
1

Spring Semester 2007 Programming and Data Structure 1

Pointers

Spring Semester 2007 Programming and Data Structure 2

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data item.

• They have a number of useful applications.
– Enables us to access a variable that is defined

outside the function.
– Can be used to pass information back and forth

between a function and its reference point.
– More efficient in handling data tables.
– Reduces the length and complexity of a program.
– Sometimes also increases the execution speed.

2

Spring Semester 2007 Programming and Data Structure 3

Basic Concept

• In memory, every stored data item occupies
one or more contiguous memory cells.
– The number of memory cells required to store a

data item depends on its type (char, int, double,
etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the
value of the variable.
– Since every byte in memory has a unique

address, this location will also have its own
(unique) address.

Spring Semester 2007 Programming and Data Structure 4

Contd.

• Consider the statement
int xyz = 50;

– This statement instructs the compiler to
allocate a location for the integer variable xyz,
and put the value 50 in that location.

– Suppose that the address location chosen is
1380.

xyz variable

50 value

1380 address

3

Spring Semester 2007 Programming and Data Structure 5

Contd.
• During execution of the program, the

system always associates the name xyz
with the address 1380.
– The value 50 can be accessed by using either

the name xyz or the address 1380.
• Since memory addresses are simply

numbers, they can be assigned to some
variables which can be stored in memory.
– Such variables that hold memory addresses

are called pointers.
– Since a pointer is a variable, its value is also

stored in some memory location.

Spring Semester 2007 Programming and Data Structure 6

Contd.

• Suppose we assign the address of xyz to
a variable p.
– p is said to point to the variable xyz.

Variable Value Address

xyz 50 1380

p 1380 2545
p = &xyz;

4

Spring Semester 2007 Programming and Data Structure 7

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.
• Example:

p = &xyz;
– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a
simple variable or an array element.

&distance
&x[0]
&x[i-2]

Spring Semester 2007 Programming and Data Structure 8

Contd.

• Following usages are illegal:
&235

• Pointing at constant.

int arr[20];
:

&arr;
• Pointing at array name.

&(a+b)
• Pointing at expression.

5

Spring Semester 2007 Programming and Data Structure 9

Example

#include <stdio.h>
main()
{

int a;
float b, c;
double d;
char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;
printf (“%d is stored in location %u \n”, a, &a) ;
printf (“%f is stored in location %u \n”, b, &b) ;
printf (“%f is stored in location %u \n”, c, &c) ;
printf (“%ld is stored in location %u \n”, d, &d) ;
printf (“%c is stored in location %u \n”, ch, &ch) ;

}

Spring Semester 2007 Programming and Data Structure 10

Output:

10 is stored in location 3221224908
2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A is stored in location 3221224891

6

Spring Semester 2007 Programming and Data Structure 11

Pointer Declarations

• Pointer variables must be declared before
we use them.

• General form:
data_type *pointer_name;

• Three things are specified in the above
declaration:

• The asterisk (*) tells that the variable
pointer_name is a pointer variable.

• pointer_name needs a memory location.
• pointer_name points to a variable of type

data_type.

Spring Semester 2007 Programming and Data Structure 12

Contd.

• Example:
int *count;
float *speed;

• Once a pointer variable has been declared,
it can be made to point to a variable using
an assignment statement like:

int *p, xyz;
:
p = &xyz;

– This is called pointer initialization.

7

Spring Semester 2007 Programming and Data Structure 13

Things to Remember

• Pointer variables must always point to a
data item of the same type.

float x;
int *p;
: will result in erroneous output
p = &x;

• Assigning an absolute address to a pointer
variable is prohibited.

int *count;
:
count = 1268;

Spring Semester 2007 Programming and Data Structure 14

Accessing a Variable Through its
Pointer

• Once a pointer has been assigned the
address of a variable, the value of the
variable can be accessed using the
indirection operator (*).

int a, b;
int *p;
:
p = &a;
b = *p;

Equivalent to b = a;

8

Spring Semester 2007 Programming and Data Structure 15

Example 1

#include <stdio.h>
main()
{

int a, b;
int c = 5;
int *p;

a = 4 * (c + 5) ;

p = &c;
b = 4 * (*p + 5) ;
printf (“a=%d b=%d \n”, a, b);

