
1

Spring Semester 2007 Programming and Data Structure 1

Functions

Indranil Sen Gupta
Dept. of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Spring Semester 2007 Programming and Data Structure 2

Introduction

• Function
– A self-contained program segment that carries

out some specific, well-defined task.
• Some properties:

– Every C program consists of one or more
functions.

• One of these functions must be called “main”.
• Execution of the program always begins by carrying out

the instructions in “main”.

– A function will carry out its intended action
whenever it is called or invoked.

2

Spring Semester 2007 Programming and Data Structure 3

– In general, a function will process information
that is passed to it from the calling portion of
the program, and returns a single value.

• Information is passed to the function via special
identifiers called arguments or parameters.

• The value is returned by the “return” statement.

– Some function may not return anything.
• Return data type specified as “void”.

Spring Semester 2007 Programming and Data Structure 4

#include <stdio.h>

int factorial (int m)
{

int i, temp=1;
for (i=1; i<=m; i++)

temp = temp * i;
return (temp);

}

main()
{

int n;
for (n=1; n<=10; n++)

printf (“%d! = %d \n”,
n, factorial (n));

}

Output:
1! = 1

2! = 2

3! = 6 …….. upto 10!

3

Spring Semester 2007 Programming and Data Structure 5

Why Functions?

• Functions
– Allows one to develop a program in a modular

fashion.
• Divide-and-conquer approach.

– All variables declared inside functions are
local variables.

• Known only in function defined.
• There are exceptions (to be discussed later).

– Parameters
• Communicate information between functions.
• They also become local variables.

Spring Semester 2007 Programming and Data Structure 6

• Benefits
– Divide and conquer

• Manageable program development.
• Construct a program from small pieces or components.

– Software reusability
• Use existing functions as building blocks for new

programs.
• Abstraction: hide internal details (library functions).

4

Spring Semester 2007 Programming and Data Structure 7

Defining a Function

• A function definition has two parts:
– The first line.
– The body of the function.

return-value-type function-name (parameter-list)

{
declarations and statements

}

Spring Semester 2007 Programming and Data Structure 8

• The first line contains the return-value-type, the
function name, and optionally a set of comma-
separated arguments enclosed in parentheses.
– Each argument has an associated type declaration.
– The arguments are called formal arguments or formal

parameters.
• Example:

int gcd (int A, int B)

• The argument data types can also be declared on the next
line:

int gcd (A, B)
int A, B;

5

Spring Semester 2007 Programming and Data Structure 9

• The body of the function is actually a
compound statement that defines the
action to be taken by the function.

int gcd (int A, int B)
{

int temp;
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
return (A);

}

BODY

Spring Semester 2007 Programming and Data Structure 10

• When a function is called from some other
function, the corresponding arguments in
the function call are called actual arguments
or actual parameters.
– The formal and actual arguments must match in

their data types.
• Point to note:

– The identifiers used as formal arguments are
“local”.

• Not recognized outside the function.
• Names of formal and actual arguments may differ.

6

Spring Semester 2007 Programming and Data Structure 11

#include <stdio.h>
/* Compute the GCD of four numbers */

main()
{

int n1, n2, n3, n4, result;
scanf (“%d %d %d %d”, &n1, &n2, &n3, &n4);
result = gcd (gcd (n1, n2), gcd (n3, n4));
printf (“The GCD of %d, %d, %d and %d is %d \n”,

n1, n2, n3, n4, result);
}

Spring Semester 2007 Programming and Data Structure 12

Function Not Returning Any Value

• Example: A function which prints if a
number if divisible by 7 or not.

void div7 (int n)
{

if ((n % 7) == 0)
printf (“%d is divisible by 7”, n);

else
printf (“%d is not divisible by 7”, n);

return;
}

OPTIONAL

7

Spring Semester 2007 Programming and Data Structure 13

• Returning control
– If nothing returned

• return;

• or, until reaches right brace
– If something returned

• return expression;

Spring Semester 2007 Programming and Data Structure 14

Some Points

• A function cannot be defined within
another function.
– All function definitions must be disjoint.

