
CS11001 Programming and Data Structures, Autumn 2010

Mid-semester Test

Maximum marks: 60 September 2010 Total time: 2 hours

Roll no: Name: Section:





Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.
Do your rough work on supplementary sheets. Write your final answers in the spaces provided.

Not all blanks carry equal marks. Evaluation will depend on the overall correctness.





(To be filled in by the examiners)
Question No 1 2 3 4 Total

Marks

1. For each of the following parts, mark the correct answer. Mark like this: (B) (16)

(a) The program counter in the CPU is used

(A) to store an operand,
(B) to store the address of an operand,
(C) to store an instruction,
(D) to store the address of an instruction.

(b) The 8-bit 2’s-complement representation of
−65 is:

(A) 10111110
(B) 10111111
(C) 11000001
(D) 11000010

(c) How many floating-point numbers can be
represented in the denormalized form (that is,
with all exponent bits equal to0) in the 32-
bit IEEE 754 format? (Treat zero as a single
denormalized number, that is,+0 = −0.)

(A) 223
− 1 (B) 223 (C) 223 + 1 (D) 224

− 1

(d) Which of the following can be a valid name
of a C variable?

(A) default

(B) _default

(C) -default

(D) 123default

(e) What is the value ofx after the following
statements are executed?

int m = 5, n = 5, x;

char p = ’p’, q = ’q’;

x = !((m>=n)||(m<=n)&&(p>q));

(A) 0 (B) 1 (C) −1 (D) Any non-zero value

(f) What is the value ofs after the termination
of the following loop?

int n = 100, s;

for (s = 2; n > 2; --n) {

s += 2; n -= 2;

}

(A) 64 (B) 66 (C) 68 (D) 98

(g) What doesf(240) return, if f() is defined
as follows?

int f (int n)

{

if (n == 0) return -1;

if (n % 2) return 0;

return 1 + f(n+n/2);

}

(A) 4 (B) 5 (C) 16 (D) 361

(h) What does the following program print?

void g (int A[], int n)
{

int i;

for (i = 1; i < n; ++i)
A[i] += A[i-1];

}

main ()

{

int A[5] = {2,3,4,5,6};

g(A,4);

printf("%d", A[4] - A[3]);

}

(A) 1 (B) 5 (C) 6 (D) −8

— Page 1 of 4 —

2. François Viète (1540–1603) proposes the following formula for the computation ofπ:

π = 2













(

2
√

2

)





2
√

2 +
√

2













2
√

2 +
√

2 +
√

2





















2
√

2 +

√

2 +
√

2 +
√

2













· · ·













.

Let dn =

√

2 +

√

2 +

√

2 + · · ·

√

2 with n occurrences of2 on the right side. Forn = 0, 1, 2, 3, . . . , the

n-th approximation ofπ is given by

πn = 2

[(

2

d1

) (

2

d2

)

· · ·

(

2

dn

)]

.

We haveπ = lim
n→∞

πn. The denominatordn is calculated asdn =
√

2 + dn−1 for n > 2, andd1 =
√

2 .

The following C program implements this idea. The loop in theprogram stops when two successive
approximations differ by a very small value, that is,πn −πn−1 < ǫ, whereǫ is a pre-defined error limit (like
10−15). Fill out the missing parts of the following C code. Use the math library callsqrt(). Use no other
facility provided by the math library. Do not use arrays. Do not introduce new variables. (18)

#include <stdio.h>

#include

#define ERROR_LIMIT 1e-15

main ()

{

double d; /* d stores the denominator dn */

double pi; /* pi stores the approximation for π */

double nextpi; /* next approximation for π */

double error; /* difference of two consecutive approximations of π */

/* Start with the approximation π1 for pi. Notice that π0 = 2. */

d = ; pi = ; error = ;

/* Iterate until two consecutive approximations differ by a small value */

while () { /* Condition on error */

d = ; /* Compute next value of denominator */

nextpi = ; /* Compute next approximation */

error = ; /* Difference of approximations */

pi = ; /* Prepare for the next iteration */

}

printf("Approximate value of pi = %lf\n", pi);

}

— Page 2 of 4 —

Roll no: Name: Section:

3. You are given an arrayA of n integers. It is given that the elements ofA satisfy the following inequalities

A[0] < A[1] < · · · < A[m − 1] < A[m] > A[m + 1] > A[m + 2] > · · · > A[n − 1]

for some (unknown) indexm in the range1 6 m 6 n − 2. Let us call such an array ahill-valued array.
The sequenceA[0], A[1], . . . , A[m− 1], A[m] is called the ascending part of the hill, and the remaining part
A[m], A[m + 1], . . . , A[n− 1] is called the descending part of the hill. The elementA[m] is the peak of the
hill and is the largest element in the array.

