
Autumn Semester 2009 Programming and Data Structure 1

Number Systems

Autumn Semester 2009 Programming and Data Structure 2

Number Representation

Autumn Semester 2009 Programming and Data Structure 3

Topics to be Discussed

• How are numeric data items actually
stored in computer memory?

• How much space (memory locations) is
allocated for each type of data?
– int, float, char, etc.

• How are characters and strings stored in
memory?

Autumn Semester 2009 Programming and Data Structure 4

Number System :: The Basics

• We are accustomed to using the so-
called decimal number system.
– Ten digits :: 0,1,2,3,4,5,6,7,8,9
– Every digit position has a weight which is a

power of 10.
– Base or radix is 10.

• Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1

+ 7 x 10-2

Autumn Semester 2009 Programming and Data Structure 5

Binary Number System

• Two digits:
– 0 and 1.
– Every digit position has a weight which is a

power of 2.
– Base or radix is 2.

• Example:
110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2-1 + 1 x
2-2

Autumn Semester 2009 Programming and Data Structure 6

Counting with Binary Numbers

0
1

10
11

100
101
110
111

1000
.

Autumn Semester 2009 Programming and Data Structure 7

Multiplication and Division with base

Multiplication with 10 (decimal system)
435 x 10 = 4350

Multiplication with 10 (=2) (binary system)
1101 x 10 = 11010

Division by 10 (decimal system)
435 / 10 = 43.5

Division by 10 (=2) (binary system)
1101 / 10 = 110.1

Left Shift and add
zero at right end

Right shift and drop
right most digit or
shift after decimal
point

Autumn Semester 2009 Programming and Data Structure 8

Adding two bits

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

carry

1 1 1 0
1 0 1 1

+ 1 1 1 0
1 1 0 0 1

Carries

Autumn Semester 2009 Programming and Data Structure 9

Binary addition: Another example

1 1 0 0 (Carries)
1 1 0 1

+ 1 1 0 0
1 1 0 0 1 (Sum)

The initial carry
in is implicitly 0

most significant
bit (MSB)

least significant
bit (LSB)

Autumn Semester 2009 Programming and Data Structure 10

Binary-to-Decimal Conversion

• Each digit position of a binary number has
a weight.
– Some power of 2.

• A binary number:
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

Corresponding value in decimal:
D = Σ bi 2i

i = -m

n-1

Autumn Semester 2009 Programming and Data Structure 11

Examples

1. 101011 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

2. .0101 0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

3. 101.11 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

5.75
(101.11)2 = (5.75)10

Autumn Semester 2009 Programming and Data Structure 12

Decimal-to-Binary Conversion
• Consider the integer and fractional parts

separately.
• For the integer part,

– Repeatedly divide the given number by 2, and
go on accumulating the remainders, until the
number becomes zero.

– Arrange the remainders in reverse order.
• For the fractional part,

– Repeatedly multiply the given fraction by 2.
• Accumulate the integer part (0 or 1).
• If the integer part is 1, chop it off.

– Arrange the integer parts in the order they are
obtained.

Autumn Semester 2009 Programming and Data Structure 13

Example 1 :: 239

2 239
2 119 --- 1
2 59 --- 1
2 29 --- 1
2 14 --- 1
2 7 --- 0
2 3 --- 1
2 1 --- 1
2 0 --- 1

(239)10 = (11101111)2

Autumn Semester 2009 Programming and Data Structure 14

Example 2 :: 64

2 64
2 32 --- 0
2 16 --- 0
2 8 --- 0
2 4 --- 0
2 2 --- 0
2 1 --- 0
2 0 --- 1

(64)10 = (1000000)2

Autumn Semester 2009 Programming and Data Structure 15

Example 3 :: .634

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288
:
:

(.634)10 = (.10100……)2

Autumn Semester 2009 Programming and Data Structure 16

Example 4 :: 37.0625

(37)10 = (100101)2

(.0625)10 = (.0001)2

∴(37.0625)10 = (100101 . 0001)2

Autumn Semester 2009 Programming and Data Structure 17

Hexadecimal Number System

• A compact way of representing binary
numbers.

• 16 different symbols (radix = 16).
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Autumn Semester 2009 Programming and Data Structure 18

Binary-to-Hexadecimal Conversion

• For the integer part,
– Scan the binary number from right to left.
– Translate each group of four bits into the

corresponding hexadecimal digit.
• Add leading zeros if necessary.

• For the fractional part,
– Scan the binary number from left to right.
– Translate each group of four bits into the

corresponding hexadecimal digit.
• Add trailing zeros if necessary.

Autumn Semester 2009 Programming and Data Structure 19

Example

1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

Autumn Semester 2009 Programming and Data Structure 20

Hexadecimal-to-Binary Conversion

• Translate every hexadecimal digit into its
4-bit binary equivalent.

• Examples:
(3A5)16 = (0011 1010 0101)2

(12.3D)16 = (0001 0010 . 0011 1101)2

(1.8)16 = (0001 . 1000)2

Autumn Semester 2009 Programming and Data Structure 21

Unsigned Binary Numbers

• An n-bit binary number
B = bn-1bn-2 …. b2b1b0

• 2n distinct combinations are possible, 0 to 2n-1.