• Nested function calls are allowed.
– A calls B, B calls C, C calls D, etc.
– The function called last will be the first to

return.
• A function can also call itself, either

directly or in a cycle.
– A calls B, B calls C, C calls back A.
– Called recursive call or recursion.

8

Spring Semester 2007 Programming and Data Structure 15

#include <stdio.h>
int A;
void main()

{ A = 1;
myProc();
printf ("A = %d\n", A);

}

void myProc()
{ int A = 2;

while(A==2)
{

int A = 3;
printf ("A = %d\n", A);
break;

}
printf ("A = %d\n", A);

}

Variable
Scope

Output:

A = 3

A = 2

A = 1

Spring Semester 2007 Programming and Data Structure 16

Math Library Functions

• Math library functions
– perform common mathematical calculations

#include <math.h>

• Format for calling functions
FunctionName (argument);

• If multiple arguments, use comma-separated list
printf ("%f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its
argument.

• All math functions return data type double.

– Arguments may be constants, variables, or expressions.

9

Spring Semester 2007 Programming and Data Structure 17

Math Library Functions
double acos(double x) – Compute arc cosine of x.
double asin(double x) – Compute arc sine of x.
double atan(double x) – Compute arc tangent of x.
double atan2(double y, double x) – Compute arc tangent of y/x.
double ceil(double x) – Get smallest integral value that exceeds x.
double floor(double x) – Get largest integral value less than x.
double cos(double x) – Compute cosine of angle in radians.
double cosh(double x) – Compute the hyperbolic cosine of x.
double sin(double x) – Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.
double tan(double x) – Compute tangent of angle in radians.
double tanh(double x) – Compute the hyperbolic tangent of x.
double exp(double x) – Compute exponential of x.
double fabs (double x) – Compute absolute value of x.
double log(double x) – Compute log to the base e of x.
double log10 (double x) – Compute log to the base 10 of x.
double pow (double x, double y) – Compute x raised to the power y.
double sqrt(double x) – Compute the square root of x.

Spring Semester 2007 Programming and Data Structure 18

Function Prototypes

• Usually, a function is defined before it is
called.
– main() is the last function in the program.
– Easy for the compiler to identify function

definitions in a single scan through the file.
• However, many programmers prefer a top-

down approach, where the functions
follow main().
– Must be some way to tell the compiler.
– Function prototypes are used for this purpose.

• Only needed if function definition comes after use.

10

Spring Semester 2007 Programming and Data Structure 19

– Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main()).

– Examples:
int gcd (int A, int B);
void div7 (int number);

• Note the semicolon at the end of the line.
• The argument names can be different; but it is a good

practice to use the same names as in the function
definition.

Spring Semester 2007 Programming and Data Structure 20

Example:: main calls ncr, ncr calls fact

#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{

int i, m, n, sum=0;
scanf (“%d %d”, &m, &n);

for (i=1; i<=m; i+=2)
sum = sum + ncr (n, i);

printf (“Result: %d \n”, sum);
}

int ncr (int n, int r)
{

return (fact(n) / fact(r) / fact(n-r));
}

int fact (int n)
{

int i, temp=1;
for (i=1; i<=n; i++)

temp *= i;
return (temp);

}

11

Spring Semester 2007 Programming and Data Structure 21

Header Files

• Header files
– Contain function prototypes for library functions.
– <stdlib.h> , <math.h> , etc
– Load with: #include <filename>

– Example:

#include <math.h>

• Custom header files
– Create file(s) with function definitions.
– Save as filename.h (say).
– Load in other files with #include "filename.h"
– Reuse functions.

Spring Semester 2007 Programming and Data Structure 22

Calling Functions: Call by Value
and Call by Reference

• Used when invoking functions.
• Call by value

– Copy of argument passed to function.
– Changes in function do not affect original.
– Use when function does not need to modify argument.

