• Tutorial classes (one hour per week) will be 
conducted on a “per section” basis.

• Evaluation in the theory course:
– Mid-semester 30%

– End-semester 50%

– Two class tests and attendance 20%
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Course Materials

• The slides for the lectures will be made 
available on the web (in PDF form).

http://144.16.192.60/~pds

• All important announcements will be put up 
on the web page.
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ATTENDANCE IN THE CLASSES IS MANDATORY

Students having poor attendance will be 
penalized in terms of the final grade / 

deregistration.

Any student with less than 75% attendance 
would be debarred from appearing in the 

examinations.

Spring Semester 2012 Programming and Data Structure 5



Text/Reference Books

1. Kernighan and Ritchie

2. Programming with C

B.S. Gottfried, Schaum’s Outline Series,  Tata 
McGraw-Hill, 2006.
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Introduction
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What is a Computer?
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Central 

Processing

Unit

(CPU)

Input

Device

Output

Device

Main Memory

Storage Peripherals

It is a machine which can accept data, process them, 

and output results.



• CPU

– All computations take place here in order for the 
computer to perform a designated task.

– It has a large number of registers which temporarily 
store data and programs (instructions).

– It has circuitry to carry out arithmetic and logic 
operations, take decisions, etc.

– It retrieves instructions from the memory, interprets 
(decodes) them, and perform the requested 
operation.
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• Main Memory
– Uses semiconductor technology

• Allows direct access

– Memory sizes in the range of 256 Mbytes to     4 
Gbytes are typical today.

– Some measures to be remembered
• 1 K = 210 (= 1024)

• 1 M = 220 (= one million approx.)

• 1 G = 230 (= one billion approx.)
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• Input Device
– Keyboard, Mouse, Scanner, Digital Camera

• Output Device
– Monitor, Printer

• Storage Peripherals
– Magnetic Disks: hard disk, floppy disk

• Allows direct (semi-random) access

– Optical Disks: CDROM, CD-RW, DVD

• Allows direct (semi-random) access

– Flash Memory: pen drives

• Allows direct access

– Magnetic Tape: DAT

• Only sequential access
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Typical Configuration of a PC

• CPU: Pentium IV, 2.8 GHz

• Main Memory: 512 MB

• Hard Disk: 80 GB

• Floppy Disk: Not present

• CDROM: DVD combo-drive

• Input Device: Keyboard, Mouse

• Output Device: 17” color monitor

• Ports: USB, Firewire, Infrared
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How does a computer work?

• Stored program concept.

– Main difference from a calculator.

• What is a program?

– Set of instructions for carrying out a specific task.

• Where are programs stored?

– In secondary memory, when first created.

– Brought into main memory, during execution.
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Number System :: The Basics

• We are accustomed to using the so-called 
decimal number system.
– Ten digits ::  0,1,2,3,4,5,6,7,8,9

– Every digit position has a weight which is a 
power of 10.

• Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 10-1

+  7 x 10-2
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Contd.

• A digital computer is built out of tiny 
electronic switches.

– From the viewpoint of ease of manufacturing and 
reliability, such switches can be in one of two 
states, ON and OFF.

– A switch can represent a digit in the so-called 
binary number system, 0 and 1.

• A computer works based on the binary 
number system.
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Concept of Bits and Bytes

• Bit
– A single binary digit (0 or 1).

• Nibble
– A collection of four bits (say, 0110).

• Byte
– A collection of eight bits (say, 01000111).

• Word
– Depends on the computer.

– Typically 4 or 8 bytes (that is, 32 or 64 bits).
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Contd.

• A k-bit decimal number
– Can express unsigned integers in the range

0  to  10k – 1
• For k=3, from 0 to 999.

• A k-bit binary number
– Can express unsigned integers in the range

0  to  2k – 1
• For k=8, from 0 to 255.

• For k=10, from 0 to 1023.
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Classification of Software

• Two categories:

1. Application Software

• Used to solve a particular problem.

• Editor, financial accounting, weather forecasting, etc.

2. System Software

• Helps in running other programs.

• Compiler, operating system, etc.
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Computer Languages

• Machine Language

– Expressed in binary.

