
1

Spring Semester 2007 Programming and Data Structure 1

Functions

Indranil Sen Gupta
Dept. of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Spring Semester 2007 Programming and Data Structure 2

Introduction

• Function
– A self-contained program segment that carries 

out some specific, well-defined task.
• Some properties:

– Every C program consists of one or more 
functions.

• One of these functions must be called “main”.
• Execution of the program always begins by carrying out 

the instructions in “main”.

– A function will carry out its intended action 
whenever it is called or invoked.
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– In general, a function will process information 
that is passed to it from the calling portion of 
the program, and returns a single value.

• Information is passed to the function via special 
identifiers called arguments or parameters.

• The value is returned by the “return” statement.

– Some function may not return anything.
• Return data type specified as “void”.
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#include  <stdio.h>

int factorial (int m)
{

int i, temp=1;
for (i=1; i<=m; i++)

temp = temp * i;
return (temp);

}

main()
{

int n;
for  (n=1; n<=10; n++)

printf (“%d! = %d \n”,
n, factorial (n) );

}

Output:
1! = 1

2! = 2

3! = 6  …….. upto 10!
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Why Functions?

• Functions
– Allows one to develop a program in a modular 

fashion.
• Divide-and-conquer approach.

– All variables declared inside functions are 
local variables.

• Known only in function defined.
• There are exceptions (to be discussed later).

– Parameters
• Communicate information between functions.
• They also become local variables.
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• Benefits
– Divide and conquer

• Manageable program development.
• Construct a program from small pieces or components.

– Software reusability
• Use existing functions as building blocks for new 

programs.
• Abstraction: hide internal details (library functions).



4

Spring Semester 2007 Programming and Data Structure 7

Defining a Function

• A function definition has two parts:
– The first line.
– The body of the function.

return-value-type  function-name  ( parameter-list )

{
declarations and statements

}
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• The first line contains the return-value-type, the 
function name, and optionally a set of comma-
separated arguments enclosed in parentheses.
– Each argument has an associated type declaration.
– The arguments are called formal arguments or formal 

parameters.
• Example:

int gcd (int A,  int B)

• The argument data types can also be declared on the next 
line:

int gcd (A, B)
int A, B;
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• The body of the function is actually a 
compound statement that defines the 
action to be taken by the function.

int gcd (int A, int B)
{

int temp;
while ((B % A) != 0)  {

temp = B % A;
B = A;
A = temp;

}
return (A);

}

BODY
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• When a function is called from some other 
function, the corresponding arguments in 
the function call are called actual arguments
or actual parameters.
– The formal and actual arguments must match in 

their data types.
• Point to note:

– The identifiers used as formal arguments are 
“local”.

• Not recognized outside the function.
• Names of formal and actual arguments may differ.
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#include  <stdio.h>
/* Compute the GCD of four numbers */

main()
{

int n1, n2, n3, n4, result;
scanf (“%d %d %d %d”, &n1, &n2, &n3, &n4);
result  =  gcd ( gcd (n1, n2), gcd (n3, n4) );
printf (“The GCD of %d, %d, %d and %d is %d \n”,

n1, n2, n3, n4, result);
}
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Function Not Returning Any Value

• Example: A function which prints if a 
number if divisible by 7 or not.

void  div7 (int n)
{

if  ((n % 7) == 0)
printf (“%d is divisible by 7”, n);

else
printf (“%d is not divisible by 7”, n);

return;
}

OPTIONAL
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• Returning control
– If nothing returned 

• return;

• or, until reaches right brace
– If something returned 

• return expression;
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Some Points

• A function cannot be defined within 
another function.
– All function definitions must be disjoint.

• Nested function calls are allowed.
– A calls B, B calls C, C calls D, etc.
– The function called last will be the first to 

return.
• A function can also call itself, either 

directly or in a cycle.
– A calls B, B calls C, C calls back A.
– Called recursive call or recursion.
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#include  <stdio.h>
int A;
void main()

{ A = 1;
myProc();
printf ( "A = %d\n", A);

}

void myProc()
{    int A = 2;

while( A==2 )
{

int A = 3;
printf ( "A = %d\n", A);
break;

}
printf ( "A = %d\n", A);

}

Variable 
Scope

Output:

--------------

A = 3

A = 2

A = 1
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Math Library Functions

• Math library functions 
– perform common mathematical calculations

#include <math.h>

• Format for calling functions
FunctionName (argument);

• If multiple arguments, use comma-separated list
printf ("%f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its 
argument.