• Avoids accidental changes.

• Call by reference.
– Passes original argument (actually the pointer).
– Changes in function affect original.
– Only used with trusted functions.

For now, we focus on call by value

12

Spring Semester 2007 Programming and Data Structure 23

Example:Random Number Generation

• rand function
– Prototype defined in <stdlib.h>
– Returns "random" number between 0 and RAND_MAX

i = rand();

– Pseudorandom
• Preset sequence of "random" numbers
• Same sequence for every function call

• Scaling
– To get a random number between 1 and n

1 + (rand() % n)

– To simulate the roll of a dice:
1 + (rand() % 6)

Spring Semester 2007 Programming and Data Structure 24

Random Number Generation: Contd.

• srand function
– Prototype defined in <stdlib.h>.

– Takes an integer seed, and randomizes the
random number generator.

srand (seed);

13

Spring Semester 2007 Programming and Data Structure 25

1 /* A programming example

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 int main()

7 {

8 int i;

9 unsigned seed;

10

11 printf("Enter seed: ");

12 scanf("%u", &seed);

13 srand(seed);

14

15 for (i = 1; i <= 10; i++) {

16 printf("%10d ", 1 + (rand() % 6));

17

18 if (i % 5 == 0)

19 printf("\n");

20 }

21

22 return 0;

23 }

Spring Semester 2007 Programming and Data Structure 26

Program Output

Enter seed: 867
2 4 6 1 6
1 1 3 6 2

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

14

Spring Semester 2007 Programming and Data Structure 27

#define: Macro definition

• Preprocessor directive in the following
form:

#define string1 string2
– Replaces string1 by string2 wherever it occurs

before compilation. For example,
#define PI 3.1415926

Spring Semester 2007 Programming and Data Structure 28

#define: Macro definition

#include <stdio.h>

#define PI 3.1415926

main()

{

float r=4.0,area;

area=PI*r*r;

}

#include <stdio.h>

main()

{

float r=4.0,area;

area=3.1415926*r*r;

}

15

Spring Semester 2007 Programming and Data Structure 29

#define with arguments

• #define statement may be used with
arguments.
– Example: #define sqr(x) x*x
– How macro substitution will be carried out?

r = sqr(a) + sqr(30); r = a*a + 30*30;
r = sqr(a+b); r = a+b*a+b;

– The macro definition should have been written
as:

#define sqr(x) (x)*(x)
r = (a+b)*(a+b);

WRONG?

Spring Semester 2007 Programming and Data Structure 30

Recursion

• A process by which a function calls itself
repeatedly.
– Either directly.

• X calls X.
– Or cyclically in a chain.

• X calls Y, and Y calls X.

• Used for repetitive computations in which
each action is stated in terms of a previous
result.

fact(n) = n * fact (n-1)

16

Spring Semester 2007 Programming and Data Structure 31

Contd.

• For a problem to be written in recursive
form, two conditions are to be satisfied:
– It should be possible to express the problem in

recursive form.
– The problem statement must include a

stopping condition
fact(n) = 1, if n = 0

= n * fact(n-1), if n > 0

Spring Semester 2007 Programming and Data Structure 32

• Examples:
– Factorial:

fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

– GCD:
gcd (m, m) = m
gcd (m, n) = gcd (m%n, n), if m > n
gcd (m, n) = gcd (n, n%m), if m < n

– Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1

17

Spring Semester 2007 Programming and Data Structure 33

Example 1 :: Factorial

long int fact (n)
int n;
{

if (n = = 0)
return (1);

else
return (n * fact(n-1));

}

Spring Semester 2007 Programming and Data Structure 34

• Mechanism of execution
– When a recursive program is executed, the

recursive function calls are not executed
immediately.

• They are kept aside (on a stack) until the stopping
condition is encountered.

• The function calls are then executed in reverse order.

