
Dept. of CSE, IIT KGP

Arrays- II
CS10001: Programming & Data Structures

Sudeshna Sarkar
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Reading Array Elements

/* Read in student midterm and final grades and store them in two arrays*/

#define MaxStudents 100
int midterm[MaxStudents], final[MaxStudents];
int NumStudents ; /* actual no of students */
int i, done, Smidterm, Sfinal;

printf (“Input no of students :”);
scanf(“%d”, &NumStudents) ;
if (NumStudents > MaxStudents)

printf (“Too many students”) ;
else

for (i=0; i<NumStudents; i++)
scanf(“%d%d”, &midterm[i], &final[i]);

Dept. of CSE, IIT KGP

Reading Arrays - II
/* Read in student midterm and final grades and store them in 2 arrays */

#define MaxStudents 100
int midterm[MaxStudents], final[MaxStudents];
int NumStudents ; /* actual no of students */
int i, done, Smidterm, Sfinal;
done=FALSE; NumStudents=0;
while (!done) {

scanf(“%d%d”, &Smidterm, &Sfinal);
if (Smidterm !=-1 || NumStudents>=MaxStudents)

done = TRUE;
else {

midterm[NumStudents] = Smidterm;
final[NumStudents] = Sfinal;
NumStudents++;

}
}

Dept. of CSE, IIT KGP

Size of an array

• How do you keep track of the number of elements in
the array ?

– 1. Use an integer to store the current size of the array.
#define MAX 100
int size;
float cost[MAX] ;

– 2. Use a special value to mark the last element in an array. If
10 values are stored, keep the values in cost[0], ... , cost[9],
have cost[10] = -1

– 3. Use the 0th array element to store the size (cost[0]), and
store the values in cost[1], ... , cost[cost[0]]

Dept. of CSE, IIT KGP

Add an element to an array

1. cost[size] = newval; size++;

2. for (i=0; cost[i] != -1; i++) ;
cost[i] = newval;

cost[i+1] = -1;

3. cost[0]++;
cost[cost[0]] = newval;

Dept. of CSE, IIT KGP

Address vs. Value

• Each memory cell has an address associated with it.
• Each cell also stores some value.

• Don’t confuse the address referring to a memory
location with the value stored in that location.

23 42
101 102 103 104 105

Dept. of CSE, IIT KGP

Values vs Locations

• Variables name memory locations, which hold values.

32
x

1024:

address name

value

New Type : Pointer

Dept. of CSE, IIT KGP

Pointers

• A pointer is just a C variable whose value is the
address of another variable!

• After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything yet. We can
either:

– make it point to something that already exists, or
– allocate room in memory for something new that it will

point to… (next time)

Dept. of CSE, IIT KGP

Pointer

32
x

1024:
int x;

int ∗ xp ;

1024
xp

xp = &x ;

address of x

pointer to int

∗xp = 0; /* Assign 0 to x */
∗xp = ∗xp + 1; /* Add 1 to x */

Pointers Abstractly

int x;
int * p;
p=&x;
...
(x == *p) True
(p == &x) True

Dept. of CSE, IIT KGP

Pointers

• Declaring a pointer just allocates space to hold the
pointer – it does not allocate something to be
pointed to!

• Local variables in C are not initialized, they may
contain anything.

Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004

Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:
int ∗p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:

Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:
int ∗p, v;
p = &v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;
*p = *p + 4;
V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

Dept. of CSE, IIT KGP

Arrays and pointers

• An array name is an address, or a pointer value.

• Pointers as well as arrays can be subscripted.

• A pointer variable can take different addresses as
values.

• An array name is an address, or pointer, that is fixed.
It is a CONSTANT pointer to the first element.

Dept. of CSE, IIT KGP

Arrays

• Consequences:
–ar is a pointer
–ar[0] is the same as *ar
–ar[2] is the same as *(ar+2)
– We can use pointer arithmetic to access arrays more

conveniently.
• Declared arrays are only allocated while the scope

is valid
char *foo() {

char string[32]; ...;
return string;

} is incorrect

Dept. of CSE, IIT KGP

Pointer Arithmetic

• Since a pointer is just a mem address, we can add to it
to traverse an array.

•p+1 returns a ptr to the next array elt.

• What if we have an array of large structs (objects)?
– C takes care of it: In reality, p+1 doesn’t add 1 to the memory

address, it adds the size of the array element.

Dept. of CSE, IIT KGP

Pointer Arithmetic

• So what’s valid pointer arithmetic?
– Add an integer to a pointer.
– Subtract 2 pointers (in the same array).
– Compare pointers (<, <=, ==, !=, >, >=)
– Compare pointer to NULL (indicates that the pointer

to nothing).

Dept. of CSE, IIT KGP

Pointer Arithmetic

• We can use pointer arithmetic to “walk” through
memory:

° C automatically adjusts the pointer by the
right amount each time (i.e., 1 byte for a
char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
int i;
for (i=0; i<n; i++) {

*to++ = *from++;
}

}

Dept. of CSE, IIT KGP

int get(int array[], int n)
{

return (array[n]);
/* OR */
return *(array + n);

}

Pointer Arithmetic

• C knows the size of the thing a pointer points to – every
addition or subtraction moves that many bytes.