– Directly understood by the computer.

– Not portable; varies from one machine type to 
another.

• Program written for one type of machine will not run 
on another type of machine.

– Difficult to use in writing programs.
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Contd.

• Assembly Language

– Mnemonic form of machine language.

– Easier to use as compared to machine language.

• For example, use “ADD” instead of “10110100”.

– Not portable (like machine language).

– Requires a translator program called assembler.
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Contd.

• Assembly language is also difficult to use in 
writing programs.

– Requires many instructions to solve a problem.

• Example:  Find the average of three numbers.
MOV A,X ;  A = X

ADD A,Y ;  A = A + Y

ADD A,Z ;  A = A + Z

DIV A,3 ;  A = A / 3

MOV RES,A ;  RES = A
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In C,

RES = (X + Y + Z) / 3



High-Level Language
• Machine language and assembly language are 

called low-level languages.
– They are closer to the machine.

– Difficult to use.

• High-level languages are easier to use.
– They are closer to the programmer.

– Examples:
• Fortran, Cobol, C, C++, Java.

– Requires an elaborate process of translation.
• Using a software called compiler.

– They are portable across platforms.
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Contd.
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To Summarize

• Assembler

– Translates a program written in assembly language 
to machine language.

• Compiler

– Translates a program written in high-level 
language to machine language.
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Operating Systems

• Makes the computer easy to use.
– Basically the computer is very difficult to use.

– Understands only machine language.

• Operating systems make computers easy to use.

• Categories of operating systems:
– Single user

– Multi user
• Time sharing

• Multitasking

• Real time
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Contd.

• Popular operating systems:
– DOS:   single-user

– Windows 2000/XP:   single-user multitasking

– Unix:  multi-user

– Linux: a free version of Unix 

• The laboratory class will be based on Linux.

• Question:
– How multiple users can work on the same 

computer?
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Contd.

• Computers connected in a network.

• Many users may work on a computer.

– Over the network.

– At the same time.

– CPU and other resources are shared among the 
different programs.

• Called time sharing.

• One program executes at a time.
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Multiuser Environment
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Computer Computer ComputerComputer Computer Computer

Printer
User 1 User 2 User 4User 3 User 4

Computer Network



Basic Programming Concepts
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Some Terminologies

• Algorithm / Flowchart
– A step-by-step procedure for solving a particular 

problem.

– Should be independent of the programming 
language.

• Program
– A translation of the algorithm/flowchart into a 

form that can be processed by a computer.

– Typically written in a high-level language like C, 
C++, Java, etc.
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Variables and Constants

• Most important concept for problem solving 
using computers.

• All temporary results are stored in terms of 
variables and constants.

– The value of a variable can be changed.

– The value of a constant do not change.

• Where are they stored?

– In main memory.
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Contd.

• How does memory look like (logically)?

– As a list of storage locations, each having a unique 
address.

– Variables and constants are stored in these 
storage locations.

– Variable is like a house, and the name of a variable 
is like the address of the house.

• Different people may reside in the house, which is like 
the contents of a variable.
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Memory map
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Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address N-1

Every variable is 

mapped to a 

particular memory 

address



Variables in Memory
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Variables in Memory (contd.)
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Data types

• Three common data types used:

– Integer ::  can store only whole numbers

• Examples:  25,  -56,  1,  0

– Floating-point ::  can store numbers with fractional 
values.

• Examples: 3.14159,  5.0,  -12345.345

– Character ::  can store a character

• Examples: ‘A’,  ‘a’,  ‘*’,  ‘3’,  ‘ ’,  ‘+’
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Data Types (contd.)

• How are they stored in memory?
– Integer :: 

• 16 bits

• 32 bits

– Float :: 
• 32 bits

• 64 bits

– Char ::
• 8 bits (ASCII code)

• 16 bits (UNICODE, used in Java)
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Actual number of bits 

varies from one 

computer to another



Problem solving
• Step 1:

– Clearly specify the problem to be solved.

• Step 2:
– Draw flowchart or write algorithm.

• Step 3:
– Convert flowchart (algorithm) into program code.