}

Equivalent

a=40 b=40

Spring Semester 2007 Programming and Data Structure 16

Example 2
#include <stdio.h>
main()
{

int x, y;
int *ptr;

x = 10 ;
ptr = &x ;
y = *ptr ;
printf (“%d is stored in location %u \n”, x, &x) ;
printf (“%d is stored in location %u \n”, *&x, &x) ;
printf (“%d is stored in location %u \n”, *ptr, ptr) ;
printf (“%d is stored in location %u \n”, y, &*ptr) ;
printf (“%u is stored in location %u \n”, ptr, &ptr) ;
printf (“%d is stored in location %u \n”, y, &y) ;

*ptr = 25;
printf (“\nNow x = %d \n”, x);

}

9

Spring Semester 2007 Programming and Data Structure 17

Output:

10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
3221224908 is stored in location 3221224900
10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Spring Semester 2007 Programming and Data Structure 18

Pointer Expressions

• Like other variables, pointer variables can
be used in expressions.

• If p1 and p2 are two pointers, the following
statements are valid:

sum = *p1 + *p2;
prod = *p1 * *p2;
prod = (*p1) * (*p2);
*p1 = *p1 + 2;
x = *p1 / *p2 + 5;

*p1 can appear on
the left hand side

10

Spring Semester 2007 Programming and Data Structure 19

Contd.

• What are allowed in C?
– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same
array, then p2–p1 gives the number of
elements between p1 and p2.

Spring Semester 2007 Programming and Data Structure 20

• What are not allowed?
– Add two pointers.

p1 = p1 + p2;

– Multiply / divide a pointer in an expression.
p1 = p2 / 5;
p1 = p1 – p2 * 10;

11

Spring Semester 2007 Programming and Data Structure 21

Scale Factor
• We have seen that an integer value can be

added to or subtracted from a pointer
variable.

int *p1, *p2;
int i, j;
:
p1 = p1 + 1;
p2 = p1 + j;
p2++;
p2 = p2 – (i + j);

– In reality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

Spring Semester 2007 Programming and Data Structure 22

Contd.

Data Type Scale Factor
char 1
int 4
float 4
double 8

– If p1 is an integer pointer, then
p1++

will increment the value of p1 by 4.

12

Spring Semester 2007 Programming and Data Structure 23

• Note:
– The exact scale factor may vary from one

machine to another.
– Can be found out using the sizeof function.
– Syntax:

sizeof (data_type)

Spring Semester 2007 Programming and Data Structure 24

Example: to find the scale factors
#include <stdio.h>
main()
{

printf (“No. of bytes occupied by int is %d \n”, sizeof(int));
printf (“No. of bytes occupied by float is %d \n”, sizeof(float));
printf (“No. of bytes occupied by double is %d \n”, sizeof(double));
printf (“No. of bytes occupied by char is %d \n”, sizeof(char));

}

Output:

Number of bytes occupied by int is 4
Number of bytes occupied by float is 4
Number of bytes occupied by double is 8
Number of bytes occupied by char is 1

13

Spring Semester 2007 Programming and Data Structure 25

Passing Pointers to a Function

• Pointers are often passed to a function as
arguments.
– Allows data items within the calling program to

be accessed by the function, altered, and then
returned to the calling program in altered form.

– Called call-by-reference (or by address or by
location).

• Normally, arguments are passed to a
function by value.
– The data items are copied to the function.
– Changes are not reflected in the calling program.