18

Spring Semester 2007 Programming and Data Structure 35

Example :: Calculating fact (4)

– First, the function calls will be processed:
fact(4) = 4 * fact(3)
fact(3) = 3 * fact(2)
fact(2) = 2 * fact(1)
fact(1) = 1 * fact(0)

– The actual values return in the reverse order:
fact(0) = 1
fact(1) = 1 * 1 = 1
fact(2) = 2 * 1 = 2
fact(3) = 3 * 2 = 6
fact(4) = 4 * 6 = 24

Spring Semester 2007 Programming and Data Structure 36

Example 2 :: Fibonacci number

• Fibonacci number f(n) can be defined as:
f(0) = 0
f(1) = 1
f(n) = f(n-1) + f(n-2), if n > 1

– The successive Fibonacci numbers are:
0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:
int f (int n)
{

if (n < 2) return (n);
else return (f(n-1) + f(n-2));

}

19

Spring Semester 2007 Programming and Data Structure 37

Tracing Execution

• How many times the
function is called
when evaluating f(4) ?

• Inefficiency:
– Same thing is

computed several
times.

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

called 9 times

Spring Semester 2007 Programming and Data Structure 38

Performance Tip

• Avoid Fibonacci-style recursive programs
which result in an exponential “explosion”
of calls.

• Avoid using recursion in performance
situations.

• Recursive calls take time and consume
additional memory.

20

Spring Semester 2007 Programming and Data Structure 39

Example 3 :: Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT

Spring Semester 2007 Programming and Data Structure 40

• The problem statement:
– Initially all the disks are stacked on the LEFT

pole.
– Required to transfer all the disks to the RIGHT

pole.
• Only one disk can be moved at a time.
• A larger disk cannot be placed on a smaller disk.

– CENTER pole is used for temporary storage of
disks.

21

Spring Semester 2007 Programming and Data Structure 41

• Recursive statement of the general
problem of n disks.
– Step 1:

• Move the top (n-1) disks from LEFT to CENTER.
– Step 2:

• Move the largest disk from LEFT to RIGHT.
– Step 3:

• Move the (n-1) disks from CENTER to RIGHT.

Spring Semester 2007 Programming and Data Structure 42

#include <stdio.h>

void transfer (int n, char from, char to, char temp);

main()
{

int n; /* Number of disks */
scanf (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);

}

void transfer (int n, char from, char to, char temp)
{

if (n > 0) {
transfer (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}
return;

}

22

Spring Semester 2007 Programming and Data Structure 43

Spring Semester 2007 Programming and Data Structure 44

23

Spring Semester 2007 Programming and Data Structure 45

Recursion vs. Iteration

• Repetition
– Iteration: explicit loop
– Recursion: repeated function calls

• Termination
– Iteration: loop condition fails
– Recursion: base case recognized

• Both can have infinite loops
• Balance

– Choice between performance (iteration) and
good software engineering (recursion).

Spring Semester 2007 Programming and Data Structure 46

How are function calls implemented?

• The following applies in general, with
minor variations that are implementation
dependent.
– The system maintains a stack in memory.

• Stack is a last-in first-out structure.
• Two operations on stack, push and pop.

– Whenever there is a function call, the
activation record gets pushed into the stack.

• Activation record consists of the return address in
the calling program, the return value from the
function, and the local variables inside the function.

24

Spring Semester 2007 Programming and Data Structure 47

main()
{

……..
x = gcd (a, b);
……..

}

int gcd (int x, int y)
{

……..
……..
return (result);

}

Return Addr
Return Value

Local
Variables

Before call After call After return

S
TA

C
K

Activation
record

Spring Semester 2007 Programming and Data Structure 48

main()
{

……..
x = ncr (a, b);
……..

}

int ncr (int n, int r)
{

return (fact(n)/
fact(r)/fact(n-r));

}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)
{

………
return (result);

}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

3 times

25

Spring Semester 2007 Programming and Data Structure 49

What happens for recursive calls?

