
Dept. of CSE, IIT KGP

Arrays- V
CS10001: Programming & Data Structures

Sudeshna Sarkar

Dept. of Computer Sc. & Engg.,
Indian Institute of Technology
Kharagpur

Dept. of CSE, IIT KGP

Two-dimensional Arrays

Dept. of CSE, IIT KGP

Two Dimensional Arrays

• We have seen that an array variable can store a list of
values.

• Many applications require us to store a table of values.

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Dept. of CSE, IIT KGP

2-dimensional Arrays

• It is convenient to think of a 2-d array as a rectangular
collection of elements .

• int a[3][5]

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]row0

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]row1

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]row2

a[3][0] a[3][1] a[3][2] a[3][3] a[3][4]row3

col0 col1 col2 col3 col4

Dept. of CSE, IIT KGP

Contd.

• The table contains a total of 20 values, five in
each line.
– The table can be regarded as a matrix consisting of

four rows and five columns.
• The computer memory is an 1-dimensional

sequence of bytes.
• A 2-d array is stored by the C compiler in row

major order.

Dept. of CSE, IIT KGP

Row major memory mapping

0 1 2 3
0

1

2

1 3 13 2

4 8 12 11
7 19 18 25

ro
w

s

columns

M[0][0] 1
M[0][1] 3
M[0][2] 13
M[0][3] 2
M[1][0] 4
M[1][1] 8
M[1][2] 12
M[1][3] 11
M[2][0] 7
M[2][1] 19
M[2][2] 18
M[2][3] 25

Dept. of CSE, IIT KGP

Row major memory mapping

0 1 2 3
0

1

2

1 3 13 2

4 8 12 11
7 19 18 25

ro
w

s

columns

M[0][0] 1
M[0][1] 3
M[0][2] 13
M[0][3] 2
M[1][0] 4
M[1][1] 8
M[1][2] 12
M[1][3] 11
M[2][0] 7
M[2][1] 19
M[2][2] 18
M[2][3] 25

Dept. of CSE, IIT KGP

Declaring 2D Arrays

• This is
an array of size 3 names[3]
whose elements are arrays of size 4 [4]
whose elements are characters char

• Declare it like this: char names[3][4];

'J' 'o' 'h' 'n'

'M' 'a' 'r' 'y'

'I' 'v' 'a' 'n'

type of element in
each slot

name of array number
of rows

number
of columns

Dept. of CSE, IIT KGP

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory locations.

• x: starting address of the array in memory
• c: number of columns
• s: number of bytes allocated per array element

a[i][j] → is allocated memory location at
address x + (i * c + j) * s

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

Dept. of CSE, IIT KGP

Declaring 2-D Arrays

• General form:
type array_name [row_size][column_size];

• Examples:
int marks[4][5];
float sales[12][25];
double matrix[100][100];

Dept. of CSE, IIT KGP

Multidimensional Arrays

double a[100];

int b[4][6];

char c[5][4][9];

A k-dimensional array has a size for each dimensions.

Let si be the size of the ith dimension. If array elements are of
type T and v=sizeof(T), the array declaration will allocate
space for s1*s2*...*sk elements which is s1*s2*...*sk*v bytes.

Dept. of CSE, IIT KGP

Initialization : 2-d arrays

• int a[2][3] = {1,2,3,4,5,6};

• int a[2][3] = {{1,2,3}, {4,5,6}};

• int a[][3] = {{1,2,3}, {4,5,6}};

Dept. of CSE, IIT KGP

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which evaluate to

integer values.

• Examples:
x [m][n] = 0;
c [i][k] += a [i][j] * b[j][k];
a = sqrt (a [j*3][k]);

Dept. of CSE, IIT KGP

How to read the elements of a 2-D array?

• By reading them one element at a time
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)
scanf (“%f”, &a[i][j]);

Dept. of CSE, IIT KGP

How to print the elements of a 2-D array?

• By printing them one element at a time.

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

printf (“\n %f”, a[i][j]);

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

printf (“%f”, a[i][j]);

Dept. of CSE, IIT KGP

Contd.

for (i=0; i<nrow; i++) {
printf (“\n”);
for (j=0; j<ncol; j++)

printf (“%f ”, a[i][j]);
}

Dept. of CSE, IIT KGP

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D
array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be known
to the function.