Spring Semester 2007 Programming and Data Structure 26

Example: passing arguments by value
#include <stdio.h>
main()
{

int a, b;
a = 5; b = 20;
swap (a, b);
printf (“\n a=%d, b=%d”, a, b);

}

void swap (int x, int y)
{

int t;
t = x;
x = y;
y = t;

}

Output
a=5, b=20

14

Spring Semester 2007 Programming and Data Structure 27

Example: passing arguments by
reference

#include <stdio.h>
main()
{

int a, b;
a = 5; b = 20;
swap (&a, &b);
printf (“\n a=%d, b=%d”, a, b);

}

void swap (int *x, int *y)
{

int t;
t = *x;
*x = *y;
*y = t;

}

Output
a=20, b=5

Spring Semester 2007 Programming and Data Structure 28

scanf Revisited

int x, y;
printf (“%d %d %d”, x, y, x+y);

• What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ;

scanf (“%d %d”, &x, &y) ;

NO

YES

15

Spring Semester 2007 Programming and Data Structure 29

Example: Sort 3 integers

• Three-step algorithm:
1. Read in three integers x, y and z
2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.
3. Put second smallest in y

• Swap y, z if necessary.

Spring Semester 2007 Programming and Data Structure 30

Contd.

#include <stdio.h>
main()
{

int x, y, z;
………..
scanf (“%d %d %d”, &x, &y, &z);
if (x > y) swap(&x,&y);
if (x > z) swap(&x,&z);
if (y > z) swap(&y,&z);
………..

}

16

Spring Semester 2007 Programming and Data Structure 31

sort3 as a function
#include <stdio.h>
main()
{

int x, y, z;
………..
scanf (“%d %d %d”, &x, &y, &z);
sort3 (&x, &y, &z);
………..

}

void sort3 (int *xp, int *yp, int *zp)
{

if (*xp > *yp) swap (xp, yp);
if (*xp > *zp) swap (xp, zp);
if (*yp > *zp) swap (yp, zp);

}

Spring Semester 2007 Programming and Data Structure 32

Contd.

• Why no ‘&’ in swap call?
– Because xp, yp and zp are already pointers

that point to the variables that we want to
swap.

17

Spring Semester 2007 Programming and Data Structure 33

Pointers and Arrays

• When an array is declared,
– The compiler allocates a base address and

sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

Spring Semester 2007 Programming and Data Structure 34

Example

• Consider the declaration:
int x[5] = {1, 2, 3, 4, 5};

– Suppose that the base address of x is 2500,
and each integer requires 4 bytes.

Element Value Address
x[0] 1 2500
x[1] 2 2504
x[2] 3 2508
x[3] 4 2512
x[4] 5 2516

18

Spring Semester 2007 Programming and Data Structure 35

Contd.

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent.
– We can access successive values of x by

using p++ or p-- to move from one element to
another.

• Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

*(p+i) gives the
value of x[i]

Spring Semester 2007 Programming and Data Structure 36

Example: function to find average

#include <stdio.h>
main()
{

int x[100], k, n;

scanf (“%d”, &n);

for (k=0; k<n; k++)
scanf (“%d”, &x[k]);

printf (“\nAverage is %f”,
avg (x, n));

}

float avg (array, size)
int array[], size;
{
int *p, i , sum = 0;

p = array;

for (i=0; i<size; i++)
sum = sum + *(p+i);

return ((float) sum / size);
}

19

Spring Semester 2007 Programming and Data Structure 37

Example with 2-D array

TO BE DISCUSSED LATER

Spring Semester 2007 Programming and Data Structure 38

Structures Revisited

• Recall that a structure can be declared as:
struct stud {

int roll;
char dept_code[25];
float cgpa;

};
struct stud a, b, c;

• And the individual structure elements can
be accessed as:

a.roll , b.roll , c.cgpa

20

Spring Semester 2007 Programming and Data Structure 39

Arrays of Structures

• We can define an array of structure
records as

struct stud class[100];

• The structure elements of the individual
records can be accessed as:

class[i].roll
class[20].dept_code
class[k++].cgpa

Spring Semester 2007 Programming and Data Structure 40

Example :: sort by roll number (bubble sort)
#include <stdio.h>
struct stud
{

int roll;
char dept_code[25];
float cgpa;

};

main()
{

struc stud class[100], t;
int j, k, n;

scanf (“%d”, &n);
/* no. of students */

for (k=0; k<n; k++)
scanf (“%d %s %f”, &class[k].roll,

class[k].dept_code,
&class[k].cgpa);

for (j=0; j<n-1; j++)
for (k=j+1; k<n; k++)
{

if (class[j].roll > class[k].roll)
{

t = class[j];
class[j] = class[k];
class[k] = t;