• So the following are equivalent:

Dept. of CSE, IIT KGP

Arrays

–Wrong rather bad practice
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

–Right rather recommended
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two

copies of the number 10

Dept. of CSE, IIT KGP

Arrays

• Pitfall: An array in C does not know its own length,
& bounds not checked!

– Consequence: We can accidentally access off the end of
an array.

– Consequence: We must pass the array and its size to a
procedure which is going to traverse it.

• Segmentation faults and bus errors:
– These are VERY difficult to find;

be careful!
– You’ll learn how to debug these in lab…

Dept. of CSE, IIT KGP

Arrays In Functions

• An array parameter can be declared as an array or a
pointer; an array argument can be passed as a pointer.

– Can be incremented

int strlen(char s[])
{

}

int strlen(char *s)
{

}

Dept. of CSE, IIT KGP

Arrays and pointers

int a[20], i, *p;
• The expression a[i] is equivalent to *(a+i)
• p[i] is equivalent to *(p+i)
• When an array is declared the compiler allocates a

sufficient amount of contiguous space in memory.
The base address of the array is the address of a[0].

• Suppose the system assigns 300 as the base
address of a. a[0], a[1], ...,a[19] are allocated 300,
304, ..., 376.

Dept. of CSE, IIT KGP

Arrays and pointers

#define N 20
int a[2N], i, *p, sum;
• p = a; is equivalent to p = *a[0];
• p is assigned 300.
• Pointer arithmetic provides an alternative to array indexing.
• p=a+1; is equivalent to p=&a[1]; (p is assigned 304)

for (p=a; p<&a[N]; ++p)
sum += *p ;

p=a;
for (i=0; i<N; ++i)

sum += p[i] ;
for (i=0; i<N; ++i)

sum += *(a+i) ;

Dept. of CSE, IIT KGP

Arrays and pointers

int a[N];

• a is a constant pointer.

• a=p; ++a; a+=2; illegal

Dept. of CSE, IIT KGP

Arrays as parameters of functions

• An array passed as a parameter is not copied

• An array name is a constant whose value serves as a
reference to the first (index 0) item in the array.

Dept. of CSE, IIT KGP

Arrays as parameters of functions

– Since constants cannot be changed, assignments
to array variables are illegal.

– Only the array name is passed as the value of a
parameter, but the name can be used to change
the array’s contents.

– Empty brackets [] are used to indicate that the
parameter is an array. The no of elements
allocated for the storage associated with the array
parameter does not need to be part of the array
parameter.

Dept. of CSE, IIT KGP

Array operations

#define MAXS 100
int insert (int[], int, int, int) ;
int delete (int[], int, int) ;
int getelement (int[], int, int) ;
int readarray (int[], int) ;
int main () {

int a[MAXS];
int size;
size = readarray (a, 10) ;
size = insert (a, size, 4, 7) ;
x = getelement (a, size, 3) ;
size = delete (a, size, 3) ;

}

Dept. of CSE, IIT KGP

Array operations

#define MAXS 100

int insert (int[], int, int, int) ;

int delete (int[], int, int) ;

int getelement (int[], int, int) ;

int readarray (int[], int) ;

int main () {

int a[MAXS];

int size;

size = readarray (a, 10) ;

size = insert (a, size, 4, 7) ;

x = getelement (a, size, 3) ;

size = delete (a, size, 3) ;

}

int readarray (int x[], int size) {
int i;
for (i=0; i<size; i++)

scanf(“%d”, &x[i]) ;
return size;

}

int getelement (int x[], int size, int pos){
if (pos <size) return x[pos] ;
return -1;

}

int insert (int x[], int size, int pos. int val){
for (k=size; k>pos; k--)

x[k] = x[k-1] ;
x[pos] = val ;
return size+1;

}

Dept. of CSE, IIT KGP

void reverse (int x[], int size) {

}

int findmax (int x[], int size)
{

}

Dept. of CSE, IIT KGP

void reverse (int x[], int size) {
int i;
for (i=0; i< (size/2); i++)

temp = x[size-i-1] ;
x[size-1-1] = x[i] ;
x[i] = temp;

}

int findmax (int x[], int size) {
int i, max;

max = x[0];
for (i=1; i< size; i++)

if (x[i] > max)
max = x[i] ;

return max;
}

	Arrays- II�CS10001: Programming & Data Structures
	Reading Array Elements
	Reading Arrays - II
	Size of an array
	Add an element to an array
	Address vs. Value
	Values vs Locations
	Pointers
	Pointer
	Pointers
	Pointer Usage Example
	Pointer Usage Example
	Pointer Usage Example
	Pointer Usage Example
	Pointer Usage Example
	Arrays and pointers
	Arrays
	Pointer Arithmetic
	Pointer Arithmetic
	 Pointer Arithmetic
	Pointer Arithmetic
	Arrays
	Arrays
	Arrays In Functions
	Arrays and pointers
	Arrays and pointers
	Arrays and pointers
	Arrays as parameters of functions
	Arrays as parameters of functions
	Array operations
	Array operations