Your task is to locate the peak (that is,A[m]) in the hill-valued arrayA. Initially, start searching in the entire
array. Subsequently, in each iteration of the loop, reduce the search space to a subarray of half the size of the
subarray in the previous iteration. In order to achieve that, compute the middle index in the current search
space. Compare the element at this index with its two neighbors. If you are at the peak, break the loop,
else adjust the search space appropriately. (This procedure is similar to binary search in a sorted array.)
Complete the following C program that implements this idea.Do not use new variables. (16)

#include <stdio.h>

#define MAX 1000

main () {
int A[MAX], i, n, L, R, M, found;

printf("Enter a hill-valued array.\n");
printf("Number of elements = "); scanf("%d", &n);
for (i=0; i<n; ++i) { printf("A[%d] = ", i); scanf("%d", &A[i]); }

/* Initialize the left and right boundaries L and R of the search space

so as to encompass the entire array A */

L = ; R = ;

found = 0; /* Initialize flag to false */

while (!found) { /* Loop as long as the maximum is not located */

/* Compute the middle index M */

M = ;

if () {

/* if the top of the hill is located, */

/* set the flag to break the loop before the next iteration */

found = 1;

} else if () {

/* if the middle index is in the ascending part of the hill, */

/* discard a suitable half of the search space */

;

} else {

/* if the middle index is in the descending part of the hill, */

/* discard a suitable half of the search space */

;

}

}

printf("Maximum = %d\n",);

}

— Page 3 of 4 —

4. Let f andg be two polynomials inx. We want to compute their producth = fg. Suppose that each off
andg hasn terms. Writef = an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0 = xmf1 + f0, wherem = n/2

(assumen is even), and where the half polynomialsf1 = a2m−1x
m−1 + a2m−2x

m−2 + · · ·+ am+1x + am

andf0 = am−1x
m−1+am−2x

m−2+ · · ·+a1x+a0 havem terms each. Likewise, writeg = xmg1+g0. We
havefg = x2mf1g1+(f1g0+f0g1)x

m+f0g0. Sincef1g0+f0g1 = (f1+f0)(g1+g0)−f1g1−f0g0, we can
computefg by making only three recursive calls on half polynomials (f0g0, f1g1 and(f1 + f0)(g1 + g0)).

Complete the following recursive C function to implement this multiplication algorithm (known as the
Karatsuba-Ofman algorithm). A polynomialf = an−1x

n−1 + · · · + a1x + a0 with n terms is stored
in an array of size MAX> n as follows. Blank cells meanmemory not in use. (10)

Array element a0 a1 · · · an−1 · · ·

Array index 0 1 n − 1 n n + 1 MAX − 1

void polyMul (int h[], int f[], int g[], int n)
/* f and g are the input polynomials, h is the output (product) */
/* n is the number of terms (not the degree) in each input polynomial */
{

int m, i;
int f1[MAX], f0[MAX], g1[MAX], g0[MAX]; /* Copies of half polynomials */
int f0g0[MAX], f1g1[MAX]; /* Local storage for f0g0 and f1g1 */
int f1f0[MAX], g1g0[MAX], f1f0g1g0[MAX]; /* f1 + f0, g1 + g0, (f1 + f0)(g1 + g0) */

if (n == 1) { h[0] = ; return; } /* Recursion basis */

/* Pad with zero to make the number of terms even */
if (n % 2 == 1) { f[n] = g[n] = 0 ; ++n; }
m = n / 2; /* Number of terms in each half polynomial */

for (i=0; i<m; ++i) { /* Make local copies of the half polynomials */

f0[i] = f[i]; g0[i] = g[i]; f1[i] = ; g1[i] = ;
}

for (i=0; i<m; ++i) { /* Loop for computing f1 + f0 and g1 + g0 */

f1f0[i] = ; g1g0[i] = ;
}

/* Three recursive calls */

polyMul(f0g0, , ,); /* f0g0 */

polyMul(f1g1, , ,); /* f1g1 */

polyMul(f1f0g1g0, , ,); /* (f1 + f0)(g1 + g0) */

for (i=0; i<=4*m-2; ++i) h[i] = 0; /* Initialize h to zero */

/* Add/subtract the products of half polynomials at appropriate places */

for (i=0; i<=2*m-2; ++i) {

h[i] += ;

h[m+i] += ;

h[2*m+i] += ;

}

}

— Page 4 of 4 —