• All math functions return data type double.

– Arguments may be constants, variables, or expressions.
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Math Library Functions
double acos(double x) – Compute arc cosine of x.   
double asin(double x) – Compute arc sine of x. 
double atan(double x) – Compute arc tangent of x.
double atan2(double y, double x) – Compute arc tangent of y/x. 
double ceil(double x) – Get smallest integral value that exceeds x.
double floor(double x) – Get largest integral value less than x. 
double cos(double x) – Compute cosine of angle in radians.
double cosh(double x) – Compute the hyperbolic cosine of x.
double sin(double x) – Compute sine of angle in radians. 
double sinh(double x) – Compute the hyperbolic sine of x. 
double tan(double x) – Compute tangent of angle in radians. 
double tanh(double x) – Compute the hyperbolic tangent of x. 
double exp(double x) – Compute exponential of x.
double fabs (double x ) – Compute absolute value of x.
double log(double x) – Compute log to the base e of x. 
double log10 (double x ) – Compute log to the base 10 of x. 
double pow (double x, double y) – Compute x raised to the power y. 
double sqrt(double x) – Compute the square root of x.
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Function Prototypes

• Usually, a function is defined before it is 
called.
– main() is the last function in the program.
– Easy for the compiler to identify function 

definitions in a single scan through the file.
• However, many programmers prefer a top-

down approach, where the functions 
follow main().
– Must be some way to tell the compiler.
– Function prototypes are used for this purpose.

• Only needed if function definition comes after use.
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– Function prototypes are usually written at the 
beginning of a program, ahead of any functions 
(including main()).

– Examples:
int gcd (int A, int B);
void div7 (int number);

• Note the semicolon at the end of the line.
• The argument names can be different; but it is a good 

practice to use the same names as in the function 
definition.
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Example:: main calls ncr, ncr calls fact

#include  <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{

int i, m, n, sum=0;
scanf (“%d %d”, &m, &n);

for (i=1; i<=m; i+=2)
sum = sum + ncr (n, i);

printf (“Result: %d \n”, sum);
}

int ncr (int n, int r)
{

return (fact(n) / fact(r) / fact(n-r));
}

int fact (int n)
{

int i, temp=1;
for (i=1; i<=n; i++)

temp *= i;
return (temp);

}
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Header Files

• Header files
– Contain function prototypes for library functions.
– <stdlib.h> , <math.h> , etc
– Load with: #include <filename>

– Example:

#include <math.h>

• Custom header files
– Create file(s) with function definitions. 
– Save as filename.h (say).
– Load in other files with      #include "filename.h"
– Reuse functions.
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Calling Functions: Call by Value 
and Call by Reference

• Used when invoking functions.
• Call by value

– Copy of argument passed to function.
– Changes in function do not affect original.
– Use when function does not need to modify argument.

• Avoids accidental changes.

• Call by reference.
– Passes original argument (actually the pointer).
– Changes in function affect original.
– Only used with trusted functions.

For now, we focus on call by value
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Example:Random Number Generation

• rand function
– Prototype defined in  <stdlib.h>
– Returns "random" number between 0 and RAND_MAX

i = rand();

– Pseudorandom
• Preset sequence of "random" numbers
• Same sequence for every function call

• Scaling
– To get a random number between 1 and n

1 + (rand() % n )

– To simulate the roll of a dice:
1 + (rand() % 6)

Spring Semester 2007 Programming and Data Structure 24

Random Number Generation: Contd.

• srand function
– Prototype defined in <stdlib.h>.