• Step 4:
– Compile the program into object code.

• Step 5:
– Execute the program.
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Flowchart: basic symbols
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Computation

Input / Output

Decision Box

Start / Stop



Contd.
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Connector



Example 1: Adding three numbers
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READ  A, B, C

S = A + B + C

OUTPUT  S

STOP

START



Example 2: Larger of two numbers
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START

STOP

READ  X, Y

OUTPUT  Y

IS

X>Y?

OUTPUT  X

STOP

YES NO



Example 3: Largest of three numbers
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START

READ  X, Y, Z

IS

LAR > Z?

IS

X > Y?

LAR = X LAR = Y

OUTPUT  LAR OUTPUT  Z

STOP STOP

YES

YES

NO

NO



Example 4: Sum of first N natural numbers
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START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO



Example 5: SUM = 12 + 22 + 32 + N2

Spring Semester 2012 Programming and Data Structure 45

START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT*COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO



Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms
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START

READ  N

SUM = 0

COUNT = 1

SUM = SUM + COUNT * (COUNT+1)

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO



Example 7: Computing Factorial
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START

READ  N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  PROD

STOP

YESNO



Example 8: Computing ex series up to N terms
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START

READ  X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT  SUM

STOP

YESNO



Example 9: Computing ex series up to 4  decimal places
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START

READ  X

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

TERM < 0.0001?
OUTPUT  SUM

STOP

YESNO



Example 10: Roots of a quadratic 
equation
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ax2 + bx + c = 0

TRY YOURSELF



Example 11: Grade computation

MARKS  90            Ex

89  MARKS  80    A

79  MARKS  70    B

69  MARKS  60    C

59  MARKS  50    D

49  MARKS  35    P

34  MARKS            F
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Grade Computation (contd.)
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START

READ  MARKS

OUTPUT  “Ex”

MARKS  90? MARKS  80? MARKS  70?

OUTPUT  “A” OUTPUT  “B”

STOPSTOPSTOP

A

YESYESYES

NONONO
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MARKS  60?

STOP

OUTPUT  “C”

A MARKS  50? MARKS  35?

OUTPUT  “D” OUTPUT  “P” OUTPUT  “F”

STOP STOP STOP

YESYESYES

NONONO



Programming in C
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Introduction to C
• C is a general-purpose, structured programming language.

– Resembles other high-level structured programming languages, such 
as Pascal and Fortran-77.

– Also contains additional features which allow it to be used at a lower 
level.

• C can be used for applications programming as well as for 
systems programming.

• There are only 32 keywords and its strength lies in its built-in 
functions.

• C is highly portable, since it relegated much computer-
dependent features to its library functions.
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History of C

• Originally developed in the 1970’s by Dennis Ritchie at AT&T 
Bell Laboratories.
– Outgrowth of two earlier languages BCPL and B.

• Popularity became widespread by the mid 1980’s, with the 
availability of compilers for various platforms.

• Standardization has been carried out to make the various C 
implementations compatible.
– American National Standards Institute (ANSI)

– GNU
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Structure of a C program

• Every C program consists of one or more 
functions.
– One of the functions must be called main.
– The program will always begin by executing the main 

function.
• Each function must contain:

– A function heading, which consists of the function 
name, followed by an optional list of arguments
enclosed in parentheses.

– A list of argument declarations.
– A compound statement, which comprises the 

remainder of the function.
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Contd.

• Each compound statement is enclosed within 
a pair of braces:  ‘{‘ and ‘}’
– The braces may contain combinations of 

elementary statements and other compound 
statements.

• Comments may appear anywhere in a 
program, enclosed within delimiters ‘/*’ and 
‘*/’.
– Example:  

a = b + c;    /* ADD TWO NUMBERS */
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Sample C program #1
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#include <stdio.h>

main()

{

printf (“\n Our first look at a C program \n”);

}

Header file includes functions

for input/output

Main function is executed when

you run the program. (Later we will

see how to pass its parameters)

Curly braces within which

statements are executed one

after another.
Statement for 

printing the sentence

within double quotes

(“..”). „\n‟ denotes end

of line.
Our first look at a C program 



Sample C program #2
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#include <stdio.h>

main()

{

int   a, b, c;

a = 10;

b = 20;

c = a + b;

printf (“\n The sum of %d and %d is %d\n”, 

a,b,c);

}

Integers variables declared

before their usage.

