
Dept. of CSE, IIT KGP

Linked Lists
CS10001: Programming & Data Structures

Sudeshna Sarkar

Dept. of Computer Sc. & Engg.,
Indian Institute of Technology
Kharagpur

Arrays: pluses and minuses

Dept. of CSE, IIT KGP

+ Fast element access.
-- Impossible to resize.

• Many applications require resizing!
• Required size not always immediately available.

Dynamic memory allocation: review

Dept. of CSE, IIT KGP

typedef struct {
int hiTemp;
int loTemp;
double precip;

} WeatherData;
int main () {

int numdays;
WeatherData * days;
scanf (“%d”, &numdays) ;
days=(WeatherData *)malloc (sizeof(WeatherData)*numdays);
if (days == NULL) printf (“Insufficient memory”);
...
free (days) ;

}

Self Referential Structures

Dept. of CSE, IIT KGP

• A structure referencing itself – how?

So, we need a pointer inside a structure that points to a
structure of the same type.

struct list {
int data;
struct list *next;

} ;

Self-referential structures

Dept. of CSE, IIT KGP

struct list {
int data ;
struct list * next ;

} ;

The pointer variable next is called a link.
Each structure is linked to a succeeding structure
by next.

Pictorial representation

Dept. of CSE, IIT KGP

A structure of type struct list

data next

The pointer variable next contains either
• an address of the location in memory of the

successor list element
• or the special value NULL defined as 0.

NULL is used to denote the end of the list.

Dept. of CSE, IIT KGP

struct list a, b, c;
a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

1 NULL
a

2 NULL
b

3 NULL
c

data next data next data next

Chaining these together

Dept. of CSE, IIT KGP

a.next = &b;
b.next = &c;

a b c
1 2 3 NULL

data next data next data next

What are the values of :
• a.next->data
• a.next->next->data

2
3

Linked Lists

Dept. of CSE, IIT KGP

• A singly linked list is a
concrete data structure
consisting of a
sequence of nodes

• Each node stores
– element
– link to the next node

next

elem node

A B C D

NULL

Linear Linked Lists

Dept. of CSE, IIT KGP

• A head pointer addresses the first element of the
list.

• Each element points at a successor element.
• The last element has a link value NULL.

head

A B C D

NULL

Header file : list.h

Dept. of CSE, IIT KGP

#include <stdio.h>
#include <stdlib.h>
typedef char DATA;
struct list {

DATA d;
struct list * next;

};
typedef struct list ELEMENT;
typedef ELEMENT * LINK;

Storage allocation

Dept. of CSE, IIT KGP

LINK head ;
head = malloc (sizeof(ELEMENT));
head->d = ‘n’;
head->next = NULL;

creates a single element list.

n NULLhead

Storage allocation

Dept. of CSE, IIT KGP

head->next = malloc (sizeof(ELEMENT));
head->next->d = ‘e’;
head->next->next = NULL;

A second element is added.

n e NULLhead

Storage allocation

Dept. of CSE, IIT KGP

head->next->next = malloc (sizeof(ELEMENT));
head->next->next->d = ‘w’;
head->next->next-> = NULL;

We have a 3 element list pointed to by head.
The list ends when next has the sentinel value NULL.

n e w NULLhead

List operations

Dept. of CSE, IIT KGP

List operations
• (i) How to initialize such a self referential structure

(LIST),
• (ii) how to insert such a structure into the LIST,
• (iii) how to delete elements from it,
• (iv) how to search for an element in it,
• (v) how to print it,
• (vi) how to free the space occupied by the LIST?

Produce a list from a string
(recursive version)

Dept. of CSE, IIT KGP

#include “list.h”
LINK StrToList (char s[]) {

LINK head ;
if (s[0] == ‘\0’)

return NULL ;
else {

head = malloc (sizeof(ELEMENT));
head->d = s[0];
head->next = StrToList (s+1);
return head;

}
}

Dept. of CSE, IIT KGP

#include “list.h”
LINK SToL (char s[]) {

LINK head = NULL, tail;
int i;
if (s[0] != ‘\0’) {

head = malloc (sizeof(ELEMENT));
head->d = s[0];
tail = head;
for (i=1; s[i] != ‘\0’; i++) {

tail->next = malloc(sizeof(ELEMENT));
tail = tail->next;
tail->d = s[i];

}
tail->next = NULL;

}
return head;

}

list from a string
(iterative version)

Dept. of CSE, IIT KGP

Inserting at the Head

1. Allocate a new node
2. Insert new element
3. Make new node point

to old head
4. Update head to point

to new node

Removing at the Head

Dept. of CSE, IIT KGP

1. Update head to point to
next node in the list

2. Allow garbage collector
to reclaim the former
first node

Dept. of CSE, IIT KGP

Inserting at the Tail

1. Allocate a new node
2. Insert new element
3. Have new node point

to null
4. Have old last node

point to new node
5. Update tail to point

to new node

Removing at the Tail

Dept. of CSE, IIT KGP

• Removing at the tail of a
singly linked list cannot
be efficient!

