
21 July 2009 Programming and Data Structure 1

File Handling

21 July 2009 Programming and Data Structure 2

File handling in C

• In C we use FILE * to represent a pointer to a file.
• fopen is used to open a file. It returns the special

value NULL to indicate that it couldn't open the file.

FILE *fptr;
char filename[]= "file2.dat";
fptr= fopen (filename,"w");
if (fptr == NULL) {
printf (“ERROR IN FILE CREATION”);

/* DO SOMETHING */
}

21 July 2009 Programming and Data Structure 3

Modes for opening files

• The second argument of fopen is the mode in
which we open the file. There are three

• "r" opens a file for reading
• "w" creates a file for writing - and writes over

all previous contents (deletes the file so be
careful!)

• "a" opens a file for appending - writing on the
end of the file

• “rb” read binary file (raw bytes)
• “wb” write binary file

21 July 2009 Programming and Data Structure 4

The exit() function
• Sometimes error checking means we want an

"emergency exit" from a program. We want it
to stop dead.

• In main we can use "return" to stop.
• In functions we can use exit to do this.
• Exit is part of the stdlib.h library

exit(-1);
in a function is exactly the same as
return -1;

in the main routine

21 July 2009 Programming and Data Structure 5

Usage of exit()

FILE *fptr;
char filename[]= "file2.dat";
fptr= fopen (filename,"w");
if (fptr == NULL) {

printf (“ERROR IN FILE CREATION”);
/* Do something */

exit(-1);
}

21 July 2009 Programming and Data Structure 6

Writing to a file using fprintf()

• fprintf() works just like printf and sprintf
except that its first argument is a file pointer.

FILE *fptr;
fptr= fopen ("file.dat","w");
/* Check it's open */
fprintf (fptr,"Hello World!\n");

21 July 2009 Programming and Data Structure 7

Reading Data Using fscanf()

FILE *fptr;
fptr= fopen (“input.dat”,“r”);
/* Check it's open */
if (fptr==NULL)

{
printf(“Error in opening file \n”);
}

fscanf(fptr,“%d%d”,&x,&y);

•We also read data from a file using fscanf().

20 30

input.dat

x=20
y=30

21 July 2009 Programming and Data Structure 8

Reading lines from a file using fgets()

We can read a string using fgets ().

FILE *fptr;
char line [1000];
/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL) {

printf ("Read line %s\n",line);
}

fgets() takes 3 arguments, a string, a maximum
number of characters to read and a file pointer.
It returns NULL if there is an error (such as EOF).

21 July 2009 Programming and Data Structure 9

Closing a file

• We can close a file simply using fclose() and
the file pointer.

FILE *fptr;
char filename[]= "myfile.dat";
fptr= fopen (filename,"w");
if (fptr == NULL) {

printf ("Cannot open file to write!\n");
exit(-1);

}
fprintf (fptr,"Hello World of filing!\n");
fclose (fptr);

Opening

Access

closing

21 July 2009 Programming and Data Structure 10

Three special streams

• Three special file streams are defined in the
<stdio.h> header

• stdin reads input from the keyboard
• stdout send output to the screen
• stderr prints errors to an error device

(usually also the screen)
• What might this do?

fprintf (stdout,"Hello World!\n");

21 July 2009 Programming and Data Structure 11

An example program

#include <stdio.h>
main()
{
int i;

fprintf(stdout,"Give value of i \n");
fscanf(stdin,"%d",&i);
fprintf(stdout,"Value of i=%d \n",i);
fprintf(stderr,"No error: But an example to
show error message.\n");
}

Give value of i
15
Value of i=15
No error: But an example to show error message.

Display on
The screen

21 July 2009 Programming and Data Structure 12

Input File & Output File redirection

• One may redirect the input and output files to
other files (other than stdin and stdout).

• Usage: Suppose the executable file is a.out

$./a.out <in.dat >out.dat

15

in.dat

Give value of i
Value of i=15

out.dat

No error: But an example to show error message.

Display
screen

21 July 2009 Programming and Data Structure 13

Reading and Writing a character

• A character reading/writing is equivalent to
reading/writing a byte.

int getchar();
int fgetc(FILE *fp);
int putchar(int c);
int fputc(int c, FILE *fp);

• Example:
char c;
c=getchar();
putchar(c);

21 July 2009 Programming and Data Structure 14

Example: use of getchar() and putchar()

#include <stdio.h>
main()
{
int c;

printf("Type text and press return to see it again \n");
printf("For exiting press <CTRL D> \n");
while((c=getchar())!=EOF) putchar(c);
}

End of file

21 July 2009 Programming and Data Structure 15

Command Line Arguments

• Command line arguments may be passed by
specifying them under main().

int main(int argc, char *argv[]);

Argument
Count Array of Strings

as command line
arguments including
the command itself.

21 July 2009 Programming and Data Structure 16

Example: Reading command line arguments

#include <stdio.h>
#include <string.h>

int main(int argc,char *argv[])
{
FILE *ifp,*ofp;
int i,c;
char src_file[100],dst_file[100];

if(argc!=3){
printf("Usage: ./a.out <src_file> <dst_file> \n");
exit(0);
}
else{

strcpy(src_file,argv[1]);
strcpy(dst_file,argv[2]);

}

21 July 2009 Programming and Data Structure 17

Example: Contd.
if((ifp=fopen(src_file,"r"))==NULL)
{
printf("File does not exist.\n");
exit(0);
}
if((ofp=fopen(dst_file,"w"))==NULL)
{
printf("File not created.\n");
exit(0);
}
while((c=getc(ifp))!=EOF){
putc(c,ofp);
}
fclose(ifp);
fclose(ofp);
}

./a.out s.dat d.dat

argc=3

./a.out
s.dat
d.dat

argv

21 July 2009 Programming and Data Structure 18

Getting numbers from strings

• Once we've got a string with a number in it
(either from a file or from the user typing) we
can use atoi or atof to convert it to a
number

• The functions are part of stdlib.h
char numberstring[]= "3.14";
int i;
double pi;
pi= atof (numberstring);
i= atoi ("12");

Both of these functions return 0 if they have a problem

21 July 2009 Programming and Data Structure 19

Example: Averaging from Command Line

#include <stdio.h>
#include <stdlib.h>

int main(int argc,char *argv[])
{
float sum=0;
int i,num;

num=argc-1;
for(i=1;i<=num;i++)
sum+=atof(argv[i]);

printf("Average=%f \n",sum/(float) num);
}

$./a.out 45 239 123

Average=135.666667

	File Handling
	File handling in C
	Modes for opening files
	The exit() function
	Usage of exit()
	Writing to a file using fprintf()
	Reading Data Using fscanf()
	Reading lines from a file using fgets()
	Closing a file
	Three special streams
	An example program
	Input File & Output File redirection
	Reading and Writing a character
	Example: use of getchar() and putchar()
	Command Line Arguments
	Example: Reading command line arguments
	Example: Contd.
	Getting numbers from strings
	Example: Averaging from Command Line