• What we have seen ….
– Activation record gets pushed into the stack

when a function call is made.
– Activation record is popped off the stack when

the function returns.
• In recursion, a function calls itself.

– Several function calls going on, with none of
the function calls returning back.

• Activation records are pushed onto the stack
continuously.

• Large stack space required.

Spring Semester 2007 Programming and Data Structure 50

– Activation records keep popping off, when the
termination condition of recursion is reached.

• We shall illustrate the process by an
example of computing factorial.
– Activation record looks like:

Return Addr
Return Value

Local
Variables

26

Spring Semester 2007 Programming and Data Structure 51

Example:: main() calls fact(3)

int fact (n)
int n;
{

if (n = = 0)
return (1);

else
return (n * fact(n-1));

}

main()
{

int n;
n = 3;
printf (“%d \n”, fact(n));

}

Spring Semester 2007 Programming and Data Structure 52

RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

TRACE OF THE STACK DURING EXECUTION

main
calls
fact

fact
returns
to main

27

Spring Semester 2007 Programming and Data Structure 53

Do Yourself

• Trace the activation records for the following version of
Fibonacci sequence.
#include <stdio.h>
int f (int n)
{

int a, b;
if (n < 2) return (n);
else {
a = f(n-1);
b = f(n-2);
return (a+b); }

}

main() {
printf(“Fib(4) is: %d \n”, f(4));

}

Return Addr
(either main,

or X, or Y)

Return Value

Local
Variables
(n, a, b)

X

Y

main

Spring Semester 2007 Programming and Data Structure 54

Storage Class of Variables

28

Spring Semester 2007 Programming and Data Structure 55

What is Storage Class?

• It refers to the permanence of a variable,
and its scope within a program.

• Four storage class specifications in C:
– Automatic: auto
– External: extern
– Static: static
– Register: register

Spring Semester 2007 Programming and Data Structure 56

Automatic Variables

• These are always declared within a function
and are local to the function in which they are
declared.
– Scope is confined to that function.

• This is the default storage class specification.
– All variables are considered as auto unless

explicitly specified otherwise.
– The keyword auto is optional.
– An automatic variable does not retain its value

once control is transferred out of its defining
function.

29

Spring Semester 2007 Programming and Data Structure 57

#include <stdio.h>

int factorial(int m)
{

auto int i;
auto int temp=1;
for (i=1; i<=m; i++)

temp = temp * i;
return (temp);

}

main()
{

auto int n;
for (n=1; n<=10; n++)
printf (“%d! = %d \n”,

n, factorial (n));
}

Spring Semester 2007 Programming and Data Structure 58

Static Variables

• Static variables are defined within individual functions
and have the same scope as automatic variables.

• Unlike automatic variables, static variables retain their
values throughout the life of the program.
– If a function is exited and re-entered at a later time,

the static variables defined within that function will
retain their previous values.

– Initial values can be included in the static variable
declaration.

• Will be initialized only once.

• An example of using static variable:
– Count number of times a function is called.

30

Spring Semester 2007 Programming and Data Structure 59

#include <stdio.h>

int factorial (int n)
{

static int count=0;
count++;
printf (“n=%d, count=%d \n”, n, count);
if (n == 0) return 1;
else return (n * factorial(n-1));

}

main()
{

int i=6;
printf (“Value is: %d \n”, factorial(i));

}

EXAMPLE 1

Spring Semester 2007 Programming and Data Structure 60

• Program output:
n=6, count=1
n=5, count=2
n=4, count=3
n=3, count=4
n=2, count=5
n=1, count=6
n=0, count=7
Value is: 720

31

Spring Semester 2007 Programming and Data Structure 61

#include <stdio.h>

int fib (int n)
{

static int count=0;
count++;
printf (“n=%d, count=%d \n”, n, count);
if (n < 2) return n;
else return (fib(n-1) + fib(n-2));

}

main()
{

int i=4;
printf (“Value is: %d \n”, fib(i));

}

EXAMPLE 2

Spring Semester 2007 Programming and Data Structure 62

• Program output:
n=4, count=1
n=3, count=2
n=2, count=3
n=1, count=4
n=0, count=5
n=1, count=6
n=2, count=7
n=1, count=8
n=0, count=9
Value is: 3 [0,1,1,2,3,5,8,….]

