
Dept. of CSE, IIT KGP

Control Flow: LoopingControl Flow: Looping
CS10001:CS10001: Programming & Data StructuresProgramming & Data Structures

Sudeshna SarkarSudeshna Sarkar
Professor, Dept. of Computer Sc. & Professor, Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Types of Repeated Execution Types of Repeated Execution

• Loop: Group of instructions that are executed
repeatedly while some condition remains true.

How loops are controlled

Sentinel Sentinel
ControlledControlled

Counter ControlledCounter Controlled
••1, 2, 3, 4, 1, 2, 3, 4, ……
••……, 4, 3, 2, 1, 4, 3, 2, 1

Condition Condition
ControlledControlled

Dept. of CSE, IIT KGP

Counter Controlled LoopCounter Controlled Loop

Read 5 integers Read 5 integers
and display the and display the
value of their value of their
summation.summation.

counter ← 1, sum ← 0

counter < 6

sum ← sum + n

false

true

counter++

output sum

input n

Dept. of CSE, IIT KGP

Given an exam marks as input, display the appropriate
message based on the rules below:

If marks is greater than 49, display “PASS”, otherwise
display “FAIL”

However, for input outside the 0-100 range, display
“WRONG INPUT” and prompt the user to input again
until a valid input is entered

Condition-controlled Loop

Dept. of CSE, IIT KGP

Condition-Controlled Loop

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

Condition-controlled
loop with its condition
being tested at the end

Dept. of CSE, IIT KGP

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

ConditionCondition--controlled controlled
loop with its loop with its
condition being condition being
tested firsttested first

Dept. of CSE, IIT KGP

Sentinel-Controlled Loop

•• Receive a number of positive Receive a number of positive
integers and display the integers and display the
summation and average of summation and average of
these integers.these integers.

•• A negative or zero input A negative or zero input
indicates the end of input indicates the end of input
process process

Input: A set of integers
ending with a

negative integer or a zero

Output: Summation and
Average of these integers

Dept. of CSE, IIT KGP

• Input Example:
30 16 42 -9

• Output Example:
Sum = 88
Average = 29.33

Sentinel Sentinel
ValueValue

Dept. of CSE, IIT KGP

while loop

while (expression)
statement

while (i < n) {
printf (“Line no : %d.\n”,i);
i++;

}

expression

statement
(loop body)

F

T

Dept. of CSE, IIT KGP

while Statement

• The “while” statement is used to carry out looping
operations, in which a group of statements is executed
repeatedly, as long as some condition remains
satisfied.

while (condition)
statement_to_repeat;

while (condition) {
statement_1;

...
statement_N;

}
Note:
The while-loop will not be entered if the loop-control
expression evaluates to false (zero) even before the first
iteration.
break can be used to come out of the while loop.

Dept. of CSE, IIT KGP

while :: Examples

int weight;

while (weight > 65) {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

}

Dept. of CSE, IIT KGP

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

Double your money

• Suppose your Rs 10000 is earning interest at 1% per
month. How many months until you double your money ?

my_money=10000.0;
n=0;
while (my_money < 20000.0) {

my_money = my_money*1.01;
n++;

}
printf (“My money will double in %d months.\n”,n);

Dept. of CSE, IIT KGP

Maximum of inputs

printf (“Enter positive numbers to max, end with -
1.0\n”);

max = 0.0;
count = 0;
scanf(“%f”, &next);
while (next != 1.0) {

if (next > max)
max = next;

count++;
scanf(“%f”, &next);

}
printf (“The maximum number is %f\n”, max) ;

Dept. of CSE, IIT KGP

Printing a 2-D Figure

• How would you print the following diagram?
* * * * *
* * * * *
* * * * *

repeat 3 times
print a row of 5

stars

repeat 5 times
print *

Dept. of CSE, IIT KGP

Nested Loops

#define ROWS 3
#define COLS 5
...
row=1;
while (row <= ROWS) {

/* print a row of 5 *’s */
...

row++;
}

row=1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col=1;
while (col <= COLS) {

printf (“* “);
col++;

}
printf(“\n”);
row++;

}

outer
loop

inner
loop

Dept. of CSE, IIT KGP

do-while statement

do statement while (expression)

main () {
int digit=0;
do

printf(“%d\n”,digit++);
while (digit <= 9) ;

}

statement

expression
F

T

Dept. of CSE, IIT KGP

Example for do-while

Usage: Prompt user to input “month” value, keep prompting until a
correct value of moth is input.

do {
printf (“Please input month {1-12}”);
scanf (“%d”, &month);

} while ((month < 1) || (month > 12));

Dept. of CSE, IIT KGP

int main () {
char echo ;
do {

scanf (“%c”, &echo);
printf (“%c”,echo);

} while (echo != ‘\n’) ;
}

Dept. of CSE, IIT KGP

• The “for” statement is the most commonly
used looping structure in C.

• General syntax:
for (expr1; expr2; expr3) statement

expr1 (init) : initialize parameters
expr2 (test): test condition, loop continues if satisfied
expr3 (update): used to alter the value of the parameters

after each iteration
statement (body): body of the loop

for Statement

Dept. of CSE, IIT KGP

for (expression1; expression2; expression3)
statement

expr1;
while (expr2) {

statement
expr3;

}

expr1
(init)

expr2
(test)

statement
(body)

expr3
(update)

F

T

Dept. of CSE, IIT KGP

Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
for (count=1; count <= N; count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

2-D Figure

Print
* * * * *
* * * * *
* * * * *

#define ROWS 3
#define COLS 5
....
for (row=1; row<=ROWS; row++) {

for (col=1; col<=COLS; col++) {
printf(“*”);

}
printf(“\n”);

}

Dept. of CSE, IIT KGP

Another 2-D Figure

Print
*
* *
* * *
* * * *
* * * * *

#define ROWS 5
....
int row, col;
for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {
printf(“* ”);

}
printf(“\n”);

}

Dept. of CSE, IIT KGP

For - Examples

• Problem 1: Write a For statement that computes the sum of all odd
numbers between 1000 and 2000.