Dept. of CSE, IIT KGP

Formal parameter declarations

• When a multi-dimensional array is a formal parameter in a
function definition, all sizes except the first must be
specified so that the compiler can determine the correct
storage mapping function.

int sum (int a[][5]) {
int i, j, sum=0;
for (i=0; i<3; i++)

for (j=0; j<5; j++)
sum += a[i][j];

return sum;
}

Dept. of CSE, IIT KGP

Example: Matrix Addition

#include <stdio.h>
#define N 100
int main() {

int a[N][N], b[N][N],
c[N][N], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

c[p]q] = a[p][q] + b[p][q];

for (p=0; p<m; p++) {
printf (“\n”);
for (q=0; q<n; q++)

printf (“%f ”, a[p][q]);
}

}

Dept. of CSE, IIT KGP

Example Usage

#include <stdio.h>

int main() {
int a[15][25], b[15]25];
:
:
add (a, b, 15, 25);
:

}

void add (int x[][25], int y[][25], int rows, int cols) {

: : :

}

Dept. of CSE, IIT KGP

Pointers and multi-d arrays

int a[3][5]

• We can think of a[i] as the ith row of a.
• We can think of a[i][j] as the element in the ith row, jth

column.
• The array name, a (&a[0]) is a pointer to an array of 5

integers.
• The base address of the array is &a[0][0].
• Starting at the base address the compiler allocates

contiguous space for 15 ints.

Dept. of CSE, IIT KGP

Passing 2-d arrays to functions as pointers

We can use
f (int a [][5]) {…....}
or
f (int (*a) [5]) {.........}

We need parenthesis (*a) since [] have a higher
precedence than *

Note:
int (*a)[5] declares a pointer to an array of 5 ints.
int *a[5] declares an array of 35 pointers to ints.

Dept. of CSE, IIT KGP

The storage mapping function

• (The mapping between pointer values and array
indices.)

T mat[M][N];
– The storage mapping function : a[i][j] is equivalent to

*(&a[0][0] + N*i + j)
address (mat[i][j]) = address(mat[0][0]) + (i * N + j) * size(T)

= address (mat [0][0]) + i * N * size(T) + j * size(T)

= address (mat [0][0]) + i * size(row of T) + j * size(T)

Dept. of CSE, IIT KGP

Pointers and multi-d arrays

• There are numerous ways to access elements of a 2-d
array.

• a[i][j] is equivalent to:
– *(a[i]+j)
– (*(a+i)[j])
– *((*(a+i))+j)
– *(&a[0][0] + 5*i + j)

Dept. of CSE, IIT KGP

Exercise

• Write a function int maxinrow (..) which takes as
parameters a two dimensional matrix M declared with N
columns having r rows and c columns, the values of r
and c , a 1-d array rarr, and fills up each of the elements
in the 1-d array with the maximum element in the
corresponding columns of M. The function must return
the size of the array rarr.

Dept. of CSE, IIT KGP

int maxinrow (int M[][N], int r, int c, int rarr) {
int i, j, max;
for (i=0; i<c; i++) {

max = M[i][0] ;
for (j=1; j<r; j++ {

if (M[i][j] > max)
max = M[i][j] ;

}
rarr[i] = max;

}
return c;

}

Dept. of CSE, IIT KGP

3-dimensional arrays

• int a[X][Y][Z];

• The compiler will allocate X*Y*Z contiguous ints.

• The base address of the array is &a[0][0][0]

• Storage mapping function :

a[i][j][k] ≡*(&a[0][0][0] + Y*Z*i +Z*j + k)

• In the header of the function definition, the following 3 parameter
declarations are equivalent:

– int a[][Y][Z], int a[X][Y][Z], int (*a)[Y][Z]

Dept. of CSE, IIT KGP

The use of typedef

#define N 4
typedef double scalar;
typedef scalar vector[N];
typedef scalar matrix[N][N];

or typedef vector matrix[N];

Dept. of CSE, IIT KGP

void add (vector x, vector y, vector z) {
int i;
for (i=0; i<N; i++)

x[i] = y[i]+z[i];
}

scalar dot_product (vector x, vector y) {
int i;
scalar sum = 0.0;
for (i=0; i<N; i++)

sum += x[i]*y[i];
return sum;

}

Dept. of CSE, IIT KGP

void multiply (matrix x, matrix y, matrix z) {
int i, j, k;
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
x[i][j] = 0.0;
for (k=0; k<N; k++) {

x[i][j] += y[I][k]*z[k][j];
}

}
}

	Arrays- V�CS10001: Programming & Data Structures
	Two-dimensional Arrays
	Two Dimensional Arrays
	2-dimensional Arrays
	Contd.
	Row major memory mapping
	Row major memory mapping
	Declaring 2D Arrays
	How is a 2-D array is stored in memory?
	Declaring 2-D Arrays
	Multidimensional Arrays
	Initialization : 2-d arrays
	Accessing Elements of a 2-D Array
	How to read the elements of a 2-D array?
	How to print the elements of a 2-D array?
	Contd.
	Passing 2-D Arrays
	Formal parameter declarations
	Example: Matrix Addition
	Example Usage
	Pointers and multi-d arrays
	Passing 2-d arrays to functions as pointers
	The storage mapping function
	Pointers and multi-d arrays
	Exercise
	3-dimensional arrays
	The use of typedef