– Takes an integer seed, and randomizes the 
random number generator.

srand (seed);
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1 /* A programming example

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 int main()

7 {

8 int i;

9 unsigned seed;

10

11 printf( "Enter seed: " );

12 scanf( "%u", &seed );

13 srand( seed );

14

15 for ( i = 1; i <= 10; i++ ) {

16 printf( "%10d ", 1 + ( rand() % 6 ) );

17

18 if ( i % 5 == 0 )

19 printf( "\n" );

20 }

21

22 return 0;

23 }
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Program Output

Enter seed: 867
2         4         6         1         6
1         1         3         6         2 

Enter seed: 67
6         1         4         6         2
1         6         1         6         4

Enter seed: 67
6         1         4         6         2
1         6         1         6         4 
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#define: Macro definition

• Preprocessor directive in the following 
form:

#define  string1  string2
– Replaces string1 by string2 wherever it occurs 

before compilation. For example,
#define  PI  3.1415926
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#define: Macro definition

#include <stdio.h>

#define PI 3.1415926

main()

{

float r=4.0,area;

area=PI*r*r;

}

#include <stdio.h>

main()

{

float r=4.0,area;

area=3.1415926*r*r;

}
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#define with arguments

• #define statement may be used with 
arguments.
– Example:   #define   sqr(x)   x*x
– How macro substitution will be carried out?

r = sqr(a) + sqr(30);   r = a*a + 30*30;
r = sqr(a+b);               r = a+b*a+b;

– The macro definition should have been written 
as:

#define  sqr(x)  (x)*(x)
r = (a+b)*(a+b);

WRONG?

Spring Semester 2007 Programming and Data Structure 30

Recursion

• A process by which a function calls itself 
repeatedly.
– Either directly.

• X calls X.
– Or cyclically in a chain.

• X calls Y, and Y calls X.

• Used for repetitive computations in which 
each action is stated in terms of a previous 
result.

fact(n) = n * fact (n-1)
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Contd.

• For a problem to be written in recursive 
form, two conditions are to be satisfied:
– It should be possible to express the problem in 

recursive form.
– The problem statement must include a 

stopping condition
fact(n)  =  1,                      if  n = 0

=  n * fact(n-1),   if  n > 0
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• Examples:
– Factorial:

fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

– GCD:
gcd (m, m) = m
gcd (m, n) = gcd (m%n, n), if m > n
gcd (m, n) = gcd (n, n%m), if m < n

– Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1
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Example 1 :: Factorial

long  int fact (n)
int n;
{

if   (n = = 0)
return (1);

else
return  (n * fact(n-1));

} 
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• Mechanism of execution
– When a recursive program is executed, the 

recursive function calls are not executed 
immediately.

• They are kept aside (on a stack) until the stopping 
condition is encountered.

• The function calls are then executed in reverse order.
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Example :: Calculating fact (4)

– First, the function calls will be processed:
fact(4) = 4 * fact(3)
fact(3) = 3 * fact(2)
fact(2) = 2 * fact(1)
fact(1) = 1 * fact(0)

– The actual values return in the reverse order:
fact(0) = 1
fact(1) = 1 * 1 = 1
fact(2) = 2 * 1 = 2
fact(3) = 3 * 2 = 6
fact(4) = 4 * 6 = 24
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Example 2 :: Fibonacci number

• Fibonacci number f(n) can be defined as:
f(0)  =  0
f(1)  =  1
f(n)  =  f(n-1) + f(n-2),   if  n > 1

– The successive Fibonacci numbers are:
0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:
int f (int n)
{

if  (n  < 2)   return (n);
else  return (f(n-1) + f(n-2));

}
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Tracing Execution

• How many times the 
function is called 
when evaluating f(4) ?

• Inefficiency:
– Same thing is 

computed several 
times.

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

called 9 times
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Performance Tip 

• Avoid Fibonacci-style recursive programs 
which result in an exponential “explosion”
of calls.

• Avoid using recursion in performance 
situations. 

• Recursive calls take time and consume 
additional memory.
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Example 3 :: Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT
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• The problem statement:
– Initially all the disks are stacked on the LEFT 

pole.
– Required to transfer all the disks to the RIGHT 

pole.
• Only one disk can be moved at a time.
• A larger disk cannot be placed on a smaller disk.