Control character for printing

value of a in decimal digits.

The sum of 10 and 20 is 30



Sample C program #3
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#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int   a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if  ((a>b) && (a>c))    /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if  (b>c)           /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}

Input statement for reading

three variables from the keyboard

Conditional

statement

Comments within /* .. */



Sample C program #4
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float   myfunc (float r)

{

float   a;

a = PI * r * r;

return (a);      /* return result */

}

#include <stdio.h>

#define    PI    3.1415926

/* Compute the area of a circle */

main()

{

float   radius, area;

float   myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

Preprocessor statement.

Replace PI by 3.1415926

before compilation.

Example of a function

Called as per need from

Main programme.

Function called.



main() is also  a function
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#include <stdio.h>

main()

{

int   a, b, c;

a = 10;

b = 20;

c = a + b;

printf (“\n The sum of %d and %d is %d\n”,

a,b,c);

}



Desirable Programming Style

• Clarity
– The program should be clearly written.

– It should be easy to follow the program logic.

• Meaningful variable names
– Make variable/constant names meaningful to enhance program clarity.

• ‘area’ instead of ‘a’

• ‘radius’ instead of ‘r’

• Program documentation
– Insert comments in the program to make it easy to understand.

– Never use too many comments.

Spring Semester 2012 Programming and Data Structure 64



Contd.

• Program indentation

– Use proper indentation.

– Structure of the program should be immediately 
visible.
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Indentation Example #1 :: Good Style
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#include <stdio.h>

#define    PI    3.1415926

/* Compute the area of a circle */

main()

{

float   radius, area;

float   myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

float   myfunc (float r)

{

float   a;

a = PI * r * r;

return (a);      /* return result */

}



Indentation Example #1 :: Bad Style
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#include <stdio.h>

#define    PI    3.1415926

/* Compute the area of a circle */

main()

{

float   radius, area;

float   myfunc (float radius);

scanf (“%f”, &radius);

area = myfunc (radius);

printf (“\n Area is %f \n”, area);

}

float   myfunc (float r)

{

float   a;

a = PI * r * r;

return (a);      /* return result */

}



Indentation Example #2 :: Good Style
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#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int   a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if  ((a>b) && (a>c))                          /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if  (b>c)                                         /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}



Indentation Example #2 :: Bad Style
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#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int   a, b, c;

scanf (“%d %d %d”, &a, &b, &c);

if  ((a>b) && (a>c))   /* Composite condition check */

printf (“\n Largest is %d”, a);

else

if  (b>c)     /* Simple condition check */

printf (“\n Largest is %d”, b);

else

printf (“\n Largest is %d”, c);

}



The C Character Set

• The C language alphabet:

– Uppercase letters ‘A’ to ‘Z’

– Lowercase letters ‘a’ to ‘z’

– Digits ‘0’ to ‘9’

– Certain special characters:
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!       #       %       ^       &       *       (       )  

- _       +        =       ~       [        ]       \

|       ;        :       „         “        {        }       ,      

.        <       >      /         ?       blank



Identifiers and Keywords

• Identifiers
– Names given to various program elements 

(variables, constants, functions, etc.)
– May consist of letters, digits and the underscore

(‘_’) character, with no space between.
– First character must be a letter.
– An identifier can be arbitrary long.

• Some C compilers recognize only the first few 
characters of the name (16 or 31).

– Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different.
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Contd.

• Keywords

– Reserved words that have standard, predefined 
meanings in C.

– Cannot be used as identifiers.

– OK within comments.