}
}
<<<< PRINT THE RECORDS >>>>

}

21

Spring Semester 2007 Programming and Data Structure 41

Example :: selection sort
int min_loc (struct stud x[],

int k, int size)
int j, pos;
{

pos = k;
for (j=k+1; j<size; j++)

if (x[j] < x[pos])
pos = j;

return pos;
}

int selsort (struct stud x[],int n)

{
int k, m;
for (k=0; k<n-1; k++)
{

m = min_loc(x, k, n);
temp = a[k];
a[k] = a[m];
a[m] = temp;

}
}main()

{
struc stud class[100];
int n;
…
selsort (class, n);
…

Spring Semester 2007 Programming and Data Structure 42

Arrays within Structures
• C allows the use of arrays as structure

members.
• Example:

struct stud {
int roll;
char dept_code[25];
int marks[6];
float cgpa;

};
struct stud class[100];

• To access individual marks of students:
class[35].marks[4]
class[i].marks[j]

22

Spring Semester 2007 Programming and Data Structure 43

Pointers and Structures

• You may recall that the name of an array
stands for the address of its zero-th
element.
– Also true for the names of arrays of structure

variables.
• Consider the declaration:

struct stud {
int roll;
char dept_code[25];
float cgpa;

} class[100], *ptr ;

Spring Semester 2007 Programming and Data Structure 44

– The name class represents the address of the
zero-th element of the structure array.

– ptr is a pointer to data objects of the type
struct stud.

• The assignment
ptr = class;

will assign the address of class[0] to ptr.
• When the pointer ptr is incremented by

one (ptr++) :
– The value of ptr is actually increased by
sizeof(stud).

– It is made to point to the next record.

23

Spring Semester 2007 Programming and Data Structure 45

• Once ptr points to a structure variable,
the members can be accessed as:

ptr –> roll;
ptr –> dept_code;
ptr –> cgpa;

– The symbol “–>” is called the arrow operator.

Spring Semester 2007 Programming and Data Structure 46

A Warning

• When using structure pointers, we should
take care of operator precedence.
– Member operator “.” has higher precedence than

“*”.
ptr –> roll and (*ptr).roll mean the same thing.
*ptr.roll will lead to error.

– The operator “–>” enjoys the highest priority
among operators.

++ptr –> roll will increment roll, not ptr.
(++ptr) –> roll will do the intended thing.

24

Spring Semester 2007 Programming and Data Structure 47

Structures and Functions

• A structure can be passed as argument to
a function.

• A function can also return a structure.
• The process shall be illustrated with the

help of an example.
– A function to add two complex numbers.

Spring Semester 2007 Programming and Data Structure 48

Example: complex number addition
#include <stdio.h>
struct complex {

float re;
float im;

};

main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.re, &a.im);
scanf (“%f %f”, &b.re, &b.im);
c = add (a, b) ;
printf (“\n %f %f”, c,re, c.im);

}

struct complex add (x, y)
struct complex x, y;
{

struct complex t;

t.re = x.re + y.re ;
t.im = x.im + y.im ;
return (t) ;

}

25

Spring Semester 2007 Programming and Data Structure 49

Example: Alternative way using
pointers

#include <stdio.h>
struct complex {

float re;
float im;

};

main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.re, &a.im);
scanf (“%f %f”, &b.re, &b.im);
add (&a, &b, &c) ;
printf (“\n %f %f”, c,re, c.im);

}

void add (x, y, t)
struct complex *x, *y, *t;
{

t->re = x->re + y->re;
t->im = x->im + y->im;

}

Spring Semester 2007 Programming and Data Structure 50

Dynamic Memory Allocation

26

Spring Semester 2007 Programming and Data Structure 51

Basic Idea

• Many a time we face situations where data
is dynamic in nature.
– Amount of data cannot be predicted

beforehand.
– Number of data items keeps changing during

program execution.
• Such situations can be handled more

easily and effectively using dynamic
memory management techniques.

Spring Semester 2007 Programming and Data Structure 52

Contd.

• C language requires the number of
elements in an array to be specified at
compile time.
– Often leads to wastage or memory space or

program failure.
• Dynamic Memory Allocation

– Memory space required can be specified at the
time of execution.