• For example, for n = 3, there are 8 distinct
combinations.
– 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented
n=8 0 to 28-1 (255)
n=16 0 to 216-1 (65535)
n=32 0 to 232-1 (4294967295)

Autumn Semester 2009 Programming and Data Structure 22

Signed Integer Representation

• Many of the numerical data items that are
used in a program are signed (positive or
negative).
– Question:: How to represent sign?

• Three possible approaches:
– Sign-magnitude representation
– One’s complement representation
– Two’s complement representation

Autumn Semester 2009 Programming and Data Structure 23

Sign-magnitude Representation

• For an n-bit number representation
– The most significant bit (MSB) indicates sign

0 positive
1 negative

– The remaining n-1 bits represent magnitude.

b0b1bn-2bn-1

MagnitudeSign

Autumn Semester 2009 Programming and Data Structure 24

Contd.

• Range of numbers that can be
represented:

Maximum :: + (2n-1 – 1)
Minimum :: − (2n-1 – 1)

• A problem:
Two different representations of zero.

+0 0 000….0
-0 1 000….0

Autumn Semester 2009 Programming and Data Structure 25

One’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in

sign-magnitude form.
– Negative numbers are represented in 1’s

complement form.
• How to compute the 1’s complement of a

number?
– Complement every bit of the number (1 0 and

0 1).
– MSB will indicate the sign of the number.

0 positive
1 negative

Autumn Semester 2009 Programming and Data Structure 26

Example :: n=4

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0

To find the representation of, say, -4, first note that

+4 = 0100

-4 = 1’s complement of 0100 = 1011

Autumn Semester 2009 Programming and Data Structure 27

Contd.

• Range of numbers that can be represented:
Maximum :: + (2n-1 – 1)
Minimum :: − (2n-1 – 1)

• A problem:
Two different representations of zero.

+0 0 000….0
-0 1 111….1

• Advantage of 1’s complement representation
– Subtraction can be done using addition.
– Leads to substantial saving in circuitry.

Autumn Semester 2009 Programming and Data Structure 28

Two’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in

sign-magnitude form.
– Negative numbers are represented in 2’s

complement form.
• How to compute the 2’s complement of a

number?
– Complement every bit of the number (1 0 and

0 1), and then add one to the resulting number.
– MSB will indicate the sign of the number.

0 positive
1 negative

Autumn Semester 2009 Programming and Data Structure 29

Example :: n=4

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

To find the representation of, say, -4, first note that

+4 = 0100

-4 = 2’s complement of 0100 = 1011+1 = 1100

Autumn Semester 2009 Programming and Data Structure 30

Contd.

• In C
– short int

• 16 bits + (215-1) to -215

– int
• 32 bits + (231-1) to -231

– long int
• 64 bits + (263-1) to -263

Autumn Semester 2009 Programming and Data Structure 31

Contd.

• Range of numbers that can be represented:
Maximum :: + (2n-1 – 1)
Minimum :: − 2n-1

• Advantage:
– Unique representation of zero.
– Subtraction can be done using addition.
– Leads to substantial saving in circuitry.

• Almost all computers today use the 2’s
complement representation for storing
negative numbers.

Autumn Semester 2009 Programming and Data Structure 32

Subtraction Using Addition :: 1’s
Complement

• How to compute A – B ?
– Compute the 1’s complement of B (say, B1).
– Compute R = A + B1

– If the carry obtained after addition is ‘1’
• Add the carry back to R (called end-around carry).
• That is, R = R + 1.
• The result is a positive number.

Else
• The result is negative, and is in 1’s complement

form.

Autumn Semester 2009 Programming and Data Structure 33

Example 1 :: 6 – 2

1’s complement of 2 = 1101

6 :: 0110
-2 :: 1101

1 0011
1

0100 +4

End-around
carry

Assume 4-bit
representations.

Since there is a carry, it is
added back to the result.

The result is positive.

R
B1

A

Autumn Semester 2009 Programming and Data Structure 34

Example 2 :: 3 – 5

1’s complement of 5 = 1010

3 :: 0011
-5 :: 1010

1101
Assume 4-bit representations.

Since there is no carry, the
result is negative.

1101 is the 1’s complement of
0010, that is, it represents –2.

A
B1

R

-2

Autumn Semester 2009 Programming and Data Structure 35

Subtraction Using Addition :: 2’s
Complement

• How to compute A – B ?

– Compute the 2’s complement of B (say, B2).

– Compute R = A + B2

– Ignore carry if it is there.

– The result is in 2’s complement form.

Autumn Semester 2009 Programming and Data Structure 36

Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

6 :: 0110
-2 :: 1110

1 0100

A
B2

R

Ignore carry +4

Autumn Semester 2009 Programming and Data Structure 37

Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

3 :: 0011
-5 :: 1011

1110

A
B2

R

-2

Autumn Semester 2009 Programming and Data Structure 38

Example 3 :: -3 – 5

2’s complement of 3 = 1100 + 1 = 1101
2’s complement of 5 = 1010 + 1 = 1011

-3 :: 1101
-5 :: 1011

1 1000

Ignore carry -8

Autumn Semester 2009 Programming and Data Structure 39

Floating-point Numbers
• The representations discussed so far applies only

to integers.
– Cannot represent numbers with fractional parts.