• Problem 2: Write a For statement that computes the sum of all
numbers between 1000 and 10000 that are divisible by 17.

• Problem 3: Printing square problem but this time make the square
hollow.

• Problem 4: Print
* * * * *
* * * *
* * *

* *
*

Dept. of CSE, IIT KGP

Problem 4 : solution

Print
* * * * *
* * * *
* * *
* *
*

#define ROWS 5
....
int row, col;
for (row=0; row<ROWS; row++) {

for (col=1; col<=row; col++)
printf(" ");

for (col=1; col<=ROWS-row; col++)
printf("* ");

printf ("\n");
}

Dept. of CSE, IIT KGP

The comma operator

• We can give several statements separated by commas
in place of “expression1”, “expression2”, and
“expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;

Dept. of CSE, IIT KGP

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment

can contain arithmetic expressions.
for (k = x; k <= 4 * x * y; k += y / x)

• "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:
– Body of for structure not performed.
– Control proceeds with statement after for structure.

Dept. of CSE, IIT KGP

Specifying “Infinite Loop”

while (1) {
statements

}

for (; ;)
{

statements
}

do {
statements

} while (1);

Dept. of CSE, IIT KGP

The break Statement

• Break out of the loop { }
– can use with

• while
• do while
• for
• switch

– does not work with
• if
• else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after the
structure.

Dept. of CSE, IIT KGP

An Example

#include <stdio.h>
int main() {

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
}

Dept. of CSE, IIT KGP

The continue Statement

• Skips the remaining statements in the body of a
while, for or do/while structure.
– Proceeds with the next iteration of the loop.

• while and do/while
– Loop-continuation test is evaluated immediately after the

continue statement is executed.
• for structure

– expression3 is evaluated, then expression2 is evaluated.

Dept. of CSE, IIT KGP

An Example with “break” & “continue”

fact = 1; i = 1; /* a program segment to calculate 10 !
while (1) {

fact = fact * i;
i ++ ;
if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;
}

Dept. of CSE, IIT KGP

Some Examples

Dept. of CSE, IIT KGP

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
for (count=1;count <= N;count++) {

sum = sum + count;
printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

Example 5: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT ∗ COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count∗count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Dept. of CSE, IIT KGP

Example: Computing Factorial

STARTSTART

READ NREAD N

PROD = 1
COUNT = 1COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1COUNT = COUNT + 1

ISIS
COUNT > N?COUNT > N? OUTPUT PROD

STOPSTOP

YESYESNONO

int main () {
int N, count, prod;
scanf (“%d”, &N) ;
prod = 1;
for (count=0;count < N; count++) {

prod =prod*count;
printf (“Factorial = %d\n”, prod) ;
return 0;

}

Dept. of CSE, IIT KGP

Example: Computing ex series up to N terms

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

Dept. of CSE, IIT KGP

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; count < n; count++) {

sum += term;
term ∗= x/count;

}
printf (“%f\n”, sum) ;

}

Dept. of CSE, IIT KGP

Example 8: Computing ex series up to 4 decimal places

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

Dept. of CSE, IIT KGP

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; term<0.0001; count++) {

sum += term;
term *= x/count;

}
printf (“%f\n”, sum) ;

}

Dept. of CSE, IIT KGP

Example 1: Test if a number is prime or not

#include <stdio.h>
int main() {

int n, i=2;
scanf (“%d”, &n);
while (i < n) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}

Dept. of CSE, IIT KGP

More efficient??

#include <stdio.h>
main()
{

int n, i=3;
scanf (“%d”, &n);
while (i < sqrt(n)) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 2;

}
printf (“%d is a prime \n”, n);

}

Dept. of CSE, IIT KGP

Example 2: Find the sum of digits of a number

#include <stdio.h>
main()
{

int n, sum=0;
scanf (“%d”, &n);
while (n != 0) {

sum = sum + (n % 10);
n = n / 10;

}
printf (“The sum of digits of the number is %d \n”, sum);

}

Dept. of CSE, IIT KGP

Example 3: Decimal to binary conversion

#include <stdio.h>
main()
{

int dec;
scanf (“%d”, &dec);
do
{

printf (“%2d”, (dec % 2));
dec = dec / 2;

} while (dec != 0);
printf (“\n”);

}

Dept. of CSE, IIT KGP

Example 4: Compute GCD of two numbers

#include <stdio.h>
main()
{

int A, B, temp;
scanf (%d %d”, &A, &B);
if (A > B) { temp = A; A = B; B = temp; }
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
printf (“The GCD is %d”, A);

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0 GCD is 3

Dept. of CSE, IIT KGP

More about scanf and printf

Dept. of CSE, IIT KGP

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically containing data
types of the arguments to be read in;

– the arguments arg1, arg2, … represent pointers to data
items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);
• The control string consists of individual groups of characters,

with one character group for each input data item.
– ‘%’ sign, followed by a conversion character.

Dept. of CSE, IIT KGP

– Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

– We can also specify the maximum field-width of a data item, by
specifying a number indicating the field width before the
conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Dept. of CSE, IIT KGP

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing formatting
information and data types of the arguments to be output;

– the arguments arg1, arg2, … represent the individual output
data items.

• The conversion characters are the same as in scanf.

Dept. of CSE, IIT KGP

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