– CENTER pole is used for temporary storage of 
disks.
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• Recursive statement of the general 
problem of n disks.
– Step 1: 

• Move the top (n-1) disks from LEFT to CENTER.
– Step 2: 

• Move the largest disk from LEFT to RIGHT.
– Step 3: 

• Move the (n-1) disks from CENTER to RIGHT.
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#include  <stdio.h>

void  transfer (int n, char from, char to, char temp);

main()
{

int n;  /* Number of disks */
scanf (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);

}

void  transfer (int n, char from, char to, char temp)
{

if  (n > 0)  {
transfer  (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}
return;

}
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Recursion vs. Iteration

• Repetition
– Iteration:  explicit loop
– Recursion:  repeated function calls

• Termination
– Iteration: loop condition fails
– Recursion: base case recognized

• Both can have infinite loops
• Balance 

– Choice between performance (iteration) and 
good software engineering (recursion).

Spring Semester 2007 Programming and Data Structure 46

How are function calls implemented?

• The following applies in general, with 
minor variations that are implementation 
dependent.
– The system maintains a stack in memory.

• Stack is a last-in first-out structure.
• Two operations on stack, push and pop.

– Whenever there is a function call, the 
activation record gets pushed into the stack.

• Activation record consists of the return address in 
the calling program, the return value from the 
function, and the local variables inside the function.
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main()
{

……..
x = gcd (a, b);
……..

}

int gcd (int x, int y)
{

……..
……..
return (result);

}

Return Addr
Return Value

Local 
Variables

Before call After call After return

S
TA

C
K

Activation 
record
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main()
{

……..
x = ncr (a, b);
……..

}

int ncr (int n, int r)
{

return (fact(n)/
fact(r)/fact(n-r));

}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)
{

………
return (result);

}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

3 times
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What happens for recursive calls?

• What we have seen ….
– Activation record gets pushed into the stack 

when a function call is made.
– Activation record is popped off the stack when 

the function returns.
• In recursion, a function calls itself.

– Several function calls going on, with none of 
the function calls returning back.

• Activation records are pushed onto the stack 
continuously.

• Large stack space required.
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– Activation records keep popping off, when the 
termination condition of recursion is reached.

• We shall illustrate the process by an 
example of computing factorial.
– Activation record looks like:

Return Addr
Return Value

Local 
Variables
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Example:: main() calls fact(3)

int fact (n)
int n;
{

if   (n = = 0)
return (1);

else
return  (n * fact(n-1));

} 

main()
{

int n;
n = 3;
printf (“%d \n”, fact(n) );

}
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RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

TRACE OF THE STACK DURING EXECUTION

main 
calls 
fact

fact 
returns 
to main
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Do Yourself

• Trace the activation records for the following version of 
Fibonacci sequence.
#include <stdio.h>
int f (int n)
{

int a, b;
if  (n  < 2)   return (n);
else  {
a = f(n-1);
b = f(n-2);
return (a+b);  }

}

main() {
printf(“Fib(4) is: %d \n”, f(4));

}

Return Addr
(either main, 

or X, or Y)

Return Value

Local 
Variables
(n, a, b)

X

Y

main
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Storage Class of Variables
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What is Storage Class?

• It refers to the permanence of a variable, 
and its scope within a program.

• Four storage class specifications in C:
– Automatic:  auto
– External:  extern
– Static:  static
– Register:  register
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Automatic Variables

• These are always declared within a function 
and are local to the function in which they are 
declared.
– Scope is confined to that function.

• This is the default storage class specification.
– All variables are considered as auto unless 

explicitly specified otherwise.
– The keyword auto is optional.
– An automatic variable does not retain its value 

once control is transferred out of its defining 
function.
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#include <stdio.h>

int factorial(int m)
{

auto int i;
auto int temp=1;
for (i=1; i<=m; i++)

temp = temp * i;
return (temp);

}

main()
{

auto int n;
for (n=1; n<=10; n++)
printf (“%d! = %d \n”, 

n, factorial (n));
}
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Static Variables

• Static variables are defined within individual functions 
and have the same scope as automatic variables.

• Unlike automatic variables, static variables retain their 
values throughout the life of the program.
– If a function is exited and re-entered at a later time, 

the static variables defined within that function will 
retain their previous values.

– Initial values can be included in the static variable 
declaration.

• Will be initialized only once.