– C supports allocating and freeing memory
dynamically using library routines.

27

Spring Semester 2007 Programming and Data Structure 53

Memory Allocation Process in C

Local variables

Free memory

Global variables

Instructions
Permanent
storage area

Stack

Heap

Spring Semester 2007 Programming and Data Structure 54

Contd.

• The program instructions and the global
variables are stored in a region known as
permanent storage area.

• The local variables are stored in another
area called stack.

• The memory space between these two
areas is available for dynamic allocation
during execution of the program.
– This free region is called the heap.
– The size of the heap keeps changing.

28

Spring Semester 2007 Programming and Data Structure 55

Memory Allocation Functions

• malloc
– Allocates requested number of bytes and returns

a pointer to the first byte of the allocated space.
• calloc

– Allocates space for an array of elements,
initializes them to zero and then returns a pointer
to the memory.

• free
Frees previously allocated space.

• realloc
– Modifies the size of previously allocated space.

Spring Semester 2007 Programming and Data Structure 56

Allocating a Block of Memory

• A block of memory can be allocated using
the function malloc.
– Reserves a block of memory of specified size

and returns a pointer of type void.
– The return pointer can be type-casted to any

pointer type.
• General format:

ptr = (type *) malloc (byte_size);

29

Spring Semester 2007 Programming and Data Structure 57

Contd.

• Examples
p = (int *) malloc(100 * sizeof(int));

– A memory space equivalent to 100 times the size
of an int bytes is reserved.

– The address of the first byte of the allocated
memory is assigned to the pointer p of type int.

p

400 bytes of space

Spring Semester 2007 Programming and Data Structure 58

Contd.

cptr = (char *) malloc (20);

– Allocates 20 bytes of space for the pointer cptr of
type char.

sptr = (struct stud *) malloc
(10 * sizeof (struct stud));

– Allocates space for a structure array of 10
elements. sptr points to a structure element of
type “struct stud”.

30

Spring Semester 2007 Programming and Data Structure 59

Points to Note

• malloc always allocates a block of
contiguous bytes.
– The allocation can fail if sufficient contiguous

memory space is not available.
– If it fails, malloc returns NULL.

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)
{

printf (“\n Memory cannot be allocated”);
exit();

}

Spring Semester 2007 Programming and Data Structure 60

Example
printf("Input heights for %d
students \n",N);

for (i=0; i<N; i++)
scanf ("%f", &height[i]);

for(i=0;i<N;i++)
sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",
avg);

free (height);
}

#include <stdio.h>

main()
{

int i,N;
float *height;
float sum=0,avg;

printf("Input no. of students\n");
scanf("%d", &N);

height = (float *)
malloc(N * sizeof(float));

31

Spring Semester 2007 Programming and Data Structure 61

Releasing the Used Space

• When we no longer need the data stored
in a block of memory, we may release the
block for future use.

• How?
– By using the free function.

• General syntax:
free (ptr);

where ptr is a pointer to a memory block
which has been previously created using
malloc.

Spring Semester 2007 Programming and Data Structure 62

Altering the Size of a Block

• Sometimes we need to alter the size of
some previously allocated memory block.
– More memory needed.
– Memory allocated is larger than necessary.

• How?
– By using the realloc function.

• If the original allocation is done as:
ptr = malloc (size);

then reallocation of space may be done as:
ptr = realloc (ptr, newsize);

32

Spring Semester 2007 Programming and Data Structure 63

Contd.

– The new memory block may or may not begin at
the same place as the old one.

• If it does not find space, it will create it in an
entirely different region and move the contents
of the old block into the new block.

– The function guarantees that the old data
remains intact.

– If it is unable to allocate, it returns NULL and frees
the original block.