• There is no constant-
time way to update the
tail to point to the
previous node

Insertion

Dept. of CSE, IIT KGP

To insert a data item into an ordered linked list involves:

• creating a new node containing the data,

• finding the correct place in the list, and

• linking in the new node at this place.

Example of an Insertion

Dept. of CSE, IIT KGP

3 5 8 12 -

7

first prev ptr

new

• Create new node for the 7
• Find correct place – when ptr finds the 8 (7 < 8)
• Link in new node with previous (even if last) and ptr nodes
• Also check insertion before first node!

Header file : list.h

Dept. of CSE, IIT KGP

#include <stdio.h>
#include <stdlib.h>
struct list {

int data;
struct list * next;

};
typedef struct list ELEMENT;
typedef ELEMENT * LINK;

Create_node function

Dept. of CSE, IIT KGP

Listpointer create_node(int data)
{

LINK new;
new = (LINK) malloc (sizeof (ELEMENT));
new -> data = data;
return (new);

}

insert function

Dept. of CSE, IIT KGP

LINK insert (int data, LINK ptr)
{

LINK new, prev, first;
new = create_node(data);
if (ptr == NULL || data < ptr -> value)
{ // insert as new first node

new -> next = ptr;
return new;

// return pointer to first node
}

Dept. of CSE, IIT KGP

else // not first one
{

first = ptr; // remember start
prev = ptr;
ptr = ptr -> next; // second
while (ptr != NULL && data > ptr -> data)
{ // move along

prev = ptr;
ptr = ptr -> next;

}
prev -> next = new; // link in
new -> next = ptr; //new node
return first;

} // end else
} // end insert

Deletion

Dept. of CSE, IIT KGP

To delete a data item from a linked list involves
(assuming it occurs only once!):

• finding the data item in the list, and

• linking out this node, and

• freeing up this node as free space.

Example of Deletion

Dept. of CSE, IIT KGP

3 5 8 12 -

first prev ptr

• When ptr finds the item to be deleted, e.g. 8, we need
the previous node to make the link to the next one
after ptr (i.e. ptr -> next).

• Also check whether first node is to be deleted.

Dept. of CSE, IIT KGP

// delete the item from ascending list
LINK delete_item(int data, LINK ptr) {

LINK prev, first;
first = ptr; // remember start
if (ptr == NULL) {

return NULL;
}
else
if (data == ptr -> data) // first node

{
ptr = ptr -> next; // second node
free(first); // free up node
return ptr; // second

}

Dept. of CSE, IIT KGP

else // check rest of list
{

prev = ptr;
ptr = ptr -> next;

// find node to delete
while (ptr != NULL && data > ptr->data)
{

prev = ptr;
ptr = ptr -> next;

}

Dept. of CSE, IIT KGP

if (ptr == NULL || data != ptr->data)
// NOT found in ascending list
// nothing to delete

{
return first; // original

}
else // found, delete ptr node
{

prev -> next = ptr -> next;
free(ptr); // free node
return first; // original

}
}

} // end delete

Dept. of CSE, IIT KGP

Representation with Dummy Node
head

dummy node

• Insertion at the beginning is the same as insertion
after the dummy node

Initialization

Dept. of CSE, IIT KGP

head Write a function that initializes LIST

typedef struct list {
int data;
struct list *next;

} ELEMENT;

ELEMENT* Initialize (int element) {
ELEMENT *head;
head = (ELEMENT *)calloc(1,sizeof(data)); /* Create initial node */
head->data = element; head -> next = NULL;
return head;

}

Dept. of CSE, IIT KGP

Inserthead

head

Dept. of CSE, IIT KGP

ELEMENT* Insert(ELEMENT *head, int element, int position) {
int i=0;
ELEMENT *temp, *new;
if (position < 0) {

printf("\nInvalid index %d\n", position);
return head;

}
temp = head;
for(i=0;i<position;i++){

temp=temp->next;
if(temp==NULL) {

printf("\nInvalid index %d\n", position);
return head;

}
}
new = (ELEMENT *)calloc(1,sizeof(ELEMENT));
new ->data = element;
new -> next = temp -> next;
temp -> next = new;
return head;

}

Dept. of CSE, IIT KGP

Deletehead

temp
head

temp

Dept. of CSE, IIT KGP

ELEMENT* Delete(data *head, int position) {
int i=0;data *temp,*hold;
if (position < 0) {

printf("\nInvalid index %d\n", position);
return head;