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

32

Spring Semester 2007 Programming and Data Structure 63

Register Variables

• These variables are stored in high-speed
registers within the CPU.
– Commonly used variables may be declared as

register variables.
– Results in increase in execution speed.
– The allocation is done by the compiler.

Spring Semester 2007 Programming and Data Structure 64

External Variables

• They are not confined to single functions.
• Their scope extends from the point of

definition through the remainder of the
program.
– They may span more than one functions.
– Also called global variables.

• Alternate way of declaring global
variables.
– Declare them outside the function, at the

beginning.

33

Spring Semester 2007 Programming and Data Structure 65

#include <stdio.h>

int count=0; /** GLOBAL VARIABLE **/
int factorial (int n)
{

count++;
printf (“n=%d, count=%d \n”, n, count);
if (n == 0) return 1;
else return (n * factorial(n-1));

}

main() {
int i=6;
printf (“Value is: %d \n”, factorial(i));
printf (“Count is: %d \n”, count);

}

Spring Semester 2007 Programming and Data Structure 66

• Program output:
n=6, count=1
n=5, count=2
n=4, count=3
n=3, count=4
n=2, count=5
n=1, count=6
n=0, count=7
Value is: 720
Count is: 7

34

Spring Semester 2007 Programming and Data Structure 67

Some Points on Class Test 1

• A conditional expression returns an integer
value.
– If the result of comparison is TRUE, 1 is returned.
– If the result is FALSE, 0 is returned.

Spring Semester 2007 Programming and Data Structure 68

int a=10, b=20, c=30, d=753;
float x=5.0, y=12.5, z=7.5;
char p=‘A’;

a) (a/b) * (float) c ---- 0.0
b) (((float) a) / b) * c ---- 15.0
c) (a++) + (--b) + c ---- 59
d) x/a + y/5 ---- 3.0
e) p + (c % 8) ---- ‘G’ or 71
f) (c/b) == (z/x) ---- 0
g) (a%4 == 3) ? c : b ---- 20
h) (a + b / 3) != 16.6 ---- 1
i) (d – (d % 10)) / 10 ---- 75
j) (a<b) || (b<c) ---- 1

35

Spring Semester 2007 Programming and Data Structure 69

1. A number represented in 8-bit 2’s complement is 10001001.
What is the value of the number in decimal?

–119
2. What is the smallest number in decimal that can be

represented in 12-bit 2’s complement representation?
–2048

3. What is the largest number in decimal that can be
represented in 12-bit 2’s complement representation?

2047
4. How many times will the following loops run?

for (x=0; x=3; x++) { …. } ---- infinite loop
for (x=-2; x=0; x++) { …. } ---- zero times

Spring Semester 2007 Programming and Data Structure 70

• The program for series summation.
S = 1/2 + 4/3 + 9/4 + 16/5 + …
S = 1/2 + 8/5 + 27/10 + 64/17 + …

Many students computed the next term to
be added using integer arithmetic, which
is wrong.

36

Spring Semester 2007 Programming and Data Structure 71

Students Penalized due to Unfair Practices

• 5% of total marks will be deducted.
– Immediately deregistered if this happens again.

Section 1:
06IM3018 Anant Kumar Jatav
06IM1016 Bipin Kumar
06CS1033 Anirudha Patra
06EC3012 Piyush Gautam

Section 2:
06AG3009 Piyush Khemka DID NOT MEET ME

Section 3:
06MF1015 Karan Mathur
06MF3007 Uday Aghamarshan B.
06EG1007 Neeraj Tulsyan
06MI3006 Ritesh Kumar