– Standard C keywords:
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auto       break     case         char     const         continue  default     do

double   else        enum      extern   float           for            goto         if

int          long       register   return   short          signed     sizeof       static

struct     switch   typedef   union    unsigned   void         volatile    while



Valid and Invalid Identifiers

• Valid identifiers
X

abc

simple_interest

a123

LIST

stud_name

Empl_1

Empl_2

avg_empl_salary

• Invalid identifiers
10abc

my-name

“hello”

simple interest

(area)

%rate
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Data Types in C

int ::  integer quantity

Typically occupies 4 bytes (32 bits) in memory.

char ::  single character

Typically occupies 1 byte (8 bits) in memory.

float ::  floating-point number (a number with a                                                     

decimal point)

Typically occupies 4 bytes (32 bits) in memory.

double ::  double-precision floating-point 

number
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Contd.

• Some of the basic data types can be augmented 
by using certain data type qualifiers:
– short

– long

– signed

– unsigned

• Typical examples:
– short int

– long int

– unsigned int
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Some Examples of Data Types

• int

0,  25,  -156,  12345, 99820

• char

‘a’,    ‘A’,    ‘*’,    ‘/’,    ‘ ’

• float

23.54,  0.00345,  25.0

2.5E12,  1.234e-5
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E or e means “10 to 

the power of”



Constants
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Constants

Numeric

Constants

Character

Constants

stringsingle

character

floating-

point

integer



Integer Constants

• Consists of a sequence of digits, with possibly 
a plus or a minus sign before it.

– Embedded spaces, commas and non-digit 
characters are not permitted between digits.

• Maximum and minimum values (for 32-bit 
representations)

Maximum ::      2147483647       

Minimum  ::   – 2147483648
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Floating-point Constants

• Can contain fractional parts.

• Very large or very small numbers can be 
represented.

23000000 can be represented as 2.3e7

• Two different notations:
1. Decimal notation

25.0,  0.0034,  .84,  -2.234

2. Exponential (scientific) notation
3.45e23,  0.123e-12,  123E2
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e means “10 to 

the power of”



Single Character Constants

• Contains a single character enclosed within a pair 
of single quote marks.
– Examples ::  ‘2’, ‘+’, ‘Z’

• Some special backslash characters
‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote

‘\”’ double quote

‘\\’ backslash

‘\0’ null
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String Constants

• Sequence of characters enclosed in double 
quotes.

– The characters may be letters, numbers, special 
characters and blank spaces.

• Examples:

“nice”,  “Good Morning”,  “3+6”,  “3”, “C”

• Differences from character constants:

– ‘C’ and “C” are not equivalent.

– ‘C’ has an equivalent integer value while “C” does not.
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Variables

• It is a data name that can be used to store a 
data value.

• Unlike constants, a variable may take different 
values in memory during execution.

• Variable names follow the naming convention 
for identifiers.

– Examples ::  temp, speed, name2, current
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Example
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int      a, b, c;

char   x;

a = 3;

b = 50;

c = a – b;

x = „d‟;

b = 20;

a = a + 1;

x = „G‟;

Variables

Constants



Declaration of Variables

• There are two purposes:
1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

• General syntax:
data-type  variable-list;

• Examples:
int   velocity, distance;

int   a, b, c, d;

float  temp;

char  flag, option;
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A First Look at Pointers

• A variable is assigned a specific memory location.
– For example, a variable speed is assigned memory 

location 1350.

– Also assume that the memory location contains the 
data value 100.

– When we use the name speed in an expression, it 
refers to the value 100 stored in the memory location.

distance = speed * time;

• Thus every variable has an address (in memory), 
and its contents.
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Adress and Content
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1349          

1350

1351

1352

speed

100

int speed;

speed=100;

speed 100

&speed 1350



Contd.

• In C terminology, in an expression
speed refers to the contents of the memory 
location.

&speed refers to the address of the memory 
location.

• Examples:
printf (“%f %f %f”, speed, time, distance);

scanf (“%f %f”, &speed, &time);
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An Example
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#include <stdio.h>

main()

{

float  speed, time, distance;

scanf (“%f %f”, &speed, &time);

distance = speed * time;

printf (“\n The distance traversed is: \n”, distance);

}

Address of speed

Content of speed



Assignment Statement
• Used to assign values to variables, using the 

assignment operator (=).