}
temp = head;
while ((i < position) && (temp -> next != NULL)) {

temp = temp -> next; i++;
}
if (temp -> next == NULL) {

printf("\nInvalid index %d\n", position);
return head;

}
hold = temp -> next;
temp -> next = temp -> next -> next;
free(hold);
return head;

}

Searching a data element

Dept. of CSE, IIT KGP

int Search (ELEMENT *head, int element) {
int i; ELEMENT *temp;
i = 0;
temp = head -> next;
while (temp != NULL) {

if (temp -> x == element)
return TRUE;

temp = temp -> next;
i++;

}
return FALSE;

}

Printing the list

Dept. of CSE, IIT KGP

void Print (ELEMENT *head)
{

ELEMENT *temp;
temp = head -> next;
while (temp != NULL) {

printf("%d->", temp -> data);
temp = temp -> next;

}
}

Print the list backwards

Dept. of CSE, IIT KGP

.

head

How can you when the links are in forward direction ?

Can you apply recursion?

Print the list backwards

Dept. of CSE, IIT KGP

void PrintArray(ELEMENT *head) {
if(head -> next == NULL) {
/*boundary condition to stop recursion*/

printf(" %d->",head -> data);
return;

}
PrintArray(head -> next); /* calling function recursively*/
printf(" %d ->",head -> data);/* Printing current elemen
return;

}

Dept. of CSE, IIT KGP

Free the LISThead

temp1 temp2

We can free temp1 only after we have retrieved the
address of the next element (temp2) from temp1.

Free the list

Dept. of CSE, IIT KGP

void Free(ELEMENT *head) {
ELEMENT *temp1, *temp2;
temp1 = head;
while(temp1 != NULL) /*boundary condition check*/
{

temp2 = temp1 -> next;
free(temp1);
temp1 = temp2;

}
}

1. A one-element list

Dept. of CSE, IIT KGP

?A
head

tail

2. A second element is attached

A
head

tail

??

3. Updating the tail

A
head

tail

?B

4. after assigning NULL

A
head

tail

NULLB

Dept. of CSE, IIT KGP

/* Count a list recursively */
int count (LINK head) {

if (head == NULL)
return 0;

return 1+count(head->next);
}

/* Count a list iteratively */
int count (LINK head) {

int cnt = 0;
for (; head != NULL; head=head->next)

++cnt;
return cnt;

}

/* Print a List */

Dept. of CSE, IIT KGP

void PrintList (LINK head) {
if (head == NULL)

printf (“NULL”) ;
else {

printf (“%c --> “, head->d) ;
PrintList (head->next);

}
}

/* Concatenate two Lists */

Dept. of CSE, IIT KGP

void concatenate (LINK ahead, LINK bhead) {
if (ahead->next == NULL)

ahead->next = bhead ;
else

concatenate (ahead->next, bhead);
}

Insertion

Dept. of CSE, IIT KGP

• Insertion in a list takes a fixed amount of time once the position in
the list is found.

Before Insertion

A C
p2p1

B
q

Insertion

Dept. of CSE, IIT KGP

/* Inserting an element in a linked list. */
void insert (LINK p1, LINK p2, LINK q) {

p1->next = q;
q->next = p2;

}

A C
p2p1

B
q

After Insertion

Deletion

Dept. of CSE, IIT KGP

Before deletion

p

1 2 3

p->next = p->next->next;

After deletion

1 2 3

garbagep

Deletion

Dept. of CSE, IIT KGP

Before deletion

1 2 3
p

q = p->next;
p->next = p->next->next;

After deletion

1 2 3

p

q free (q) ;

Delete a list and free memory

Dept. of CSE, IIT KGP

/* Recursive deletion of a list */
void delete_list (LINK head) {

if (head != NULL) {
delete_list (head->next) ;
free (head) ; /* Release storage */

}

	Linked ListsCS10001: Programming & Data Structures
	Arrays: pluses and minuses
	Dynamic memory allocation: review
	Self Referential Structures
	Self-referential structures
	Pictorial representation
	
	Chaining these together
	Linked Lists
	Linear Linked Lists
	Header file : list.h
	Storage allocation
	Storage allocation
	Storage allocation
	List operations
	Produce a list from a string (recursive version)
	list from a string (iterative version)
	Inserting at the Head
	Removing at the Head
	Inserting at the Tail
	Removing at the Tail
	Insertion
	Example of an Insertion
	Header file : list.h
	Create_node function
	insert function
	Deletion
	Example of Deletion
	Initialization
	Insert
	Delete
	Free the LIST
	/* Count a list recursively */
	/* Print a List */
	/* Concatenate two Lists */
	Insertion
	Insertion
	Deletion
	Deletion
	Delete a list and free memory