Spring Semester 2007 Programming and Data Structure 64

Pointer to Pointer

• Example:
int **p;

p = (int **) malloc(3 * sizeof(int *));

p

p[2]

p[1]

p[0]

int *

int **

int *

int *

33

Spring Semester 2007 Programming and Data Structure 65

2-D Array Allocation

#include <stdio.h>
#include <stdlib.h>

int **allocate (int h, int w)
{

int **p;
int i, j;

p = (int **) calloc(h, sizeof (int *));
for (i=0;i<h;i++)

p[i] = (int *) calloc(w,sizeof (int));
return(p);

}

void read_data (int **p, int h, int w)
{

int i, j;
for (i=0;i<h;i++)

for (j=0;j<w;j++)
scanf ("%d", &p[i][j]);

}

Allocate array
of pointers

Allocate array of
integers for each

row

Elements accessed
like 2-D array elements.

Spring Semester 2007 Programming and Data Structure 66

void print_data (int **p, int h, int w)
{

int i, j;
for (i=0;i<h;i++)
{
for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);
printf ("\n");
}

}

2-D Array: Contd.
main()
{

int **p;
int M, N;

printf ("Give M and N \n");
scanf ("%d%d", &M, &N);
p = allocate (M, N);
read_data (p, M, N);
printf ("\nThe array read as \n");
print_data (p, M, N);

}

Give M and N
3 3
1 2 3
4 5 6
7 8 9
The array read as

1 2 3
4 5 6
7 8 9

34

Spring Semester 2007 Programming and Data Structure 67

Linked List :: Basic Concepts

• A list refers to a set of items organized
sequentially.
– An array is an example of a list.

• The array index is used for accessing and
manipulation of array elements.

– Problems with array:
• The array size has to be specified at the beginning.
• Deleting an element or inserting an element may

require shifting of elements.

Spring Semester 2007 Programming and Data Structure 68

Contd.

• A completely different way to represent a
list:
– Make each item in the list part of a structure.
– The structure also contains a pointer or link to

the structure containing the next item.
– This type of list is called a linked list.
Structure 1 Structure 2 Structure 3

item item item

35

Spring Semester 2007 Programming and Data Structure 69

Contd.
• Each structure of the list is called a node,

and consists of two fields:
– One containing the item.
– The other containing the address of the next

item in the list.
• The data items comprising a linked list

need not be contiguous in memory.
– They are ordered by logical links that are

stored as part of the data in the structure itself.
– The link is a pointer to another structure of the

same type.

Spring Semester 2007 Programming and Data Structure 70

Contd.

• Such a structure can be represented as:
struct node

{
int item;
struct node *next;

}

• Such structures which contain a member
field pointing to the same structure type
are called self-referential structures.

item

node

next

36

Spring Semester 2007 Programming and Data Structure 71

Contd.

• In general, a node may be represented as
follows:

struct node_name
{

type member1;
type member2;
………
struct node_name *next;

}

Spring Semester 2007 Programming and Data Structure 72

Illustration

• Consider the structure:
struct stud

{
int roll;
char name[30];
int age;
struct stud *next;

}

• Also assume that the list consists of three
nodes n1, n2 and n3.

struct stud n1, n2, n3;

37

Spring Semester 2007 Programming and Data Structure 73

Contd.

• To create the links between nodes, we can
write:

n1.next = &n2 ;
n2.next = &n3 ;
n3.next = NULL ; /* No more nodes follow */

• Now the list looks like:

n1 n2 n3

roll
name

age
next

Spring Semester 2007 Programming and Data Structure 74

Example

#include <stdio.h>
struct stud

{
int roll;
char name[30];
int age;
struct stud *next;

}

main()
{

struct stud n1, n2, n3;
struct stud *p;

scanf (“%d %s %d”, &n1.roll, n1.name, &n1.age);
scanf (“%d %s %d”, &n2.roll, n2.name, &n2.age);
scanf (“%d %s %d”, &n3.roll, n3.name, &n3.age);

38

Spring Semester 2007 Programming and Data Structure 75

n1.next = &n2 ;
n2.next = &n3 ;
n3.next = NULL ;

/* Now traverse the list and print the elements */

p = n1 ; /* point to 1st element */
while (p != NULL)
{

printf (“\n %d %s %d”,
p->roll, p->name, p->age);
p = p->next;

}
}

Spring Semester 2007 Programming and Data Structure 76

Alternative Way

• Dynamically allocate space for the nodes.
– Use malloc or calloc individually for every

node allocated.