• General syntax:
variable_name  =  expression;

• Examples:
velocity = 20;

b = 15;  temp = 12.5;   

A = A + 10;

v = u + f * t;

s = u * t + 0.5 * f * t * t;
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Contd.

• A value can be assigned to a variable at the 
time the variable is declared.

int   speed = 30;

char  flag = ‘y’;

• Several variables can be assigned the same 
value using multiple assignment operators.

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 0.0;
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Operators in Expressions
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Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators



Arithmetic Operators

• Addition ::  +

• Subtraction ::  –

• Division ::  /

• Multiplication ::  *

• Modulus ::  %
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Examples
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distance = rate * time ;

netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

remain =dividend % divisor;



Contd.

• Suppose x and y are two integer variables, 
whose values are 13 and 5 respectively.
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x + y 18

x – y 8

x * y 65

x / y 2

x % y 3



Operator Precedence

• In decreasing order of priority
1. Parentheses ::  ( )

2. Unary minus ::  –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

• For operators of the same priority, evaluation 
is from left to right as they appear.

• Parenthesis may be used to change the 
precedence of operator evaluation.
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Examples: Arithmetic expressions

a + b * c – d / e        a + (b * c) – (d / e)

a * – b + d % e – f   a * (– b) + (d % e) – f

a – b + c + d           (((a – b) + c) + d)

x * y * z                  ((x * y) * z)

a + b + c * d * e     (a + b) + ((c * d) * e)
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Integer Arithmetic

• When the operands in an arithmetic 
expression are integers, the expression is 
called integer expression, and the operation is 
called integer arithmetic.

• Integer arithmetic always yields integer 
values.
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Real Arithmetic

• Arithmetic operations involving only real or 
floating-point operands.

• Since floating-point values are rounded to the 
number of significant digits permissible, the final 
value is an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

• The modulus operator cannot be used with real 
operands.
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Mixed-mode Arithmetic

• When one of the operands is integer and the 
other is real, the expression is called a mixed-
mode arithmetic expression.

• If either operand is of the real type, then only 
real arithmetic is performed, and the result is 
a real number.

25 / 10      2

25 / 10.0   2.5

• Some more issues will be considered later.
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Problem of value assignment

• Assignment operation
variable= expression_value;

or
variable1=variable2;

Data type of the RHS  should be  compatible
with that of LHS.

e.g. four byte floating point number is not
allowed to be assigned to a two byte
integer variable.
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Type Casting

Spring Semester 2012 Programming and Data Structure 101

int x;

float r=3.0;

x= (int)(2*r);

Type casting of a floating 

point expression to an integer

variable.

double perimeter;

float pi=3.14;

int r=3;

perimeter=2.0* (double) pi * (double) r;

Type casting

to double



Relational Operators

• Used to compare two quantities.
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< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to 



Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false

• When arithmetic expressions are used on 
either side of a relational operator, the 
arithmetic expressions will be evaluated first 
and then the results compared.

a + b > c – d    is the same as   (a+b) > (c+d)
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Examples

• Sample code segment in C

if  (x > y)

printf (“%d is larger\n”, x);

else

printf (“%d is larger\n”, y);
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Logical Operators

• There are two logical operators in C (also called 
logical connectives).

&&   Logical AND

| |     Logical OR

• What they do?

– They act upon operands that are themselves logical 
expressions.

– The individual logical expressions get combined into 
more complex conditions that are true or false.
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– Logical AND

• Result is true if both the operands are true.

– Logical OR

• Result is true if at least one of the operands are true.
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X Y X  &&  Y X  | |  Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE



Input / Output

• printf  
– Performs output to the standard output device 

(typically defined to be the screen).

– It requires a format string in which we can specify:
• The text to be printed out.

• Specifications on how to print the values.

printf ("The number is %d.\n", num) ;

• The format specification %d causes the value listed 
after the format string to be embedded in the output as 
a decimal number in place of %d.

• Output will appear as: The number is 125.
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• scanf
– Performs input from the standard input device, which 

is the keyboard by default.

– It requires a format string and a list of variables into 
which the value received from the input device will be 
stored.

– It is required to put an ampersand (&) before the 
names of the variables.

scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d  %d”, &a, &b);
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