• We can assume a decimal point before a 2’s
complement number.
– In that case, pure fractions (without integer parts) can

be represented.
• We can also assume the decimal point

somewhere in between.
– This lacks flexibility.
– Very large and very small numbers cannot be

represented.

Autumn Semester 2009 Programming and Data Structure 40

Representation of Floating-Point
Numbers

• A floating-point number F is represented
by a doublet <M,E> :

F = M x BE

• B exponent base (usually 2)
• M mantissa
• E exponent

– M is usually represented in 2’s complement
form, with an implied decimal point before it.

• For example,
In decimal,

0.235 x 106

In binary,
0.101011 x 20110

Autumn Semester 2009 Programming and Data Structure 41

Example :: 32-bit representation

– M represents a 2’s complement fraction
1 > M > -1

– E represents the exponent (in 2’s complement form)
127 > E > -128

• Points to note:
– The number of significant digits depends on the number

of bits in M.
• 6 significant digits for 24-bit mantissa.

– The range of the number depends on the number of bits
in E.

• 1038 to 10-38 for 8-bit exponent.

M E

24 8

Autumn Semester 2009 Programming and Data Structure 42

A Warning

• The representation for floating-point
numbers as shown is just for illustration.

• The actual representation is a little more
complex.

• In C:
– float :: 32-bit representation
– double :: 64-bit representation

Autumn Semester 2009 Programming and Data Structure 43

Representation of Characters
• Many applications have to deal with non-numerical

data.
– Characters and strings.
– There must be a standard mechanism to represent

alphanumeric and other characters in memory.
• Three standards in use:

– Extended Binary Coded Decimal Interchange Code (EBCDIC)
• Used in older IBM machines.

– American Standard Code for Information Interchange (ASCII)
• Most widely used today.

– UNICODE
• Used to represent all international characters.
• Used by Java.

Autumn Semester 2009 Programming and Data Structure 44

ASCII Code

• Each individual character is numerically
encoded into a unique 7-bit binary code.
– A total of 27 or 128 different characters.
– A character is normally encoded in a byte (8

bits), with the MSB not been used.
• The binary encoding of the characters

follow a regular ordering.
– Digits are ordered consecutively in their

proper numerical sequence (0 to 9).
– Letters (uppercase and lowercase) are

arranged consecutively in their proper
alphabetic order.

Autumn Semester 2009 Programming and Data Structure 45

Some Common ASCII Codes

‘A’ :: 41 (H) 65 (D)
‘B’ :: 42 (H) 66 (D)
………..
‘Z’ :: 5A (H) 90 (D)

‘a’ :: 61 (H) 97 (D)
‘b’ :: 62 (H) 98 (D)
………..
‘z’ :: 7A (H) 122 (D)

‘0’ :: 30 (H) 48 (D)
‘1’ :: 31 (H) 49 (D)
………..
‘9’ :: 39 (H) 57 (D)

‘(‘ :: 28 (H) 40 (D)
‘+’ :: 2B (H) 43 (D)
‘?’ :: 3F (H) 63 (D)
‘\n’ :: 0A (H) 10 (D)
‘\0’ :: 00 (H) 00 (D)

Autumn Semester 2009 Programming and Data Structure 46

Character Strings

• Two ways of representing a sequence of
characters in memory.
– The first location contains the number of

characters in the string, followed by the actual
characters.

– The characters follow one another, and is
terminated by a special delimiter.

oeH5 ll

⊥leH ol

Autumn Semester 2009 Programming and Data Structure 47

String Representation in C

• In C, the second approach is used.
– The ‘\0’ character is used as the string

delimiter.
• Example:

“Hello”

• A null string “” occupies one byte in
memory.
– Only the ‘\0’ character.

‘\0’leH ol

	Number Systems
	Number Representation
	Topics to be Discussed
	Number System :: The Basics
	Binary Number System
	Counting with Binary Numbers
	Multiplication and Division with base
	Adding two bits
	Binary addition: Another example
	Binary-to-Decimal Conversion
	Examples
	Decimal-to-Binary Conversion
	Example 1 :: 239
	Example 2 :: 64
	Example 3 :: .634
	Example 4 :: 37.0625
	Hexadecimal Number System
	Binary-to-Hexadecimal Conversion
	Example
	Hexadecimal-to-Binary Conversion
	Unsigned Binary Numbers
	Signed Integer Representation
	Sign-magnitude Representation
	Contd.
	One’s Complement Representation
	Example :: n=4
	Contd.
	Two’s Complement Representation
	Example :: n=4
	Contd.
	Contd.
	Subtraction Using Addition :: 1’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	Subtraction Using Addition :: 2’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	Example 3 :: -3 – 5
	Floating-point Numbers
	Representation of Floating-Point Numbers
	Example :: 32-bit representation
	A Warning
	Representation of Characters
	ASCII Code
	Some Common ASCII Codes
	Character Strings
	String Representation in C