• An example of using static variable:
– Count number of times a function is called.
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#include <stdio.h>

int factorial (int n)
{

static int count=0;
count++;
printf (“n=%d, count=%d \n”, n, count);
if (n == 0) return 1;
else return (n * factorial(n-1));

}

main()
{

int i=6;
printf (“Value is: %d \n”, factorial(i));

}

EXAMPLE 1
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• Program output:
n=6, count=1
n=5, count=2
n=4, count=3
n=3, count=4
n=2, count=5
n=1, count=6
n=0, count=7
Value is: 720
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#include <stdio.h>

int fib (int n)
{

static int count=0;
count++;
printf (“n=%d, count=%d \n”, n, count);
if (n < 2) return n;
else return (fib(n-1) + fib(n-2));

}

main()
{

int i=4;
printf (“Value is: %d \n”, fib(i));

}

EXAMPLE 2
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• Program output:
n=4, count=1
n=3, count=2
n=2, count=3
n=1, count=4
n=0, count=5
n=1, count=6
n=2, count=7
n=1, count=8
n=0, count=9
Value is: 3      [0,1,1,2,3,5,8,….]

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)
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Register Variables

• These variables are stored in high-speed 
registers within the CPU.
– Commonly used variables may be declared as 

register variables.
– Results in increase in execution speed.
– The allocation is done by the compiler.
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External Variables

• They are not confined to single functions.
• Their scope extends from the point of 

definition through the remainder of the 
program.
– They may span more than one functions.
– Also called global variables.

• Alternate way of declaring global 
variables.
– Declare them outside the function, at the 

beginning.
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#include <stdio.h>

int count=0;   /** GLOBAL VARIABLE **/
int factorial (int n)
{

count++;
printf (“n=%d, count=%d \n”, n, count);
if (n == 0) return 1;
else return (n * factorial(n-1));

}

main()  {
int i=6;
printf (“Value is: %d \n”, factorial(i));
printf (“Count is: %d \n”, count);

}
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• Program output:
n=6, count=1
n=5, count=2
n=4, count=3
n=3, count=4
n=2, count=5
n=1, count=6
n=0, count=7
Value is: 720
Count is: 7
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Some Points on Class Test 1

• A conditional expression returns an integer 
value.
– If the result of comparison is TRUE, 1 is returned.
– If the result is FALSE, 0 is returned.
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int a=10, b=20, c=30, d=753;
float x=5.0, y=12.5, z=7.5;
char p=‘A’;

a) (a/b) * (float) c     ---- 0.0
b) (((float) a) / b) * c ---- 15.0
c) (a++) + (--b) + c   ---- 59
d) x/a + y/5   ---- 3.0
e) p + (c % 8)  ---- ‘G’ or 71
f) (c/b) == (z/x)  ---- 0
g) (a%4 == 3) ? c : b  ---- 20
h) (a + b / 3) != 16.6    ---- 1
i) (d – (d % 10)) / 10   ---- 75
j) (a<b) || (b<c)   ---- 1
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1. A number represented in 8-bit 2’s complement is 10001001. 
What is the value of the number in decimal?

–119
2. What is the smallest number in decimal that can be 

represented in 12-bit 2’s complement representation?
–2048

3. What is the largest number in decimal that can be 
represented in 12-bit 2’s complement representation?

2047
4. How many times will the following loops run?

for (x=0; x=3; x++)   { …. }   ---- infinite loop
for (x=-2; x=0; x++)  { …. } ---- zero times
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• The program for series summation.
S = 1/2 + 4/3 + 9/4 + 16/5 + …
S = 1/2 + 8/5 + 27/10 + 64/17 + …

Many students computed the next term to 
be added using integer arithmetic, which 
is wrong.
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Students Penalized due to Unfair Practices

• 5% of total marks will be deducted.
– Immediately deregistered if this happens again.

Section 1:
06IM3018 Anant Kumar Jatav
06IM1016 Bipin Kumar
06CS1033 Anirudha Patra
06EC3012 Piyush Gautam

Section 2:
06AG3009 Piyush Khemka DID NOT MEET ME

Section 3:
06MF1015 Karan Mathur
06MF3007 Uday Aghamarshan B.
06EG1007 Neeraj Tulsyan
06MI3006 Ritesh Kumar


